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Abstract

Curie temperature TC of spin arrangement with arbitrary dimension was
considered. We assumed that interaction of a spin with all other spins vary
with a power-law decay rate in exchange integral on Heisenberg model. As a
result, we found that TC, which was obtained from TC = λC (λ: mean-field
coefficient and C: Curie constant), significantly depends on fractal dimension
of spin arrangements D, the exchange integral and the decay constant. This
semi-quantitavely explains how TC depends on D (1 ≤ D ≤ 3) in a universal
way and also the finite size effect on TC in low-dimensional spin systems.

Key words: Curie temperature, low-dimensional spin system, finite size
effect, fractal dimensions of spin arrangements and lattices, Heisenberg
model, mean-field theory

1. Introduction

Magnetic properties of nanoparticles and ultrathin films of ferromagnets
and antiferromagnets, i.e., low-dimensional spin systems, have been inten-
sively investigated because of their importance in fundamental physics and
applications. Finite size effect on Curie temperature TC and Néel tempera-
ture TN is one of the unique magnetic properties of the low-dimensional spin
systems [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21,
22, 23, 24, 25, 26, 27, 28]. For example, the shift of TC from ca. 600 K to
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ca. 50 K is observed with the decrease of the thickness of ultrathin Ni films
[4, 5, 6, 7, 8], while TN in CoO layers is suppressed from 300 K to 15 K [21].
The suppressions of TC and TN have been discussed in terms of scaling laws
of the critical temperatures in bulk samples, correlation length and system
size (particle diameter and film thickness) [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12,
13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25].

On the other hand, the origin of critical temperatures (TC and TN) can
be understood by Heisenberg and Ising models [29]. In Heisenberg model,
the interaction between a spin and its nearest neighbors determines TC and
TN. In Ising models, TC can be analytically obtained from series expansion
in magnetic susceptibility χ with respect to tanh(J/kT ), where J , k and T
are the interaction energy between neighboring two spins, the Boltzmann
constant and temperature, respectively, and the series expansion reflects sys-
tem dimension and lattice type of unit cell. From the series expansions for
different models, it has been found that TC in three-dimensional (3D) spin
system is higher than that in two-dimensional (2D) spin system, while there
is no TC in one-dimensional (1D) spin system. This approach is suitable for
determination of the precise TC’s for 1D, 2D and 3D systems, however, un-
suitable to solve a fundamental problem how TC directly relates to system
dimension through a non-integer (”fractal”) dimension such as self-similar
sponge-like spin arrangements because it is very difficult to obtain the series
expansions in χ for non-integer spin systems as dimension-dependent func-
tions [30, 31]. To understand this problem, a semi-quantitative approach
would be helpful. It may also give us a general understanding of the finite
size effect on the critical temperatures in low-dimensional spin system and
related phenomena. Our purpose in this article is to catch an essence of
the relation between TC and system dimension. To solve the problem semi-
quantitatively, we adopted Heisenberg model with fractal spin arrangements.
Here, ”fractal spin arrangement” means the ferromagnetic system with ideal
spin distribution described by fractal dimension D.

2. Heisenberg model with fractal spin arrangements

The fractal ferromagnetic system is modeled as follows. We consider two
kinds of dimensions, which are independent parameters of each other. The
lattice has a dimension d (d = 1, 2 and 3), while the spin arrangement has
a dimension D (1 ≤ D ≤ 3). The spin-spin interaction is assumed to spread
out over the system with a power-law decay rate as discussed later. Figure 1
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(a) illustrates an example of the spin arrangement on the square lattice. In
Fig. 1 (a), the distance between the origin and a site is defined as a radius

j (j = 1, 2, 3, . . . ). Figure 1 (b) illustrates the arrangement of the spins �Sjk

(k = 1, 2, 3, . . . , nj) within the zone between the distances j − 1 and j. The

number of �Sjk is defined as nj , which is formulated later as a function of j
and D. In particular, n1, the number of nearest neighboring site, is denoted
by z. Through the model in Fig. 1 (a), we will consider a sponge structure
in cubic lattice as shown in Fig. 2 (d) later.

