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A primitive derivation and logarithmic
differential forms of Coxeter arrangements

Takuro Abe*and Hiroaki Teraof

Abstract

Let W be a finite irreducible real reflection group, which is a Cox-
eter group. We explicitly construct a basis for the module of differen-
tial 1-forms with logarithmic poles along the Coxeter arrangement by
using a primitive derivation. As a consequence, we extend the Hodge
filtration, indexed by nonnegative integers, into a filtration indexed by
all integers. This filtration coincides with the filtration by the order
of poles. The results are translated into the derivation case.

1 Introduction and main results

Let V be a Euclidean space of dimension ¢. Let W be a finite irreducible
reflection group (a Coxeter group) acting on V. The Coxeter arrangement
A = A(W) corresponding to W is the set of reflecting hyperplanes. We use
[5] as a general reference for arrangements. For each H € A, choose a linear
form oy € V* such that H = ker(ay). Their product @ := ], 4 o, which
lies in the symmetric algebra S := Sym(V*), is a defining polynomial for
A. Let F' := S be the quotient field of S. Let Qg and Qf denote the
S-module of regular 1-forms on V' and the F-vector space of rational 1-forms
on V respectively. The action of W on V induces the canonical actions of W
on V* S, F,Qg and Qp, which enable us to consider their W-invariant parts.
Especially let R = SV denote the invariant subring of S.
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In [16], Ziegler introduced the S-module of logarithmic 1-forms with
poles of order m (m € Zx() along A by

QA,m) ={w € Qp |Q"w and (Q/ay)™ (day Aw)
are both regular for all H € A}.

Note (A, 0) = Qg. Define the total module of logarithmic 1-forms by

o0) = U Q(A,m).

m>0

In this article we study the total module (A, oco) of logarithmic 1-forms
and its W-invariant part Q(A, oo)" by introducing a geometrically-defined
filtration indexed by Z.

Let Py,---, P, € R be algebraically independent homogeneous polynomi-
als with deg P, < --- < deg P, which are called basic invariants, such that
R =R[P, -, P] [3, V.5.3, Theorem 3|. Define the primitive derivation
D:=0/0P,: F - F. Let T :={f € R| Df =0} =R[P,P,,...,P4].

Consider the T-linear connection (covariant derivative)
VD 1 Q F— Q F

characterized by Vp(fw) = (D f)w+f(Vpw) (f € F,w € Qp) and Vp(do) =
0 (e V™).

In Section 2, using the primitive derivation D, we explicitly construct
logarithmic 1-forms

wgm), wém), o ,wém)

for each m € Z satisfying Vp w§2k+1) = o.;](.%*l) (k€ Z,1 < j <{). The
1-forms w§m), . ,wém) form a basis for the S-module Q(A, —m) when m <

0. Thus it is natural to define Q(A, —m) to be the S-module spanned by
{wi™ W™ W™ for all m € Z. Let By := {wP WP W@y
for k € Z. The following two main theorems will be proved in Section 2:

Theorem 1.1
(1) The R-module Q(A, 2k — 1)V is free with a basis B_j, for k € Z.
(2) The T-module (A, 2k — 1) is free with a basis |, _, B, for k € Z.
(3) B := Uyey Br is a basis for Q(A, 00)" as a T-module.

Theorem 1.2
(1) The V p induces a T-linear automorphism Vp : Q(A, 00)" = Q(A, 00)V
(2) Define Fy := @f_l T (dP ), F_p = Vk Fo and Fy, = (V)" Fo (k>
0). Then Q(A,o00)V = Z
(3) QA 2k — )V = ‘7? ), Where TR = D, Fp fork € Z.
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Let us briefly discuss our results in connection with earlier researches. Let
Derr denote the F-vector space of R-linear derivations of F' to itself. It is dual
to Qp. The inner product I : V xV — Rinduces I* : V* x V* — R, which is
canonically extended to a nondegenerate F-bilinear form I* : Qp X Qp — F.
Define an F-linear isomorphism

I*: QF — Derp

by I*(w)(f) := I*(w,df) (f € F). Let G, := I*(Fj_1) and H®) .= [*(F*=D)
for k € Z. Thanks to Theorem 1.2, we have commutative diagrams

