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Abstract

This paper presents a gradient field representation usiagagtical regularization of a
hypersingular boundary integral equation for a 2-dimemsitime harmonic wave
equation called the Helmholtz equation. The regularirai8dased on cancelation of the
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1. Introduction

This paper presents a gradient field representation usiagagtical regularization
of a hypersingular boundary integral equation for a 2-disn@mal time harmonic wave
Helmholtz equation. This representation is applicablestodafictitious solutions which
appear in an external problem such as a scattering probleefidtitious solutions are
only found at certain wave numbers which are correspondirtigd eigenvalues of a
related interior problem [1-6]. To avoid the fictitious stduns, various techniques have
been presented thus far. At present, the most widely useditpges may be the
techniques demonstrated by Burton and Miller [2]. They @add@ coupled two
independent boundary integral equations. One is a comraitboundary integral
equation (CBIE), in which the field value itself at a point tve boundary are shown as
the boundary integral of which kernel includes fundameslitions. The other is
called a hypersingular boundary integral equation (HBHa} derived by taking the
normal derivative of the CBIE, in which the normal derivatr the gradient of the field
are represented by the boundary integral. The integrandBti thcludes the the second
order derivative of the fundamental solution, which hasrgger singularity than that of
the CBIE.

An important feature of the HBIE integral is that it includeg second order
derivatives of the fundamental solution. In case of CBIE,smgularity of the kernel is
removed by analytical integral around singular point. Hegvein case of HBIE, since
the singularity is stronger than that in CBIE, the hyperalagintegral can not be
evaluated without special considerations. Burton andevlidlso proposed the double
integral technique to regularize the hyper-singularityistechnique requires more
intensive computationakirts because several computations of double integraten ar
required. This paper attempts to achieve regularizatidhoui use of the double integral
technique.

Previous methods to obtain regularization of hypersingualagrals for second
order partial diferential equation are reviewed by Tanaka et al. [7] and Chah §8],
and for the Helmholtz equation are summarized in literateteewhere; e.g., by Hwang

[9], Yang [10], and Yan et al. [11]. The regularizations apglin past studies are
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classified into three approaches. The first is a use of taiadjeetivatives on the
boundary [12-14, 19, 20]. The second approach is a use ofitftmmental solution of
the Laplace equation together with that of Helmholtz equef2, 9-12, 16-18, 20].
Since the singularity of the fundamental solution of Helfithequation is same as that
of the Laplace equation, the singularity of th&eience of them becomes weakly
singularity. The last scheme is a use of thi@atence between the field at an internal
point and that on its corresponding boundary point [9, 1420825, 26]; most of these
studies are used together with Taylor series expansionsdieme presented in this
paper applies these three schemes. Most of past studigsthese techniques are
applied for 3-dimensional problems and some can be appliaetd surfaces; however,
almost of them require a smooth boundary. Although this pppesents a scheme of
regularization only for 2-dimensional problems, it is apable for problems with
corners.

After the regularizations, the singularity of a hypersilagintegral becomes a
weakly singular integral. However, to evaluate this ingégroperly some considerations
are required to ensure accuracy; e.g., Meyer [14] and ChAi&use sub-divided
elements, Terai [15] has presented an analytical integnal,Yang [10] has used
Fourier-Legendre expansions. This paper presents antemaahgpresentation of
hypersingular integral.

The outline of this paper is as follows. In section 2, the slagties of CBIE and
HBIE are introduced. The regularization of the singulaotyHBIE is presented in
section 3. In section 4, a rough estimation of errors in irgksgof both hypersingular
elements and regular elements is presented. In sectiomienaal results are
demonstrated for the D’alembert solution to show the erfergradient field on the

boundary in the HBIE representation. Finally, some remarksshown in section 6.

2. Representation of gradient field on boundary

A time harmonic scalar wavg x) at a pointx satisfies the following Helmholtz

equation:
V2u(x) + k?u(x) = 0, XeQ, (1)

3



wherek indicates the wave number, afdrepresents the spatial domain considered. A

fundamental solution*(x; y) in free space corresponding to this equation satisfies
VAU(x; y) + KUT(X; y) = —6(x - y), (2)

where the dterential operato¥ operates only o, but not ony. Using Green'’s second
identity and some integral operations, we can obtain thgexdronal boundary integral

equation (CBIE),

c(y)u(y) = Sé [u"(x; )(VU(x))-n = u(x)(Vu'(x; y))-n] dI
3)

wherel” denotes a boundary surroundi€gx is the position of the points on the
boundaryy is the position of a field pointy is the outward-pointing normal unit vector,

andc(y) is the result of the following evaluation of Dirac’s deltanction.

cy)uy) 2 fg U(X)S(X — y) dQ = fg 5(x — y) dO u(y).
(4)

The codficientc(y) depends on both the relative position of field pgind the shape of
boundanf. Wheny is located inside and outside the domaify) evaluates to 1 and O,
respectively. In the case wheyes located on the boundarg(y) equals to the ratio of
interior angle46 to a whole angle; e.g46/2x for 2-dimensional problems.

A 2-dimensional fundamental solution appearing in Eq. $3yiitten as a function
of the distance between the source point (i.e., integrgtant x) and the field poiny
[21],

1
u(x;y) = 4_ng2>(;@, r=Ix-yl (5)

wherej denotes an imaginary unit, and the functldﬁ)(kr) is a second kind O-th order
Hankel function. This solution represents an outward pgagiag wave with time factor
el“t assumed. The Hankel functich)z)(kr) has a singularity at = 0, with asymptotic
form shown in Egs. (89)-(91) in Appendix B. In boundary elethmethods, the

boundary is divided into discrete boundary elements. Theildution ofu and Fu)-non
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each element is modeled by means of shape functions, angdda discretization
scheme such as assignment to constant, linear, or higher @eiments. By locating the
field pointy at every boundary node, we can obtain simultaneous eqsaaod
determine the unknown quantities along the boundaries.nWa@proaches in a
boundary element, we should pay attention because botjramésu” and Vu*)-n are
singular. However, their integral does not diverge. In thgecofu® the singularity is only
on the order of log, and this integral becomeglogr — 1). Since it approaches 0 as
approaches 0, the singularity disappears. This kind ofusaniy is called a weakly
singularity. In the case of the other integrai¥ar()- n, there is a stronger singularity.
Introducing a unit vector betweenandy ase, = (x — y)/r, we can rewrite the kernel as
(Vu’)-n = &Le -n. Since the vectoe is perpendicular to the normal vectonear the
singular pointy, the inner vector producg - n, becomes 0; therefore, the singularity also
disappears. Thus, Eq. (3) does not necessitate inclusiamyogingular integrals, and it
requires only attention to ensure the accuracy of integmati

Next, let us consider the gradient of the wave field at the dannnodes. Taking
the gradient of EqQ. (3) with respect to the field pomtve can obtain the following

equation,

% [ey)u(y)] = 95 [(%u(x )(Tu(9)-n
~U(x)(%Vu'(x; y))-n| dr', (6)

where theV, means the gradient with respectytoThe respective gradients of both
fundamental solutiondj,u* andV, Vu*, show stronger singularities than CBIE
representation in Eq. (3). These singularities cannot ¢palaeized simply because the
aforementioned orthogonality ofande, does not apply to Eq. (6). This type of
singularity is called a hyper-singularity, and the equat®called hypersingular

boundary integral equation (HBIE).