In the mean-field theory, TC is defined as

TC = λC (1)

where λ is a mean-field coefficient and C is the Curie constant. If we could
relate λ to D, we could determine how TC depends on D. First, let us consider
the exchange energy to evaluate λ from the Heisenberg model. The exchange
energy between the spin at the origin (�S0) and all other spins (�Sjk), Eex, is

Eex = −2

∞∑

j=1

nj∑

k=1

J0j
�S0 · �Sjk = −2

∑

j

∑

k

J0jS0 · Sjk (2)

where J0j is the average exchange integral between �S0 and the spins at the

distance j (�Sjk’s). Sjk in Eq. (2) can be summarized as

∑

k

Sjk = nj 〈Sjk〉 (3)

where nj is the number of �Sjk and 〈Sjk〉 is the average of Sjk. Here, nj should
be considered because it depends on D. The number of sites in the range
between the distances j − Δj and j, ΔN(j), is

ΔN(j) = N(j) − N(j − Δj) (4)

where N(j) and N(j − Δj) are the total number of the sites within the
distances j and j − Δj, respectively. Next, N(j) should be formulated in
terms of D. In spin systems with D = 1, 2 and 3, the number of sites within
the radius j from the origin, N(j), is proportional to jD. Therefore, N(j) in
D-dimensional spin system is assumed [32]

N(j) = ajD (5)
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where a is a proportional constant. Eq. (4) would be approximated as

ΔN(j) = ajD − a(j − Δj)D ≈ aDjD−1Δj (6)

Therefore, the increasing rate of the site number from the distance j − Δj
to the distance j, which corresponds to nj, is

nj =
ΔN(j)

Δj
= aDjD−1 = zjD−1 (7)

where aD is determined to be z from the initial condition of n1 = z. There-
fore, Eq. (2) becomes

Eex = −2z
∑

j

J0jj
D−1S0 〈Sjk〉 (8)

Next, let us consider J0j to treat the interaction between �S0 and �Sjk’s.
Here, we assume that J0j is directly related to the average path length (the

number of steps) from �S1k to �Sjk. Let us discuss the path length in two-
dimensional lattice first. Fig. 2 (a) shows two-dimensional spin distribution
(dimensionality of spin arrangement D = 2) on square lattice (dimensionality

of lattice d = 2). Now we consider the path length from the origin to �Sjk.
There are different paths. The path lengths with most and least steps from
the origin, Ld=2

0j and ld=2
0j , are approximately

√
2j and j, respectively. The

average path length from the origin to �Sjk, ld=2
0j,av, is ≈ (1 +

√
2)j/2. The

average path length from �S1k to �Sjk, ld=2
1j,av, is approximated to be (1+

√
2)j/2−

1. On the other hand, Figure 2 (b) illustrates a schematic representation of
a fractal ferromagnet (D < 2) on square lattice (d = 2). There are still
different paths. Similarly, Ld=2

0j , ld=2
0j , ld=2

0j,av and ld=2
1j,av are

√
2j, j, (1 +

√
2)j/2

and (1 +
√

2)j/2 − 1, respectively.
Now let us consider the cases of the cubic (D = 3) and fractal spin

arrangements (D < 3) in cubic lattices (d = 3) as shown in Figs. 2(c)
and 2(d), respectively. Similarly, the path lengths with most and least steps

and the average path length from the origin to �Sjk, Ld=3
0j , ld=3

0j and ld=3
0j,av, are

approximately
√

3j, j and (1+
√

3)j/2, respectively. Therefore, average path

length from �S1k to �Sjk ld=3
1j,av, is

ld=3
1j,av ≈ (1 +

√
3)j

2
− 1 = 1.37j − 1 (9)
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Here, let us assume that J0j should be approximated as

J0j ≈ α1.37j−1J1 (10)

where α is a decay constant (α < 1) [33], J1 is the exchange integral between
�S0 and one of the nearest neighbor sites (�S1k). Accordingly, Eq. (8) becomes