) Vb ‘/__.1 Vb Fg Vb Jl__._l Vb ]:._2 Vb J__._S Vb ]:._4 Vb
. I*gt - I*g¢1 - I*g¢0 v, ?1 - Iyz v, 123 Vo
Yo7 Y2 70 Y2 (-1 VB g(-2) VP (-3 VP g-y) YO
..&;}2) A ;}(1) AL ;10) L ;<¢—1>A£<¢—2>V$?:<¢—3>V$"'-

in which every Vp is a T-linear isomorphism. The objects in the left halves
of the diagrams were introduced by K. Saito who called the decomposition
Dergp = @, Or the Hodge decomposition and the filtration Derp =
HO > HD 5 ... the Hodge filtration in his groundbreaking work [7, 8].
They are the key to define the flat structure on the orbit space V/W. The
flat structure is also called the Frobenius manifold structure from the view
point of topological field theory [4].

Our main theorems 1.1 and 1.2 are naturally translated by I* into the
corresponding results concerning the G,’s and the H*)’s in Section 3. So we
extend the Hodge decomposition and Hodge filtration, indexed by nonneg-
ative integers, to the ones indexed by all integers. The Hodge filtration
Derp = H® > HM S ... was proved to be equal to the contact-order fil-
tration [13]. On the other hand, Theorem 1.2 (3) asserts that the filtration
D JED 5 7O = Qp, indexed by nonpositive integers, coincides with the
pole-order filtration of the WW-invariant part (A, c0)" of the total mod-
ule (A, 00) of logarithmic 1-forms. This direction of researches is related
with a generalized multiplicity m : A — Z and the associated logarithmic
module DQ(A, m) introduced in [1].

In Section 4, we will give explicit relations of our bases to the bases
obtained in [11], [15] and [2].



2 Construction of a basis for (A, co)

Let x1,...,2, denote a basis for V* and Pi,..., P, homogeneous basic in-
variants with deg P, < --- < degP, : SW = R =R[P,,...,P)]. Let x :=
[z1,...,2¢] and P := [Py,..., P] be the corresponding row vectors. Define

A = [I*(J?i,xj)]lgiﬂ'gg c GLE(R) and G = [I*(dﬂ,dpj)]lgi,jgg € Mg’g(R).
Then G = J(P)TAJ(P), where J(P) := [GPJ

Ox; 1<i,j<t

trix. It is well-known (e.g., [3, V.5.5, Prop. 6]) that det J(P)=@Q, where
= stands for the equality up to a nonzero constant multiple. Let Derg be
the R-module of R-linear derivations of R to itself: Derg = @{_, R (0/0F;).
Recall the primitive derivation D = 0/0P, € Derg and T = ker(D : R —
R) =R[P,..., Pi_1]. We will use the notation D[M] := [D(m;;)]i<i j<e for a
matrix M = [my;|i<ij<¢ € Myo(F). The next Proposition is due to K. Saito
[7, (5.1)] [4, Corollary 4.1]:

is the Jacobian ma-

Proposition 2.1
D|G] € GLy(T), that is, D*|G] = 0 and det D|G] € R*.

Now let us give a key definition of this article, which generalizes the
matrices introduced in [11, Lemma 3.3].

Definition 2.2
The matrices B = BY and B® (k € Z) are defined by

B:=J(P)TAD[J(P)], B®W :=kB+ (k—1)B".
In particular, D[G] = B + BT = B*Y — B® for all k € Z.

Lemma 2.3
B® € GLy(T) for all k € Z, that is, D [B®] = 0 and det B® € R*.

Proof. If k£ > 1, then the statement is proved in [11, 3.3 and 3.6] and [13,
Lemma 2]. Suppose k& < 0. Since

BY® — (1 —k)B+ (=k)BY = —{kB + (k — 1)B"}T = —(BW)T,
we obtain B® = —(BU=)T ¢ GL,(T) because 1 — k > 1. O
The following Lemma is in [11, pp. 670, Lemma 3.4 (iii)]:

Lemma 2.4
(1) det J(D*[x])=Q =%, where J(D*[x]) := [GDk(xj)/é?xi}lgmg (
(2) D[J(P)] = —J(D[x])J(P) and thus det D[J(P)]=Q .

k>1).



Definition 2.5
Define {Rk}kez C Mg,g(F) by

Ri_op: = DF[J(P)] (k>0),

Ryr: = (~D)FJ(DFX])'DII(P)] (k> 1),
Ro: = (=1)PJ(DM[x])™ (k >0),

R g : = D*[JP)D[J(P)]™" (k>0).