3. Regularization of the hypersingular integral related toa gradient field

3.1. Hypersingular term

Since the quantitg(y) in Eq. (4) is not dependent on either the wave nuniar
any field distributions, we can evaluate it by a Laplace dqonatvhich is identical to the
Eqg. (1), in terms ok = 0. Assuming the field is uniform, we can obtaiy) as the
subsequent boundary integral representation [29], wisiclalied the equi-potential

condition:

o) = - SéVut(x; y)-ndr, @)

whereu; is a fundamental solution of the Laplace equation. Sulistguhis relation

into Eq. (3), we can reduce to the following expression,

5@ (97 (X; Y)U(X) — i (X; y)u(y) — u*(x; y)a(x)| dI" =0,
(8)

whereq, g, andqg; are the normal derivatives of u*, andu;, respectively. The last term
of the integrand has only a weakly singularity as shown imptleious section. In
contrast, both the first and the second term have stronggulanities. However, the
singularity of sum of them is canceled as follows. Since ftimelamental solution af;
can be given as

U =~ logr, (©)

the singularity olu; is same asi*. Therefore, the dierence between the fundamental

solutions,
Sut 2 Ut -, (10)

has no singularity witlD(logr) even ify = x, and it has the highest order term@f1).
Thus, the normal derivative afu* has no singularity, and Eq. (8) is a regular boundary
integral equation. In fact, we can choose @@) term of su* so that it will also be
canceled because the constant term in the fundamentailosobain be chosen arbitrarily.

In this case we can find that the significant ordesof aroundr ~ 0 becomes
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O(r?logr) from Egs. (89)-(91) in Appendix B. The regularization scieehas been also
used for HBIE regularization in past studies [2, 9-12, 16-208.

Since Eq. (8) is satisfied for any boundary shapes, we canfynihéi boundary to
exclude the poiny as shown in Fig. 1. This modification is achieved as followsstF
the original boundary is divided into two types of boundaggtfons: the non-singular
boundary sectior;,, and the singular one. Next, the singular boundary section
including the singular poing is further separated into three sections to exciudée
first is a part of circle sectioh, with infinitesimal radiug:, the second i§, connecting
from one of end points df, to the end point of ,,, and the last i$}, connecting from the
other end point of , to the other end point df,,.. The original boundary is redefined

with limiting procedure as
= Fnulin?)[raurbul“g]. (11)

Taking the gradient with respect yoof Eq. (8), and considering the integralqjf
disappears by Eq. (7) when tias located outside the domain in the configuration, we

can transform the boundary integral equation to

b [(meru- (Yapu) - (Bu)a] dr =o. (12)

In the case where the gradient operator with respegis@pplied to the functions that
depend on only the distancesuch asus* or uf, the result is represented by the gradient
with respect ta with an opposite sign because the unit vectors of such fonstiave an

opposite direction to each other.

ou*
Vu =-Vu' = ——— 13
u u o e (13)

In contrast, the gradients of botfiandq; are not functions that depend only on the
distancer, because they also depend on the vector’s inner proguot,However,
considering the relations &f = (x — y)/r andV,y-n = n, we can obtain the following

expression,

*

ar”

. _du +}8u* N
4=1"%z "7 )%

Sl
D

(15)
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Sinceu* satisfies the following Helmholtz equation expressed ioutar polar
coordinates, the second order derivativero€an be replaced by the first order derivative
and theu* itself.

our N 1ou
o2 r or

+keur = 0. (16)

Thus, we can obtaiR,q*; furthermore, putting = 0 into the result of,q*, we can also

obtainV,q; as follows:

20U 1lou
* 2, ok = n_ =
Viq _(ku +rar)ere,n o n, (7)
20uy 10u;
wa. = Fa—rLerer'n— T 6rL n. (18)
The three integrals on the left-hand side in Eq. (12) can higenras follows.
11 2 PReudr
r
20U 1ou
= Ku' + = ‘n— = 1
5@{( u+rar)erern o n}udF, (19)
12 2 - Gauy)dr
20u; 1ou;
--u {25 heen- 2200} ar. @0)
A * au*
o 2 - uadr = preqd. (21)
r r or

The orders of integration kernels in bdthand!, areO(r~?) and that ofl 5 is O(r 1) for

the vicinity around ~ 0.

3.2. Integral along the boundaiy, andTI’,

We assume a linear shaped boundary elemerifandl, in Egs. (19)-(21), with
nodes located at both ends of each element. We also consadéhé normal derivative
g = Vu-nvaries linearly within the element, following a linear elem discretization
scheme, so that can be represented by the following Taylor expansion; simil

formulations to regularization have been applied in [15-218 22, 23].

q=Vu-n~ (Vu-n), +re-(Vvu-n),. (22)



Since the order of is less than that af, the distribution olu should be expressed
including the second order as follows, to ensure the acgwfg being equivalent to
that ofu.
r2
u-~uy) +re-(Vu), + Eer-er-(VVu)y. (23)

In the case where the integration poxi located on the linear shaped boundgyy
orI'y, the unit vectoe, = (x — y)/r is identical to the unit tangential vectey, where the
sufix y denotes eithes or b (see Fig. 1). Since, is perpendicular ta,, the vector
e &-nthat appeared at the first term on the right-hand side of E§3.and (20) vanishes.

The summation of the non-zero integration kernels of Ed®-(21) is evaluated
using Egs. (23), (22) and (10), as follows:

_}@un +}ir-u( )n + @ T
ror 7 ror Yty or qry
ou* 106u*
= (n,x7,)x(Vu), - F?U(Y)ny
ou( 1 H4 0%u
r -=n, — 24
* ar[ 276%§y+T76q6my)’ (e4)

where the representation of the first term with vector trppieduct is derived from the
formula (0, x7,)x(Vu), = (n,-(Vu)y) 7, - (7,-(Vu)y) n, . The order of the singularity of

each ternfe, 228 andrZL is O(r 1), O(logr), andO(1), respectively. Although the

second term on the right-hand side becomes a weakly singi#grand, the first term is
still singular.