Eex = −2z
∑

j

α1.37j−1jD−1J1S0 〈Sjk〉 (11)

On the other hand, the energy arising from molecular magnetic field Em is

Em = −gμBS0Bm (12)

where g is the g factor and μB is the Bohr magneton. Em should be equal to
Eex. From Eqs. (11) and (12),

Bm =

2z
∑
j

α1.37j−1jD−1J1 〈Sjk〉
gμB

(13)

Since Bm = λM and M = NgμB 〈Sjk〉, the mean-field constant λ is obtained
as

λ =

2z(
∑
j

α1.37j−1jD−1)J1

Ng2μ2
B

(14)

On the other hand, C is

C =
Ng2μ2

BS(S + 1)

3kB
(15)

where S is the spin momentum and kB is the Boltzmann constant. TC is
obtained from the relation TC = λC as

TC(D) =

2z(
∑
j

α1.37j−1jD−1)J1S(S + 1)

3kB
(16)

Here, let us discuss the dependence of Σjα
1.37j−1jD−1 on D. If we consider

that the interaction is spread out over a large system, it can be described as

∑

j

α1.37j−1jD−1 ≈ Γ(D)

α(−1.37 lnα)D
(17)
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where Γ(D) is the Gamma function. Therefore,

TC(D) =
2zΓ(D)

α(−1.37 lnα)D

J1S(S + 1)

3kB
(18)

Moreover, the normalized Curie temperature TC/T bulk
C is useful to discuss the

dependence of TC on D in comparison with T bulk
C , where T bulk

C is the TC of
bulk sample (3D).

TC(D)

T bulk
C

=
(−1.37 lnα)3−DΓ(D)

Γ(3)
(19)

3. Results and discussion

Figure 3 shows the dependence of TC/T bulk
C on D with various α. First,

note that TC is suppressed from 3D to 1D. TC is significantly suppressed from
3D to 2D, especially. It is also shown that the suppression of TC is remarkable
at larger α. For example, on going from 3D to 1D, TC/T bulk

C ∼ 0 at α ∼ 1.
This is consistent with the exact solution in 1D Ising model (TC = 0) [29].
Contrary to this, TC in 1D with α = 0.6 is of the order of ca. 25 % of T bulk

C ,
which contradicts with the exact solution of 1D Ising model. The dependence
of TC on α would be interpreted as follows. When α is larger, then the spin-
spin interaction is relatively stronger and long-range magnetic order occurs.
Therefore, TC with larger α is sensitive to the spin arrangement dominating
D. Contrary to this, long-range magnetic order does not occur under smaller
α (weak interaction between spins) and the dependence of TC is insensitive
to D. Comparing this theory with Ising model, the theory would be reliable
at α ∼ 1.

On the other hand, the theory phenomenologically explains the depen-
dence of TC on D in the experimental results of finite effect on TC in ul-
trathin ferromagnetic films. Here, it is possible to discuss D in the ultra-
thin films with respect to a ratio between film thickness and a characteristic
length emerged in critical phenomena such as ξ0, where ξ0 is defined by
ξ(T ) = ξ0(|T − Tc|/Tc)

−ν (ξ(T ): the correlation length at T , ξ0: the corre-
lation length extrapolated to T = 0, Tc: critical temperature, ν: a critical
exponent. Tc = TC in this case). Thin film would be close to 3D if the film
thickness t is significantly larger than ξ0. On the other hand, it would be
close to 2D if t is comparable to ξ0. In fact, dimensional crossover between
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3D (t > ξ0) and 2D (t ≤ ξ0) was experimentally reported in ultrathin Ni
films [5, 6].