In particular, Ry = J(P), Ry = I, and R_; = D[J(P)].
The following Proposition is fundamental.

Proposition 2.6
For k € Z, we have
(1) det RkiQk,
(2) Roy. = Roj— 1D[J(P)] = ngle_lj(P)TA,
(3) Roks1 = RoyJ(P)(BYHY) 1B,
(4) Rog1 = Rop1 B'G(B*D)"1B and
(5) D[Rak+1] = Rop—1.
Proof. (2) is immediate from Definition 2.5 because B~'J(P)T A = D[J(P)]~.
(4) Let k > 1. Recall the original definition of B*) in [11, Lemma 3.3]
given by
B*) — — (P)T AJ(D*'[x])J(D*[x]) "1 J(P).
Compute
Ry Rorn = —DIJ(P)| 7 J(D*[x])J(D*[x]) "' D[J(P)]
= —D[J(P)|T AT I(P) I (P)TAJ(P)J(P)
J(D [x ]) (Dk“[ DTATLI(P) I (P)TADLJ (P)]
G(Bo)

Next we will show that
DM J(P)] = DF[J(P)|B'BYPG-'B
for k£ > 0 by an induction on k. When k& = 0 we have
JP)B'BYG'B = J@P)J(P) A JP) TI(P)TAD[J(P)] = D[J(P)].
Next assume k& > 0. Compute
D*!'[J(P)] = D[D*[J(P)]] = D[D*"'[J(P)|B~'B* PGB
= DF[J(P)B*B® NGB + D1 [J(P)|B'B®PD[G B
= DMJ(P)|B~Y{B* ™ - D[G}G™'B
= DF[J(P)B'BYMGB,



where, in the above, we used the induction hypothesis
D*[J(P)] = D' [J(P)|B~'B® PGB,

a general formula
DG = -G 'D[G|G*
and
D[G] = B+ BT = B*H — pi=h),

This implies R_pp_1 = R_gp41 B~ BY®G' B which proves (4).

(3) follows from (2) and (4) because G = J(P)TAJ(P).

(1) Since det B € R, det J(D¥[x])=Q 2" and det D[J(P)]=Q~! by
Lemma 2.3 and Lemma 2.4, (1) is proved.

(5) follows from the following computation:

D[Ror41]B™' = D[Ry 1B = D[Ry B~ 'G(B*TD)1]
= {D[Ry_1]B~'G + Ry,_ B~ D[G]}(B*+V)~!
= {Roy_3B~'G + Ryp_1 B~ H(B¥+) — BR))}(BR+1)-1
= {Ry_1B'B® 4 Ry, B~H(B*HD) — pk))}(BKk+D)~1
= Ry B =

Definition 2.7
For m € Z define w\™, ... ,w,gm) € Qp by

W™, wf™) = (de, . da] R

When m =2k+1 (k€ Z), let

B, = {w§2k+1)7 . ,wé%ﬂ)}.

For example, wﬁ-l) =dP; for 1 < j</land By ={dP,...,dP;} because

[W%l), . ,wél)] = [dl’l, s ,dl’g}J(P) = [dpl’ te ’dpé]'
Proposition 2.8
The subset
B=JB.={"|1<j<t kez}
kEZ

of Qp is linearly independent over T



Proof. Assume
Z[w§2k+1)7 o ,wé%ﬂ)]g(%ﬂ) —0
kEZ

with g(®+1) = [g§2k+1), . .géQkH)]T € T*, k € Z such that there exist integers

d and e such that d > e, g®¢t1) £ 0, g+ =£ 0 and g+ =0 for all k > d

and k < e. Then .

0= Z[da:l, Ceey dxg]R2k+1g(2k+1)

k=e
implies that
d
0= Z Ropprg®F Y.
k=e

By Proposition 2.6 (4), there exist (¢ x ¢)-matrices Hory1 (e < k < d) such
that
Rokt1 = Roer1Hop1 (e <k < d)

and Hor11 can be expressed as a product of (k — e) copies of G and matrices
belonging to GL(T"). Since det(Rye41) # 0 by Proposition 2.6 (1),

d
0= Z szﬂg(zk“)-
k=e

Note D4¢[Hy,1] = 0 (k < d) by Proposition 2.1 and Lemma 2.3. Applying
D% to the above, we thus obtain

D [H2d+1]g(2d+1) =0.