This singularity of the first term, can be removed by considgthe summation of
the integrals of ', andI',. The factor of the singular term contains the vector proddict

n,xt,. They have mutually opposite signs, and their lengths areesa

& : (=9

, (25)
+6 © (y=Db)

wheree; is one of the unit vectors in the Cartesian coordinate systairis

perpendicular to the 2-dimensional domain under consiider,aas shown in Fig. 1.



Using this property, the singular integral is canceled &edrésult is easily evaluated:

Z fr‘%lf(nyxry) dr’ x(Vu),

y=ab* v

= [-u'(La) + u'(Lp)] &sx(Vu)y
= [-u(La) + U (Lp)] (—&1&: + ez61)-(VU)y (26)

whereL, andL, represent the size of elememtsandl’,, respectively. It should be noted
that the computation of the sum of the integral along theldargelements’, andl’y, is
obtained solely by evaluations of at one end of each element, and it requires no
numerical integrations. Moreover, limitations regardaigment size or smoothness are
not imposed in this formulation; it is applicable fofidirent sizes of boundary elements,
and also applicable for corners. To simplify notations tedaliscussion we introduce an
abbreviation of a dierence operator between a functibrelated td; and that related

to Iy, asy:Da'fl;[fy] £ f.— fo. The codicients of(Vu), on the left-hand side of Eq. (26)

are rewritten as the following dyadic tensor,

Can(y) £ ~Diff [u(L,)] (-erez + ese)

|0 fmlwlf o
-Diff [u(L)] 0
Next, let us consider the second and third terms on the hght side of Eq. (24).
The second order derivatives at the third term can be exgulessa linear combination
of uandq at associated points, which are the singular npéad its adjacent nodes,
as shown in Eq. (81) and Eqgs. (83)-(85) in Appendix A. Alsogbeond term is
expressed by(y) itself. Consequently, the integrals of terms of Eq. (24) expressed

by u andq but notVu, so we introduce the following vector definition.
Y10 6uf
L _ -
J,(u,q) = fo o dr u(y)n,
Lyrﬁu* d }n @
g Or 27 or2

+ _62u
-

Y
y dr,on, y

+

) . (28)

For the sake of accurate evaluations of both the weakly sngutegral and the regular

integral, we can apply the analytical integral shown in Apgiz B.
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Thus, the summation of the entire integral aldigandI’y, is represented as

3
oo 2 3" D 1y = Cany)- (V) + Y 3, (U ). (29)

y=a,b i=1 y=a,b
3.3. Integral along the boundaiy,

The integration patli, can be given by d6 wheree is an infinitesimal constant,
andd is the azimuthal angle from the directienin the Cartesian coordinate system.
The angled varies fromd, to 8, with the interior angle1d = 6, — 6, > 0. Sincee, = —n,
is satisfied throughout the path, each of the integrals (@§3-(21)) alond; is readily
evaluated by applying a similar procedure to that used imetaction of Eq. (24). The

terms with non-zero values in the integrals are as follows:

20U’
I, = lim
L 5_’0\[9? or
Y2 Hur
—u(y) lim L
(y) a—>0f9; ar e
3 ou*
or

Since the singularity oﬁl’g—‘rJ is O(r logr), the codicient ofu(y) vanishes witke — 0;

n.(u(y) - en,-(Vu), ) de, (30)

&

lI>

n. do, (31)

o
)
(1>
I
» =
3
& 2

n.n,-(Vu), s) dg. (32)

€

therefore, the summation of these integrals are simplifsed a
)

3
) ou*

I éZI- =—lim|e

& : ie £s0 or

Furthermore]. is a regularized term because the singularit%‘r(*-)ﬁs O(r71), and the

0
f 2n.n. dé -(Vu),. (33)
6

b

codficient of the integral can be evaluated as

. ou*
lim|e
-0 or |,

2

) i (34)

The vectom, and the dyaadh,n, are written in terms of unit vectors in the Cartesian

coordinate systeng; ande;, as follows:

n, = —e = —(cosfe; +sinf ey), (35)
N.N, = COS #e,e, + Cost Sind(e1e, + e,e;) + Sirt 6 e,6,.
(36)
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Evaluating the definite integral with respecttasing these equations, we can obtain the

following result:

sin2,
A

|6 .
I, =|Diff | == 1 + Diff

y:a-b

] (e161 — 626))

v:a-b

+Diff [%&%] (e18 + ezel))-(VU)y
JT
2 C.(y)-(Vu),. (37)

where T denotes an identical dyadic tensor. Thefticent of 1 is equal to that of
CBIE. The coéicient dyada(y) is same as that for Laplace equation [22, 23] (note
these references contain a few mistakes in representatiohs codficients).
Furthermore, Chen et al. [24] shows similar fiseents called free term, but their
representation is given by two normal derivatives witliedtent normal directions at a

corner.

3.4. Regularized boundary integral equation for gradieeitfi
Using Egs. (29) and (37), the integral equation of the gradjesen in Eq. (12) is

expressed by only the regularized terms as follows:

C(y)-vu(y) = -3 (u,9). (38)

The right-hand side] (u, q), is composed o8, (u, ) andJ, (u, g), whereJ, (u, q) is the
regularized result of the hypersingular integral showngn ®8) that is not dependent
onVu, andJ, (u, g) is the integral along the non-singular boundary elemerits. T
codficient dyad? Is the regularized result of hypersingular integrals aissed with

Vu.

Ja)2 > 3, (ug)+Inua), (39)
y=ab
Jo.d) 2 [ {(%eu- (JaDue) - (Gu)a) dr (40)
> L d —>
C(y) £ Ca(y) + Can(y)
26, + sin 29 Y

Diff &] Diff [& + u*(Ly)]

yia-b T yia-b Vil 4

. |[-cos®, .26, —sin2,

oit | =52 | oin |22

(41)
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When we can assume that the element kizis small enough compared to the
wavelength, th£(y) is a regular matrix as shown in Appendix C. Therefore, thelse
—
matrix C~1(y) can be defined as Eq. (98). Operating the inverse matrix 1¢38), the

following equation is derived,
1
vu(y) = -C7(y)-J (u,a). (42)

Since the(?i(y) depends on only the boundary shape and the element sizt{luwnc
guantitiesu andg are known, the gradient can be computed by an evaluatioreof th
right-hand side as an explicit form.

In general problems either onewbr g on the boundary is given, but not the other.
In this case, taking the scalar productg(y) and Eq. (42), we can obtain a Fredholm

eqguation of the second type with respectjto

6,(¥) = —ny(y)-C H(y)-J (.. (43)

Similarly to CBIE, this equation can be solved after conging a set of equations
obtained by taking for every boundary node.

Two kinds of error arise in solving such a set derived from #8): one is the error
from the regularization of the hypersingular integral eégurg and the other is the
rounding error in solving simultaneous equations. In astiireEq. (42) only includes
error from the regularization. Since another aim of thisgrap estimation of the error

due to the regularization, we will consider the evaluatidbE@. (42) in later sections.