Let us notice the experimental results of finite size effect. Various results
have been obtained using Ni, Gd, Co, etc. The experimental results of ξ0,
TC(ξ0) and T bulk

C of typical ferromagnets are summarized in Table 1, where
TC(ξ0) is the TC at t = ξ0. It is obvious that there is a scattering in TC(ξ0)
of same materials because the magnetic properties depend on the growth
conditions of the ultrathin films. However, the general tendency between TC

and t could be summarized that TC is closer to T bulk
C in t ≥ 5ξ0 (D ∼ 3),

and reduced to 10 - 50 % in t ∼ ξ0 (D ∼ 2). The theory phenomenologically
explains the experimental tendency by varying D and α. For example, TC is
suppressed to at least 10 ∼ 40 % of T bulk

C from 3D to 2D in α = 0.6 ∼ 0.9 as
shown in Fig. 3.

4. Conclusion

In conclusion, we have discussed the fundamental problem on how TC

systematically changes with the fractal dimension D of ferromagnets based
on the Heisenberg model. If we introduce a decay constant α and use the
Curie constant C, TC can be formulated as a function of α, D, J1 and S.
Moreover, the TC/T bulk

C obtained from the formula phenomenologically ex-
plains the experimental results in low-dimensional ferromagnets, and may
be extended to the discussion on TN in antiferromagnets. Recently, we have
prepared Menger sponge-like fractal bodies; fractal porous silica with D =
2.5 - 2.7 with a pore size within the range of 50 nm - 30 μm [35, 36, 37]. We
are now preparing fractal antiferromagnets of transition metal oxides. Such
fractal magnetic samples should be suitable for experimental investigations
on the correlation between TC, TN and D, and for studying critical phenom-
ena in fractal dimension. Furthermore, TC of fractal spin system and the
dependence of TC on D should be precisely determined in further studies.
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Table 1: ξ0, TC(ξ0)/T bulk
C and T bulk

C of typical ferromagnets.
Ferromagnet ξ0 TC(ξ0)/T

bulk
C (%) T bulk

C (K) [34] Ref.
Ni 2 ML∗ < 40 672 [6]

4 ML 50-70 [7]
4.7 ML 40 [4, 7, 9]
3.4 ML 35 [5]
5 ML 50 [4]

Gd 13 Å 17 292 [10]
4 ML 85 [12]
22 ML 95 [20]
8.6 ML 50 [4]

Fe 2.3 ML 30 1043 [4]
Co 2.2 ML 20 1388 [4]

CoNi3 3.8 ML 40 — [5]
∗ML: monolayers

(a) (b)

j

k = 1

k = 2 
k = 3 

k = 4
k = 5

j 

j - 1

Figure 1: (a) A schematic representation of a fractal ferromagnet, which illustrates a
sponge structure. The gray site represents �S0 at the origin. (b) Spin arrangement of �Sjk

in the zone between the distances j − 1 and j (the closed circles) and the spins out of the
area (the opened circles), where the spin arrangement is based on Fig. 1 (a).

11



(a) d = 2, D = 2

(b) d = 2, D < 2

(c) d = 3, D = 3

(d) d = 3, D < 3

~   2 j

~   2 j

j

j

Figure 2: Schematic illustrations of spin arrangements in square spin systems without (a)
and with spin defects (some sites have no spins) (b) (a ”fractal ferromagnet”). The dots
represent spin sites. Dimensionality of lattice d is 2 in both cases, however, dimensionalities
of spin arrangements (D) are 2 (a) and < 2 (b), respectively. The closed and opened circles
represent the spins in and out of the range between the distances j−1 and j, respectively.
The arrows indicate paths from the origin to �Sjk’s with most and least steps. In (c) and
(d), cubic (D = 3) and fractal spin arrangements (D < 3) in cubic lattices (d = 3) are
illustrated, respectively.

12



1.0

0.8

0.6

0.4

0.2

0.0

T
T

C
C

/
bu

lk

3.02.52.01.51.0
Fractal dimension D

Figure 3: Dependence of normalized Curie temperature TC/T bulk
C on fractal dimension D

with different α, where T bulk
C is equal to TC in 3D and α is 0.6, 0.7, 0.8 and 0.9 from top

to bottom, respectively.
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