Since the matrix D9=¢[Hy4.1], which is a product of (d — e) copies of D[G]
and matrices in GL,(T), is nondegenerate, we get g?**!) = 0, which is a
contradiction. OJ

Proposition 2.9

Vpwd* ™ =@ (kez, 1<5<0.

Proof. By Proposition 2.6 (5) we have

VD wEQk—H), ce ,VD wé%ﬂ)] = [dl’l, ce ,dl’d D[R2k+1]

= [dxy,...,dz) Ry = w<2k_1)7 o ’w(zk—n O
1 ¢



Recall

QA 00): = U QA,m)
m>0
= {wep|Q"we Qg for some m > 0 and
day N\ w is regular at generic points on H

for each H € A}.

Lemma 2.10
Vo(QUA,m)WY) C QA m+2)" form > 0.

Proof. Choose H € A arbitrarily and fix it. Pick an orthonormal basis
ag = X1,Ta,...,xy for V*. Let s = sy € W be the orthogonal reflection
through H. Then s(z1) = —x1, s(x;) = x; (i > 2), s(Q) = —Q. Let

L

w=Y (fi/Q)dx; € QA m)"

=1

with each f; € S. Then

)4
Vpw =Y D(fi/Q™)dx;
=1

is W-invariant with poles of order m + 2 at most. The 2-form

14

(Q/x1)"dxy Aw =Y _(fi/x")dxy A da;

=2

is regular because w € Q(A,m)". Let i > 2. Then f; € 27*S. This implies
that ¢; := Q™2D(f;/Q™) € x"™S. Tt is enough to show g; € z["*t2S

because
¢

(Q/x1)™dxy NVpw = Z(gi/xTH)da:l A dx;.
i=2
When m is odd, we have s(g;) = s(Q™2D(f;/Q™)) = —g;. Thus g; € 2725,
When m is even, we have s(g;) = s(Q™2D(f;/Q™)) = g;. Thus g; € 7"*2S.
UJ

Lemma 2.11
B_, C QA 2k — 1)V for k > 1.



Proof. We will show by an induction on k. Fix 1 < j < /. Recall
w§_1) = Vp dP; by Proposition 2.9. Since dP; € Q(A,0)", we have Vp dP; €
Q(A,2)" by Lemma 2.10. On the other hand, V dP; has poles of order one
at most because dP; is regular. Thus wj(-fl) € Q(A, )W, The induction
proceeds by Proposition 2.9 and Lemma 2.10. O]

We extend the definition of €2(.A,m) to the case when m is a negative
integer:

¢
Q(A,m) = @ Sw](-_m) (m < 0).
j=1

Theorem 2.12
Q(A,m) is a free S-module with a basis Wi wé_m), . ,wé_m) for m € Z.

Proof. Case 1. When m < 0 this is nothing but the definition.
Case 2. Let m = 2k — 1 with k& > 1. Recall B_; C Q(A,2k — 1) from
Lemma 2.11 and det R;_2,=Q'~2* by Proposition 2.6 (1). Thus we have

WHHD A D) A wé’%ﬂ) = (det Ry_o)dxy Adag A -+ Aday
= Q" *(dwy ANdxa A+ Adxy).

This shows that B_j, is an S-basis for Q(A, 2k —1) by Saito-Ziegler’s criterion
[16, Theorem 11].

Case 3. Let m = 2k with k£ > 0. When k£ = 0, the assertion is obvious
because w](-o) = dz; and Q(A,0) = Qg. Let k£ > 1. By Proposition 2.6 (2) we
have

Wi ,wé_%)] = [day, ... de] R_op = [day,. .. dx] R_o 1B~ J(P)TA
) By
—2k)

This implies that w{™* ... w{™ lie in Q(A,2k + 1) by Lemma 2.11. By
Proposition 2.6 (3) we have

Q2kR—2k — Q2k_1R_2k+1B_1B(_k+1)QJ(P>_1.

Since both Q* 'R _5,.; and QJ(P)™! belong to My ,(S), so does Q* R_y.