4. Error Estimation

In the section 3 in order to derive the regularized equatfayradient field, we
considered the second order derivatives afound the singular point in Eq. (23), and
higher order derivatives were truncated. The error by pakation using shape functions
in the singular element, which is the error of Eq. (28), resstitbm these truncated terms.
In the integral of non-singular elements defined in Eq. (A3 ¢rror is also included. In

this section we will roughly estimate these errors. We dasise error source terms as
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follows,
1 (Y ou |, ¢4

2 A
Iforu} &5 | g a2| " (44
L our 8%u
2 A
2 4
Jy{amu} fo " or ar at,on, yTy’ )
Jo fup 2 f (%gudr, (46)
Iy
Inlg) 2 f (Wu)qr, (47)
Iy

where the identifierg andn; show, the singular element € {a, b}) and the-th
non-singular boundary element, respectively, moreokieratgument in the bracket on
the left-hand side of each equation shows the cause of @rmehichd. andd, are
abbreviation of derivative with respectta@andn, respectively.

In order to facilitate estimation of the error we assume thata plane wave, i.e., a

D’Alembert’s solution, which satisfies the following eqiaets,
Vu+ jku=0. (48)
The amplitude of this solution can be estimated as follows:

IVul = Klul, |8,u| = klullcosgl,

o.u

= Kk|ul[sing|,
(49)

whereg is the angle between the wave veckasind the normal unit vectar. The higher
order derivatives satisfy similar relations.

Although the discussions in this section are only focused plane wave, it should
be noted that the application can be expanded to the case Wieefieldu is expressed
as a sum of plane waves. By considering a plane wigweith wave vectoik,, that has
the same magnitude as other plane waves ltdérént directions, the amplitude of a

gradient of the total field can be estimated as the followigaaded relation:

M
u= Z Um, Vum = _j kmum, |km| = k,
m=1

M M M
D Kantnl < > Kl - Il = K > Uil
m=1 m=1 m=1

< M kmax|upy|. (50)
m

IVul =

14



4.1. Error due to integral including singular point

Both the errors associated with Eqgs. (44) and (45) are maitdgted by the errors
of the second order derivatives with the discretizatiorcpdure because the integral can
be evaluated with good accuracy by analytical integral esged as Eq. (88) in
Appendix B. The errors of the second order derivatives otWldgetails are shown in
Appendix D, depend on the geometries: sizes of two singlganents that both include
the singular poiny, and the interior anglgd aty. In subsequent discussion, the sizes of
the singular elements are denoted using a parameist, = L andL,. = oL, where the
subscripty is either one o or b, andy’ is the other one. In terms of the internal angle
we consider two typical cases; a flat boundat§ € ), and a corner with right angle

(46 = n/2). The followings are the estimated error:qf{afTu} andJ, {Bfnu}.

|43, {62 )
(kL)1 - af, . 460 = m and
~—————sin’ ¢| [ku(y)| ,
Tor ST ¢| ku(y) ek
(KL3(L + %), ., 46 = r and
—————~Isin” ¢| |ku(y)| )
48n(1 +a) sif ¢ty 11— af < kL
(51)
kL)
43, )| = S cos of kuy (a6 = w2), (52)
KL)? , . A0 = mor
‘AJY{ﬁfnu” - (4_) |sir? ¢ cosg| [ku(y)| { " ]
T A0 = /2
(53)

In the case of., = L,, by comparing Eq. (51) and Eq. (53), we can find that the error
due to 2,u)y is larger than the error due t6%u),. Otherwise, the orders of the errors
are same KL)?.

The error‘AJy{BfTu}) for the corner shown in Eqg. (52) error decreases by taking
smallera at a glance. However, in the situation of exchangirandy’, the error
increases because the faatois replaced by its reciprocal. Since the total integral give
in Eqg. (39) includes a sum of the case #fy’) = (a, b) and an exchanged case

(v,y") = (b, a), the factor of the error should be estimatedras1/a. Thus, when we
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choose smallet, the error of the total integral will not become smaller. thermore, in

the case ofr ~ 1 the error for10 = /2 (Eq. (52)) is larger than that fatd = 7
(Eq. (51)).

4.2. Error due to the non-singular integral

The error due to discretization in integral of non-sing@i@ments appears as well
as the integral of singular elements. Substituting the tii@nV,q*(x; y) and-V,u*(x; y)
to W(x; y), and substitutingi(x) andq(x) to f(x), we can reduce to the general form of

the non-singular integral in Egs. (46) and (47) as follows:

anin 2 [Mweyiwar, (54)

wherex;, x” are both ends of the non-singular elemggptandy ¢ I',.The functionf

can be expanded by a shape funcifg(x) as follows:
1) = > 40 +4(), (55)
j

where f(x) means truncated terms in the discretizing procedure. Wleecan
calculate the first term with good accuracy, the error dudéabn-singular integral is

determined byl f (x) at the second term;

AJn(f) 2 fxilr(x; y)Af(x)dr". (56)

In the case of linear element, the significant term 6¢x) within truncated terms is the

second order derivative df,
Af(X) = A4TO(x) = %(x = X)) (X = x;)-(VV ), , (57)

wherex; = %(xi’ + X{"). Sinceu is assumed as a D'Alembert’s solution shown in Eq. (48),
the gradient off, wheref is eitheruor q = Vu- n, satisfiesvf = —jkf. Moreover,

puttingx — x; = |rj, we can obtain the error as,

43011} = ‘(k+)2f(xi)fuz\r(xi lzpy)2dl. (58)

L/2

In the case wherke< r; (ri shows distance betweehandy), the¥ can be considered as

a constant vector,
AJo T} ~ —ﬂ(k-ri) fO3)P(Xi;y)- (59)
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SinceVY increases with decreasimng the error from the non-singular element near the
singular pointy becomes significant. When we consider the case whetel/k, the
fundamental solutio®, i.e., yu* or V,q* given by Egs. (13) and (17) are reduced

approximately as follows:

ou* 1
VU = — ~ e — 60
20U’ 1ou
® 2, ok = . _ = .
vq —(ku +rar)(”' )& el
N _2e, (ni-e;,) —n, _ _hicos A + T SIN 2 (61)
2nr? 2nr? ’

where cog; = nj-e,,, Siny; = 7;-€,,. IntroducingB asp = r;/L and substituting the above
equations and Eq. (49) into Eq. (59), we can finally estimagectror due to the

non-singular integral as follows:

(KL)? |sir? ¢ cosg|

[43nta)] ~ 2867 ku(xi)! , (62)
KL [sir? ¢|

430 {u}| ~ a8 Iku(x;)| . (63)

These errors become larger for smaBeSince|AJni{u}| is only proportional to the first

order ofkL, it becomes larger than the error due to the singular intsp@vn in the

previous subsection.