In other words, the differential forms w(f%), s ,wéf%) have poles of order

at most 2k along A. Since it is easy to see that Q(A,2k) = Q(A,2k + 1) N

(1/Q%*)g, we know that w](.f%) belongs to (A, 2k) for each j. We can apply

Saito-Ziegler’s criterion [16, Theorem 11] to conclude that {wif%), . ,wéf%)}



is a basis for Q(A, 2k) over S because det R_o,=Q~>* by Proposition 2.6 (1).
g

We are now ready to prove Theorems 1.1 and 1.2.

Proof of Theorem 1.1.
(1) Tt is enough to show that B_j, spans Q(A, 2k — 1) over R. Express
an arbitrary element w € Q(A, 2k — 1)V as

L

—2k+1
w = Jwy Y

Jj=1

with each f; € S. For any s € W, get

0=w—sw) =Y [f;—s(f;)]wl .

j=1

Since B_j, is linearly independent over F, we obtain f; € SV = R.
(2) Let dj := deg P; and m; :==d; — 1 for 1 < j < /(. Let h := d, denote
the Coxeter number. Define the degree of a homogeneous rational 1-form by

J4
deg(Y " fidaw;) =d <= fi=0o0r deg fi=d (1<i<)
=1
Then

(2k+1)
J

deg w =m; + kh.

Recall that B is linearly independent over T' by Proposition 2.8. Let M_j
denote the free T-module spanned by (J,-_, By,. Recall that Q(A, 2k —1)" is
a free R-module with a basis B_j; by (1). If p > —k, then Ry, = R_op 1 H
with a certain matrix H € M;y(R) because of Proposition 2.6 (4). This
implies that M_, C Q(A, 2k —1)". Use a Poincaré series argument to prove
that they are equal:

Poin(Mfk’ t) = (1 _ tdl)*]. o (1 _ tdzq)fl Z (tm1+ph 4. .tmz+ph)

p>—k
=(1-— tdl)—l o (1— tdz)—l (tml—kh L 'tmz—kh)
= Poin(Q(A, 2k — 1), 1).
Therefore M_; = Q(A, 2k — )W

(3) Thanks to Proposition 2.8, it is enough to prove that 5 spans (A, oo)
over T. Let w € Q(A,00). Then w € Q(A,2k — 1)V for some k > 1. By

w

10



(2) and (3) we conclude that w is a linear combination of (J,._, B, with
coefficients in T'. This shows that B spans Q(A, o) over T O

Proof of Theorem 1.2 (1). By Proposition 2.9,
Vo QA 00)" = Q(A, 00)V
induces a bijection Vp : B — B. Apply Theorem 1.1 (3) to prove that Vp is
a T-isomorphism. O
Let V' @ Q(A, 00) — Q(A, 00) denote the inverse T-isomorphism.

Definition 2.13
For k € 7, define

For=@T (@P), Foi:=Vh(R) (k>0), Fi:= (V)" (F) (k>0).

j=1

Thus Vp induces a T-isomorphism Vp : Fp,—=Fr_1 for each k € Z. Since
Vp induces a bijection Vp : By — By_1 by Proposition 2.9, each Fy is a free
T-module of rank ¢ with a basis By, = {w](-%ﬂ) |1 <5</}

Proof of Theorem 1.2 (2) and (3).
(2) By Theorem 1.1 (3), B = U,z Bx is a basis for Q(A,00)" as a T-
module. On the other hand, each Fj, has a basis By, over T for each k € Z.
(3) By Theorem 1.1 (2), 7% = Q(A, 2k — D)V, O

Example 2.14

Let A be the By type arrangement defined by @ = xy(x + y)(x — y) corre-
sponding to the Coxeter group of type Bs. Then P, = (2% + 4?)/2, P, =
(z' + y1)/4 are basic invariants. Then T = R[P,] and R = R[P,, P,]. Let

=ty %) €OV,

The unique decomposition of w corresponding to the decomposition (A, 1)V =
TV =F @oFo@F @... is explicitly given by:

w=—8P3w ™Y + (8/3)P2wi ™ — 4P + 20 € F @

by an easy calculation.

11



Corollary 2.15
The Vp : (A, 00)" — Q(A, 00)" induces an T-isomorphism

QA 2k — D)W = g =, 70 — (A, 2k + 1)V

Concerning the strictly increasing filtration
QA 2k —1) Cc Q(A,2k) C Q(A,2k+1) C ...,

the following Proposition asserts the W-invariant parts of (A, 2k — 1) and
Q(A, 2k) are equal.