4.3. Total error of the gradient field
In the above subsections we have shown the estimation oftitvedie to the
discretization for components df The total error of the gradient fieMu is estimated

«—
by operatingC~! on the sum of the errors of the components:

—
A{Vu} £ -Ct47, (64)

43 & % |43,{0%u) + 43, {05l

=a,b

<

+ ) [43n )+ 4301a)]. (65)

Since the component afJ is generally unknown, we apply the norm of the inverse
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matrix to estimate the total error.

4 (vu(y))| = ‘CH‘MJ‘ < ||| 1491, (66)

)

«—
where the estimation of the nor%(:‘lH is shown in Appendix C. The total error is

| -

isinAe
2r

(i ‘Dlﬁ lu(Ly)]| +

(67)

magnified by this norm. Results of some typical cases are isiotellow.

|

2(1 + ‘2795 |u(L))]

«—
(a=r) 167 <

o]
o) 1 -
a— kb
g o )

~ 4+ 1672 (y[:);fl; [u*(Ly)])z

(68)

In the case of , = Ly, we can find that the norm fatd = x is 2, while the maximum of
the norm for40 = n/2 is almost 11. This result suggests that the error for a cavith
right angle in the worst case is magnified about 5 times laigar that for smooth

boundary.

5. Numerical Result

In order to show the error of hypersingular integral in thegosed regularization,
let us consider the case where true solution is given in wtoieain. We adopt the
following plane wave without scattering as the true soluficto compare the

computational error of the hypersingular integral equatiith the rough estimation
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discussed in the section 4;
TU(X) = uge kX, (69)

whereug is complex amplitude ankl is a real wave vector. The true boundary values at
boundary nodeg; consisting of the fieldi(x;) and its normal derivativeg(x;) can be
readily obtained. Substituting these boundary valuegxg andq(x;) on the right-hand
side of Eq. (42), we can evaluate the gradient at the bourrdadgs Vu(x;), as an

explicit form. The reference of gradient at the boundaryesod derived directly from

the true field in Eq. (69) a8 u(x;) = —jku(x;). The error of the gradient is defined as the
difference of these gradients.

Since both of the result§,u by numerical integral an¥l u by the reference, are
dependent on position, it isfiicult to fully capture the error. However, by normalizing
the gradient with respect to the field itself, the true grattiean be converted to a
position independent quantity. Similarly, the numeriaaldient is normalized by the

field as follows.

— vu k ~ Vu
a( é . — = 7. a( = : " 70
KT K ~ikT (70)
The results shown below are represented in terms of theseatiaed diferences,
Ae 2 e - & (71)

The aim of this section is to demonstrate the error depeneemdth respect to
element size, thefect of corners, and thdfect of uneven sized elements. A
two-dimensional model to demonstrate them is shown in Figih2re are two dierent

configurations of boundary elements and nodes:
Even-type configurations The nodes are placed with even interval, i.e., the size of
every element is same.

Uneven-type configurations By appending two additional nodes to the even-type
configuration at the bottom side and adjacent to the uppét-corner, two original

elements are replaced by 4 smaller elements, sized halbtloaiginal ones.
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The size of standard elemeht,and the directiong, are changed, but the dimension of
the regionD, and the wavelengtii, are fixed aP = 0.8[m], A = 0.1[m]. Instead of the
element siza, the error dependency of element size is showiNbyepresenting the
number of elements in a wavelength, id.= 1/L. Gauss’ 4 points quadrature formula
[29, 30] is applied to the numerical integral for non-siragudlements. Notably, we also
examined use of 8 points quadrature, but no significaferince was found. This
indicates that the error due to numerical integration figently small compared to the
error due to otherféects such as truncations of higher derivatives.

In addition, to avoid ambiguity of the direction of the nodmait vectorn at the
corners, we employed a double node technique with zerondistior the corner nodes
[27, 28], in which each corner node has three variables; efLj and two normal

derivatives for diterent directiorg, andg, .

5.1. Error properties for even-type configuration

Figure 3 shows the fference vectorje,, with N = 10 for the even-type
configuration for diferentgy. It is found that the error at a corner is larger than that on
the sides, and its magnitude at such a corner reaches alf#sbfltrue solutions.

From the result ob, = 0 symmetrical error with respect to the horizontal axis
(&2 = 0) is found. However, symmetry with respect to the verticasd &, = 0) cannot be
found. It may appear counterintuitive; however, it is notr@mg result. The reason for
these results is theftierence of the nature between the ter®s)q and %,g*)uin the
integrand in Eq. (40). The symmetrical nature of ¥pg* andV,q* can be evaluate by
Egs. (13) and (17). In the case where the symmetrical axieifdrizontal axisg = 0),
each theQu)-e;, (Vg*)-e;, uandg has even symmetry, and each of tRgi()-e,
(%0)-e; has odd symmetry. Therefore, the above-mentionidrénce in Eq. (40),
(Wu)g — (Wg)u, which is the integrand o, has even and odd symmetry for horizontal
and vertical component, respectively. In contrast, in teovhere the symmetrical axis
is the vertical axis4; = 0), although the gradients have similar natures, the natine
andq have neither even or odd symmetwyat symmetrical point is equal to the complex
conjugate ol at the original point, and in terms gfwe have the complex conjugate

with opposite sign. Thus, there is no symmetry with respethé vertical axis. In the
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case whergy = /4, shown in the bottom two graphs in Fig. 3, a symmetry witipees
to the line of¢; = &, is observed. This is caused by the symmetry of all the quesitf
u, g, WU, andvq'.

Figure 4 shows error dependencies of element size. It idfthat the error
decreases with increasimty which is equivalent to decrease of the size of elenhent
For almost all of the results the dependencyNadbeys a IN law, which agrees with the
discussions in the section 4. The significant error is therelue to the non-singular
integral4J, {u} shown in Eq. (63). Some exceptions are found in cases wherfestt
node is located around the center of the left-side or righe-fr ¢, = 0, in which the
dependency showsgN2. In these cases, the error due to the truncation of higharord
derivatives in the representation of field on the left- ohtipand side of the boundary
disappears, because the wave front of the propagation wazeallel to each side, over
which both theu andq are uniform. Therefore, the errdd , {u} from non-singular far
element on top- or bottom side; & 41), becomes significant. Since the error in
Eqg. (63) is a consequence of the assumption<afr; <« 1/k, we can not use the
estimation. However, it can be estimated directly by sintitig the second of Eq. (61)
into Eq. (59). In the case wherg-e;, ~ 0, itis|4J, {u}| = %;:2‘” |u(xi)Z|, which is
proportional to IN2.

We can also draw some conclusions of the errors around cofiroen the result
shown at the right-hand side column of Fig. 4. For the casefGtgntly fine element
resolution (e.g.N = 100) the errors at the corner nodes are larger than thatatead
nodes, for which distance from the cornet.islt depends on they. In the case of
¢k = 0 their ratio is almost 4, and in the casegf= n/4 they are almost same. This
result agrees with the discussion in the section 4.3; he.etror at the corner that is
induced from the the norrrH(?iH grows almost 5 times larger than that on flat
boundary in the worst case. The reason why the errors aresabgaals in the case of
¢k = /4 can be also explained by previous analysis in terms of syimgnihe growth
factor<C_‘i, and the maximum norm (§<I_‘i is evaluated by the right-hand side of Eq. (99)
in Appendix C. If the error vectat J multiplied toC<_)‘l is known, the error growth can

be estimated precisely using Eq. (98). The significant extevery corner iglJ, {u} as
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discussed above, which magnitude and direction are sho&qgsn(63) and (61),
respectively. There are two dominant elements within thigresource: namely the two
non-singular elements adjoining to two singular elememkgre the normal vectors
point in different directions. Estimating sum of them for two cornergpérgight and
upper-left), we can find that both the absolute magnitudesrof are same but the
directions of the error vectors arefidirent each other. The vector component satisfies,
respectivelydJ - e, =4J - e and4J - e; =-4J - e, for the upper-right corner and for
the upper-left corner. Using these relations the norra)ifcan be evaluated. The norms
at both corners fogy = n/4 become
<3
|3 - [ctad _ 4
|49 T+ 2

This result is almost equal to the norm ## = 7, which is equal to 2 as shown in
Eqg. (68).

2.4, (72)

5.2. Error properties for the uneven-type configuration

Figure 5 shows theffect in the case where smaller sized elements are included.
Although the uneven-type configuration uses smaller sif=tdents, the growth of error
is found from a comparison of the zoomed graphs around tHaaeg elements. The
growth is not limited to only this example. The detail reswdte not shown here, but we
have obtained that the amplitude each error obésas similar to the case of even-type
configuration shown in Fig. 4. It means that the significantreis 4J, {u} shown in
Eq. (63) even in the case of uneven-type configuration. Tioe at the additional node
on the bottom side is almost twice as large as neighboring.okléhough the element
size of the singular element is reduced by appending a new, riloe size of the
non-singular elemerit is not changed. However, singeappeared in the denominator in
the equation is proportional to the distance between theecenthe element and the
singular node, thg does become smaller by appending the new node. It mgar3y/2
for the even-type configuration, aBd= 1 for the uneven-type configuration. Thus, the
error from the non-singular element which connects to thgudar elements increases
by appending the new node. From Eqg. (63), the growthhf{u} by appending the new

node is estimated ag®times larger than the even-type configuration.
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The error near a corner is similar to the case where the addithode is located on
the bottom side. The error at the additional nodes has lamer than that at the
adjacent node located opposite to the corner node. At threecoode a little
improvement is gained. The dominant error at the cornerise@ by the1J, {u} from
horizontal side as discussed in the previous subsectioce$ihe element with the most
significant error is the one adjacent to the additional nbdéis opposite to the corner,
the element size becomes half of the size of the original eterands is same as the
original configuration. Thus, the error from this elementréases. Note that the error is
not reduced to exactly half, since the error from the othemelnts is not reduced.

From the above discussion we can conclude that when the coatiign contains
uneven sized elements even if their sizes are finer than kiee even sized elements, it

may still result in larger error around them.

5.3. Error reduction around the corner

As discussed above, the errors at corners are generalgy ldrgn at other nodes.
Furthermore, replacement of an element around corner evalesmaller sized elements
induces a larger error in the areas around the corners. Howedoes #ord a little
improvement exactly on the corner nodes. To reduce the atitbe corner nodes, we
evaluated two configurations. One is a gradual size-vanatonfiguration. In this
configuration, the element adjacent to the corner node bereside is replaced by four
smaller elements with a quarter size of the original elemanteover, the next
consecutive element following this replaced element is e#placed two half-sized
elements. In the other configuration the two elements adjdoehe corner node are
replaced by eight quarter-sized elements on each sideghieenumber of new fine
elements is sixteen. Both of these results are shown in Figgéther with the result of
the original even-type configuration. The results of botw menfigurations demonstrate
the error reduction at the corner. However, the errors aatlitional nodes are
relatively larger than the errors on the side near the coifriex growth of the error on
the side in the case of gradual size varying is smaller thanahthe replacement by
eight quarter-sized elements on each side. These resudis agh the results discussed

in the above subsections.
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6. Conclusion

This paper shows the regularization of the hypersingutan that appears in the
gradient representation of a boundary integral equatioa f3dimensional Helmholtz
equation. Since this regularization is achieved by an aicalyapproach and it does not
use the double integral technique [2], a computational m@st be significantly reduced.
Moreover, this regularization is applicable even if the @®thclude corner locations or
if the size of elements is non-uniform. This paper also shinasthe error from this
regularization in terms of linear elements is estimatedhiyiby separation into the
error from the singular elements and that from non-singellements. The
computational result from evaluated examples demonstthst the calculated errors are
in agreement with the roughly estimated error. The erroseduy the hypersingular
element regularized in the proposed method is negligiblgllsim comparison to the
non-singular element. The dominant non-singular erroreeses with increasing of the
number of elementdy, such that the total error is proportional ttNL When some
nodes are modified by appendage of evenly sized boundargetsnthe properties of
the error vary according to the location of the appended siddethe case where the
additional node is located on a flat boundary, in which the sizwo adjacent boundary
elements to the node areffdirent, the error increases in spite of the reduced boundary
size. In the case where the additional node is located initheity of a corner, the error
at the corner decreases, but the error at adjacent nodesaftat boundary increases. In
order to reduce the erroffectively by the regularization technique proposed in this
paper, it is recommended to use even sized elements for fladaoies, and for corner

areas to employ a configuration of gradual variation of el@sezes.

A. Representation of the second order derivative of the fielét the singular point

The purpose of this appendix is to reformulate the two secoddr derivatives in
Eq. (28) as the linear combinationwfindq at the singular poiny or at adjacent nodes.

The two variables that should be represented finallyﬁﬁ;‘ and %
y y oty

wherey isaorb
y
and the unit vectors,, T, are shown in Fig. 1. Let us labgl which expresses

associated quantities with the opposite side of the boyridato y. Notice that {,y ")
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can be taken as either pa&, b), or (b, a); however, their identification is not important
because no quantities dependent on tifi@dince between them are found in the
following formulation.

We assume the second derivativaua$ defined at a poirnt located on each
boundary element, and derivatives of third or higher ordeesnegligibly small.

Accordingly, the Taylor expansion arougatan be given as follows.

() ~ u(y) + (¢~ y)- (V)
+ 5 (x—y)-(x~y)-(VVu),. (73

Since the quantitg has been already applied to thé&drential operator, the Taylor

expansion is represented up to the first order.