Proposition 2.16
QA 2B)Y = Q(A,2k — 1)V = JP for k € Z. In particular, Qr = Q¥ =
Q(Aa _1>W

Proof. It is obvious that Q(A,2k — 1) C Q(A,2k) because R_opy1 =
R_5J(P)(B1~")~1 B by Proposition 2.6 (3). Thus Q(A, 2k—1)" C Q(A4, 2k)"
Let w = Z?:l f; w](-_%) € Q(A, 2k)" with f; € S. Since

Bl [, wl ] = W0, DL

by Proposition 2.6 (2), we may express

L

l ¢ )
w=>_1; Wi = > 1 (Z hi; w§2k1)> => (Z hij fj> (~2k=1)

j=1 j=1 i=1 i=1

where h;; is the (i, j)-entry of D[J(P)]™'. Note that w € Q(A,2k + 1)V
and that Q(A, 2k +1)" has a basis {wgf%fl), wéf%fl), . ,wéf%fl)} over R.
Then we know that Z?Zl hij f; is W-invariant for 1 <14 < ¢. Applying (Eq)
we have

V4 Y4 y4 l
L= fidey =Y fw =Y 5> Y
j=1 j=1 j=1 =1
4 l
i=1 \j=1

Recall QY = Qp = ®f_,R (dP;) by [9]. Thus there exist g; € R (1 <i < /()

such that ,
W' = Zgz dpb;) = Z (Z 6P/8:17])) dx;.

Jj=1

12



This implies
¢
£i= g (0P/0z;) (1<i<0)

Since

i@ = (WY, e g

Y Y

by Proposition 2.6 (3), one has

14

W—ij . :Z<Zgz 8P/81’J)> W .

- Zgz. (Z (0P;/0x, 2’”) c @R T = (A, 20— )Y
i=1 j=1

This proves Q(A, 2k)" C Q(A, 2k — 1)V, O

3 The case of derivations

Denote 0/0x; and 9/0P; simply by 0,, and Op, respectively. Then

0 ¢ ¢
Derg = @Saxj, Dergp = @Rapj, Derp = @F@xj.

Jj=1 Jj=1 J=1

In this section we translate the results in the previous section by the
F-isomorphism
I":Q F— Der F

defined by I*(w)(f) = I*(w,df) for f € F and w € Qp. Explicitly we can

express
L L L
j=1 1 i=1

j=

fOI‘ijF (1§j§€)

Deﬁniti0n31
Deﬁnen]( = I*(w m)formEZ 1<j<t.

Then
™, ni™) = (04, .., 00, ] AR,

13



In particular,

[U%”w .o 777§1)] == [amu- . ,ame]AJ(P) = [I*<dpl>7 s 7I*<dpg)],

Yol = [0a,. ., 00, ]ADII(P)] = [0y, .. ., 0s,)J(P) "B
= [0p,,...,0p)B.

Definition 3.2
Define

D(A,m) := {0 € Ders | O(ay) € S- o} forall He A}

for m > 0 which is the S-module of logarithmic derivations along A of
contact order m. When m < 0 define

D(A,m) := @ Snjm).
1<j<e
Lastly define
D(A, —0) := U D(A,m).

meZ

Theorem 3.3
D(A,m) is a free S-module with a basis n%m), ném), e ,ném) for m € Z.

Proof. Case 1. When m < 0 this is nothing but the definition.
Case 2. Let m > 0. For a canonical contraction ( , ) : Derp xQp — F,
define the (¢ x £)-matrix

Vo o= [{wl ™ 0 M1<ijee = R ARy,

]

for m > 0. Since the two S-modules Q(A,m) and D(A, m) are dual each
other (see [16]) , it is enough to show that det Y, € GL(S). It follows from
the following Proposition 3.6. 0

Corollary 3.4
I*(2A,m)) = D(A,—m) for m € Z and I*(Q2(A, 00)) = D(A, —o0).

Corollary 3.5
QA,—m) ={w € Qg | I"(w,day) € S - o} for any H € A} for m > 0.

Proposition 3.6

(1) Yop_1 = (=¥ BT(BW)=1B € GL/(T) for k € Z,
(2) Yo, = (=1)*A € GLy(R) for k € Z.