6(x) ~ &) + (x=¥)-(Va) . (74)

whereq, = Vu-n,.

The relation between the pairs of unit vectarg @,) and ,-, n,.) are represented
by the internal angld6 at the singular poiny. The following inner products are
corresponding to the components of the coordinate tramsfoatrix,

Tor 21,1, =00840, Ton 2 1,-n, = —sin4o,
Tove 20,7, = —SiN40, Tyn = N,-N, = — cOSAH.
(75)

The derivative operators can be transformed by the coaeliransform matrix between

(7,,n,) system andx, ., n,.) given by the following derivative operators.

O [TeeTenl|ld.] [Tei9;
= = , (76)
an’ Trr Tovn an Ty i aj

where the notation af, is an abbreviation of-. Moreover, the summation symbol with
respect tgj for 7, nis omitted in the final notation.
The position vectors, andx, . are expressed by the unit tangential vectgref I,

as well as the vectors,, of I/,
Xy =y=L1, X -y=Lm7, (77)

25



whereL, andL,. denote the size df, andI’, ., respectively.

The result of expansion af(x,) can be written simply as

2
u(xy) ~ u(y) + L, (8. u)y + 37(037U)y- (78)
The second derivative at the last term is the variable to hedpwhile bothu(x,) and
u(y) are the variables in the final expression of a linear contlmina
In the case oli(x,) the derivative operator is replaced by the transform matri

Eq. (76), and then the expansion is written as,

L2,
U(XV’) ~ U(y) + L)"(ar’ U)y + 7)/(83’7’ U)y

= u(y) + Ly (Tee(9,U)y + Ten(d,u)y)
2

+ 77 (TE,T(ﬁfTu)y + 2T Ton(02,U)y + Tf,n(aﬁnu)y) :
(79)
In this equation the variabl@(u)y is identical tog, (y),
(Gnl)y = ay(Y)- (80)

Taking a tangential derivative of this equation, we obtamdther second derivative

(6%,u), that is one of the variable to be represented finally,

% N qy(xy) - qy(y)

y_ aryy L,

2
@)y = 2o

81
or,n, (81)

The relation between the quantitié (), and ¢2,u), can be given by a Helmholtz

eqguation, because the sum of these quantities equals tiecizap
(92,u)y + (9% u)y + Ku(y) = 0. (82)

Eliminating the derivatives excep#{ u), from five independent equations

Egs. (78)-(82), we can represent t#é @), using a linear combination form,

0u
2 —
(677 U)y - 87’5

= Z W f,, (83)
y
wheref; denotes one of the quantitiasindg, aty, x, andx,,

fi € {u(y), u(x,), u(x,), 6 (), 6 (%,)} (84)
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and, each factor fof; is obtained as follows.

W) -2L,. cos46
W;J(y) +2L, cos46 - 2L, (1 - (kL;')z Sinzzl@)
1

U(Xy/) _ =
W = 5]+l ’
Wb +L2, sin 240
wH ~L2,sin 246 + 2L, L, sin4¢

D=L,L, (L, cos2146 — L, cos46). (85)

These factors depend on the quantityas well as the sizes of elements.

B. Analytical representation of integrals appeared in the sigular element

The purpose of this appendix is to show the analytical regrtagion of the two
integrals in Eq. (28). A numerical integral is obtainabledgse these integrals are
regular or weakly singular. However, analytical repreagan is useful to improve the
accuracy and to understand the nature of the integrals.

The second integral in Eq. (28) is transformed to the follayvielation by partial

L, o L,
j(;r(?;: dr :[ru*]r:Ly—fo‘ u dr

Lo 1 (Lo
= ZHP0L) - fo HO(kr) dr, (86)

integration,

where the second term has a weakly singularity. This integras given by Struve
function,H,(x) [30],
" 2 2
fo Hy”(X) dx= xH;"(X)
X
422

> (Ho(HP (9 ~ Hi(09HP(9) (87)

Since the first term of the integral of Eq. (86) and the firaintef Eq. (87) are canceled,
the integral of Eq. (86) is reduced to

Ly ur jmL,

T dr = = (Ho(kL)HP (kL)
—Ha(KL,)HEP (kL)) (88)
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The integer order of the Hankel functiard{?(x), and the Struve functiom(x), are

given by the following infinite series.

H,(12)(X) = Jn(X) - an(X), (89)
In(x) = (g)n ;) anm(g)zm, (90)

“1E (n-m-1)! (x\2™ 2 X
W= T (5] lea

1 = X\2m+n
- ('J’m+l ¢n+m+1) m| 5 s (91)
ﬂ; " % (2)
(=" <!
@nm = m(nrm Ymer ==y + 2. T (92)
_ (XY =" X2
Hn(X) = (2) ;‘)F(m+ Nr(n+me2) (2) :
(93)

wherey is the Euler constant, aridrepresents the Gamma function. In the case of
KL, < 1 the infinite series converges rapidly. The integral ardkinc~ 0 can be

approximated as

L, au* _L)/
fo r(9r dr ~ o (kL, ~ 0). (94)

Similarly, the other integral in Eq. (28) that is a weaklygitar integral can be
represented without any singularity using Egs. (89)-(92),

=19 6ur 1k -1
‘[(; F or dr —‘[(; F(4—JH1 (kr) - ﬁ) dr

~ i( 00 am k_Ly 2m+1
C4j L4L2m+1\ 2
m=0

i 1 k
b4 m+ 3 2
C. Inverse matrix of the codficient matrix

To ensure the existence of an inverse matriﬁithe determinant o%) must not

be 0. The evaluation of the determinant is shown in this agipgeBoth the dfferences

28



Diﬂ;[sin »,| and D'ﬂ;[cos 2, | in the definition ofC (Eq. (41)) are reduced to the
Yyia— yia—

following relation,

y:f"_b[ ] = 2sindg| ° 1, 0:9a42r@b.
yD{El; [cos 25;] —sin X,

(96)
Using this relation the determinant & is represented as
— 1 2
_ 2 . . %
det C = .~ ((40)? - sir? 40) +(y[:)£1;[u (Ly)])

= 4%2 ((460)? - sir? 46)

2 2

(s {olef (s ogteell]

+2] 9&{ E;f‘; [u*(Ly)]}s { y[:)ﬂ) [u*(Ly)]}. (97)
The first and second terms on the right-hand side are real ensmim contrast, the last
term is a pure imaginary number. In order to satisfy the doordthat the determinant is
not equal to O, either the real or the imaginary part must laaven-zero value. The first
term is always positive. The second term depends,oin general, the element size is
chosen as a size Siciently small compared to the wave length, ilg.,< 1/k. In this
case the fundamental solutiaf(L,) has a larger real part than its imaginary part;
therefore, the second term has also a positive real numinee ghe real part of the
determinant given by the sum of the first term and the secandigea positive number,
hence the determinant has a non-zero value and we can certbmc(E) has an inverse
matrix in the casd, < 1/k.