14



Proof.

(1) Case 1.1. Let m = 2k — 1 with £ > 1. We prove by an induction on
k. When k =1,

Yy = RT AR, = D[J(P)]"AJ(P) = B” € GL/(T).
Assume that & > 1 and prove by induction. By using Proposition 2.6 (5)
and (4), we obtain
Yor-1 = Ry 5 ARy 1 = D[R] ARy, 3B7'G(BW)'B
{DIR}_s3 ARay—s] — Ry 5 D[ARyy, 5]} B~'G(B™) ™' B
—Rj 5, ARy, sB7'G(B* ")) ' BB B* Y (BW) 1B
= —RI ,, ARy_sB~'B* Y (BW)-Ip
— (_1)k+1BT<B(k71))71BBle(kfl)(B(k))le
= (-1)'BT(BW)'B.
Case 1.2. Next assume that m = 2k — 1 with k£ < 0. Recall that
(BT = kB + (1 - k)B" = —BW.
Then

Rl o ARy—1 = (Ry_ ARi_5)" = ((-1)*BT(B""M)"'B)T
(—1)k+1BT(B(k))_1B.

(2) Apply (1), Proposition 2.6 (2) and (3) to compute
Ry ARy, = J(P) "(B“"")TB-TRY,, . | ARy, B~ 'J(P)"A
= JP) T (BYNTB 1Yy BLI(P)TA=(-1)*A. O

Remark. Corollaries 3.4 and 3.5 show that the definitions of D(A, m) and
Q(A,m) for m € Zq are equivalent to those of DQ(A, m) and QD(A, m) in

1].

Consider the T-linear connection (covariant derivative)
Vp : Derp — Dergp

characterized by Vp(fX) = (Df)X + f(VpX) and Vp(0,,) =0 for f € F,
X € Derp and 1 < j < /. Then it is easy to see the diagram

Qp —2 = Qp

r o AN

D
Derp — Derp

15



is commutative. In fact

l
Vpol* (Z £ dxj> = Vo
j=1

L

> (Z I*(da, da:j)fi) amj]

=1

(Z I"(da;, de)D(fi)) Oz

=1

l L
=J* (ZD(f]) d$j> :]*OVD ( fjdl‘j) .
j=1 j=1

Define Cy, := I*(Bi_1) = {ni%_l), né%_l), . ,772%_1)} for each k € Z. The
following Theorems 3.7 and 3.9 can be proved by translating Theorems 1.1
and 1.2 through Vp.

Theorem 3.7
(1) The R-module D(A,2k — 1)V is free with a basis Cy, for k € 7Z.
(2) The T-module D(A,2k — 1) is free with a basis |, C, for k € Z.

(3) C := Uyez Cr Is a basis for D(A, —oo)" as a T-module.

Definition 3.8
Define

G :=I'(Fimr), HY =1(T"Y) (keZ 1<j<0).

G.= P ™Y, HP =P g,

1<j<e p>k

Then

The Vp induces T-isomorphisms
Vo :Gri1——Gr, Vp:D(A2k+ 1) —=D(A2k—1)".

In particular,

4 L
Go=EPT0p, and H® =PRIy =Derg.
j=1

Jj=1

Theorem 3.9

(1) The Vp induces a T-linear automorphism Vp : D(A, —c0)V =
D(A, —o0)W.

(2) DA, —00)" = @yer G

(3) D(A2k = 1)V =H® =P ., G,. (k).

16



Remark. The construction of a basis 77§1), . ,7721) for D(A,1) is due to K.
Saito [6]. A basis for D(A,2) was constructed in [10]. In [11] D(A,m)
was found to be a free S-module for all m > 0 whenever A is a Coxeter
arrangement. Note that it is re-proved in Theorem 3.3 in this article. In [§]
K. Saito called the decreasing filtration Derg = H® > H® > ... and the
decomposition Dergp = D(A, —1)" = HO = D, G» the Hodge filtration
and the Hodge decomposition respectively. They are essential to define the
flat structure (or equivalently the Frobenius manifold structure in topological
field theory) on the orbit space V//W. Note that Theorem 3.9 (3), when k& > 0,
is the main theorem of [13].

4 Relation among bases for logarithmic forms
and derivations

In the previous section we constructed a basis {wj(-m)} for Q(A,m) and a

basis {njm)} for D(A, m) for m € Z. In this section we briefly describe their

relations to other bases constructed in the earlier works [11], [15], and [2]. In
[11], the following bases for D(A, 2k + 1) and D(.A, 2k) are given:

G5 g = (0 0, JAT(DMX]) T (P),
€, = [0n, - O AT (DR

The two bases {nj(m)} and {fj(-m)} are related as follows:

Proposition 4.1

For k € ZZO?
2k+1 2k+1 2k+1 2k+1 -
[ = ()M BT B,

2k 2k 2k 2k
€M e = (=D)L ).

Proof. The second formula is immediate from Definition 2.5. The following
computation proves the first formula:

J(DFX])I(P) = (=1)*" Ryan DIJ(P)) ' T(DF[x]).T (DM x]) I (P)
(—1)*Rop D[J(P)] T A~ I (P) T BHH
= (=1)*Ry, B'B*. O
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In [15], the following bases are given:

[V[*(dpl)VBkQE, ey vl*(dpe)VBkHE] for D(A, 2k + 1),
Vo, V505, ..., Va, Vi 0p] for D(A,2k).

Here 0 is the Euler derivation. Their relations to {nj(.m)} are given as follows:

Proposition 4.2
Let k € Zzo. Then

™ BT B,

k k —
AT

[V[*(dPI)VBkQE, e ,VI*(dpé)VBkQE]
Vo, Vi5'0p, ... Vo, Vi 05

Proof. By [12, Theorem 1.2.] and [14] one has
[VI*(dPl)kaQE, o 7VI*(dPg)VBk‘9E] - (_1)k[ §2k+1)7 . ’§é2k+1)]'

Combining with Proposition 4.1, we have the first relation. For the second
one, compute

Vo, V505, ..., Vo, Vi 0p]AJ(P) = [Viar) V508, . ., Viar) V5 05]
[?7§2k+1)’ o ’n§2k+1)]Bf1B(k+1)
(P

by Proposition 2.6 (3). O]

Next let us review the bases for (A, m) described in [2, Theorem 6]: Let
k € Z>o and P; the smallest degree basic invariant. Then

{Vop, VidPi, ..., Vo, VidP}
forms a basis for Q(A,2k + 1) and

{Vo, VihdPi,..., Vo, VidP}
forms a basis for Q(A, 2k).

Proposition 4.3
Let k> 0. Then

Vop, VidP,... Vo, VihdPy] = [wi 270w V)BT,
Vo, VhdPy, ..., Vo, VidP] = [wi ™", w247

18



Proof. First, note that [Vp, Vo, | is W-invariant, hence in Derg. Since the
smallest degree of derivations in Dery is deg Jp,, it follows that [Vp, Vg, | =
0. In other words, V,, and Vapé = Vp commute for all 2. Hence

[NVop, VAP, ..., Vo, VidPi| = V[Vo, dPi, ..., Vo, dPy].

Our proof is an induction on k. First assume that £ = 0. Choose

1
P, = §[x17 . ,l’g]A_l[Il, e ,l’g]T,

and
dPl = [daj’17 cey dx[]A_l[x17 s 7'r£]T'

Compute

[Vapl dpl) ey V(')PZdPl]B = [Vazl dPl, v 7V8I£dP1]J(P)—TB
= [dxy,...,dz AT J(P) B
= [d[Bl, . ,dl’g]D[J(P)] = [w571)7 o ’wéfl)]'

For k > 0, apply V% and use the commutativity. Then we have the first
relation. For the second relation use Proposition 2.6 (2) to compute:

Vo, VpdPi, ..., Vo, VidP| = [V, VidPy,...,Va, VidP]J(P)"
Wi WY BL(P)T
= [dwy,...,dv)|R_op B~ J(P)T
[dlEl, e ,deg]R_gkA_l
[

W

0J

Remark. If k < 0 in Propositions 4.2 and 4.3, then the derivations and
1-forms in the left hand sides are proved to form bases for the logarithmic
modules DQ(A, 2k +1), DQ(A, 2k),QD(A, 2k +1) and QD(A, 2k) in [1]. By
using the same arguments in the proofs above, we can show that Propositions
4.2 and 4.3 hold true for all integers k in the logarithmic modules DQ(.A, m)
and QD(A, m) with m : A — Z.
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