—
The inverse matrixC~! can be readily obtained from Eq. (41) and Eqg. (96) as

follows:
A0 T
o1 o Dif[w)]

~ det’T || +Difr ()] 40
y:a-b Y 2r

in49| —cosd, —sin2

+S|n b o (98)
2 | _sin Xy, +C0Sy
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Since the second matrix in the square bracket is an orthbguatax, the second
order norm becomes unity. Taking a maximum norm for the figtrix, we can obtain

the following relation.

&3] <

1 (|A9|+|sinA6’| ‘
'dtC' 2n

Diff |u(L)] ) (99)

D. Error due to truncated terms of the singular element

D.1. In the case of the node on flat boundary

Since the second order derivativesuah Egs. (44) and (45) are represented using
the quantitiesi andq at the singular nodg, as well as adjacent nodes,andx,, as
shown in Appendix A, the third or higher derivatives caugereof truncation. To
estimate the error due to the truncation we must estimatéhittederivative. However,
since there is a case where the third derivative vanishesriandertain condition, we
also consider the fourth derivative.

In the case of a flat boundary{ = r), the factors of coordinate transform matrix in

Eq. (76) are given by Eq. (75) as follows:
TT'T = —1, Tn/n = +1, TT’n = Tn/T = O (100)

From these factors the fourth order of the Taylor expansabtise nodesx, andx, ,

around the singular nodg, are obtained as follows:

u(x,) ~ u(y) + L(a u)y + (8 W)y

(a‘r‘r‘r U) y (a‘r‘r‘r‘r U)y’ (10 1)
2
U(x,) ~ U(y) — aL(@,u) + 8 )(a 0y
- 2+ O ), (102)

where sizes of elements are setas- L andL,. = aL. Eliminating ¢,u), and
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rearranging with respect t@4 u),, we can obtain the following representation &.(),.

2 (au(xy) -1+ a)u(y) + u(xy,))

2 ) (4)
(0u (1l + a)L? Aﬁ?,u + Aazru’
(103)
L l
4, & 5@, (109
L2(1 3
@ é——i—iﬁlwﬁﬁ) (105)

o%u 121+ )
where the variable shown a4’ represents the truncated term for some funcfion
associated witm-th order of derivative. In the case of= 1, the error due to the third
derivative vanishes and the fourth one becomes dominant.

In contrast, the derivative @fis simpler because it can be given by only the Taylor
expansion ati(x,). The Taylor expansion af using third derivative ofi, which is

equivalent to the second derivativegfis given as

qy(xy) ~ qy(y) + L(arqy)y (8 qy)y’ (106)

whereq, = Vu-n,. Rearranging aboub(q,),, we can estimate the error of truncation of

g, as follows:

qy(xy) - qy(y)

(0.0)y ~ 1 Affgnu (107)
A1(92u z __(a‘f qy)y (aTTnu)Y' (108)

D.2. Inthe case of the node at a corner with a right angle

This caseA6 = n/2) is simple because the third derivativeuas not canceled.

Since the factors of geometry are given as
T‘r"r = Tn’n = O’ T‘r’n = Tn"r = —1, (109)

the Taylor expansion af at X, is given as follows:

2
Ux, ) ~ ) ~aL(@,u), + 5T

(CUL)3

(GrnU)y

(8 nnn )Y' (110)
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The normal derivativedu), at the second term is identical ¢p(y), and also@2,u), at
the third term can be represented By, (), using Eq. (82). Consequentlyg(u), is
reduced as follows:

2((1- “2) uy) - u(x, ) - eLa,(y)) @
(aL)? .U

(GETU)y ~
(111)
o _(ab)

(0ZU)y ~ 43, & =37 (Ohnldy- (112)

In terms of the tangential derivative gf we can derive the same relation to that in

the case of the flat boundary shown in Eq. (107).
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List of Figures

Figure1  Boundary excluding the singular point.

Figure 2  Node placements for Even-type and Uneven-typegunafiions: The
filled circles show boundary nodes for the Even-type configan. For the
Uneven-type configuration, in which the interval of nodes ameven, two
additional nodes shown by diamond shaped symbols at therbaitle and
around upper right corner are appended. The vdcgirows the propagation

vector.

Figure 3  Complex error vectate, of the Even-Type configuratioMN(= 10): Each
pair of figures in a row denotes a set of resultsfipe 0, 7/6, andr/4,
respectively. The left and right side figures show the redliaraginary part of
Ae, respectively. To show magnitude of the error vector, thet@mth scaled
true unit propagation vect@;, which is a real number vector, is also depicted

at the center of region in each figure.

Figure 4  Error dependencies on element size for the Ever-gpfiguration:
Each figure in the left-hand side column shows the error atéinéer node of
each side of the boundary. Figures in the right-hand sidettye error
around corners. Theflierence among rows is the direction of the propagation
vector,k. The positions of the nodes to evaluate the error and thetaireof
k are depicted as a subfigure in the top right of each figuretiBosiat the
center of each side and at each corner are fixed but the noxie® rilee

corners are varying with change Mf

Figure 5 Comparison of error vectors in the Even-type andUineven-type
configuration:  The graph at top left side of each figure shdveetror in
whole region, while those at top right side and at bottom amreed vectors in

the vicinity of the circled area in the figure of whole regiémthe zoomed



figures of Uneven-Type (b) the additional nodes are markedidoyond
shaped symbols. All results are df= 10, ¢, = 0.

Figure 6  Error reduction around corners: N € 10,¢ = 7/6) (a) Even sized
elements: Sizes of all elements are equal. (b) Gradual elesiee variation:
Each of two original elements connected to the corner nodspiaced by 4
elements with a quarter size of the original element, respdyg. Moreover,
each of the elements adjacent to these is replaced by tweeetsraf half size.
(c) Fine resolution into 16 elements: Each of two originaheénts connected

to the corner are, respectively, replaced by 8 elementsartgusize.
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Figure 1: Boundary excluding the singular point.
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Figure 2: Node placements for Even-type and Uneven-typligranations:  The filled circles show bound-
ary nodes for the Even-type configuration. For the Unev@e-tpnfiguration, in which the interval of nodes
are uneven, two additional nodes shown by diamond shapebdgrat the bottom side and around upper

right corner are appended. The vedtshows the propagation vector.
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Each pair of figures in a

row denotes a set of results fex = 0, 7/6, andr/4, respectively. The left and right side figures show the

real and imaginary part ofey, respectively. To show magnitude of the error vector, the-tmmth scaled

true unit propagation vect@, which is a real number vector, is also depicted at the cemtegion in each

figure.
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