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Abstract

According to Fliigge’s method, the equations of motion are derived, for the purpose
of theoretical studies of the deflection and stress of thin cylindrical shell caused by pulse
load acting on a narrow surface. The solution is expressed by Fourier series in a general
form which can be applied to the studies of the dynamic response to any transient loading
under arbitrary boundary conditions. The response function is obtained on a circular
cylindrical shell with a simple support at both ends, when the half-sinusoidal side pressure
acts inwards on a square surface area located at the midpoint of the cylinder.

The following conclusions are obtained from the numerical calculation based on the
theory. Tensile stress occurs on the inner surface and compressive stress occurs on the
outer surface. The maximum deflection and stresses occur immediately after the end of
loading and remarkable deformation and stresses are produced in a range of two or three
fold loaded surface during a double loading period. When the duration of loading
becomes short, the deflection and stress levels increase and the time at which the maxi-
mum stresses occur becomes fast. The result of the numerical calculation agrees with
that of the experiment qualitatively.

1. Introduction

The vibration problems on cylindrical shells have been studied since Lord
Rayleigh in 1889%*. Recently these problems are attracting increasing interest for
structural engineers, and the theories on a thin cylindrical shell, which is the most
simple and typical model of shell structures, have been developed in various fields
including mechanical engineering.

The typical methods for deriving the equations of motion for a thin cylindrical
shell are described in Flilgge’s book® and Donnell’s paper?. Arnold-Warburton®?,
Baron-Bleigh”, Yu®®, Forsberg!® and others have studied the natural vibration of
thin shells on the basis of the equations. Humphreys-Winder™ and Sheng' analyzed
the dynamic response to pulse loading distributed over the entire surface of the
shells. However, there are only a few studies available on the response of the
shells to side pressure pulse acting on a restricted surface.

In this paper, the deformation and the stress of an elastic thin cylindrical
shell produced by a pulse pressure acting on a narrow surface, were analyzed
theoretically with the aid of Fourier series which satisfies the equations of motion
derived by Fiigge’s method. The result of the theoretical calculation is compared
with that of an experiment.

* Department of mechanical Engineering I, Hokkaido University, Japan



36 Toshihiro IRIE, Gen YAMADA and Yasuo YANAGI 2

Notations

The following notations are used to denote the dimensions, the components of
displacement, forces, moments, and characteristic values of the shell.

a* : mean radius, A%: thickness, [*: full length, x*: distance in the axial di-

rection, z*: distance in radial direction, ¢ : angle in a plane perpendicular to

the axis, #: time.

(u*, v*, w*) : displacement, (e, ¢5) : normal strain, 7,,: shearing strain, (¢}, o}) :

normal stress, ri,: shearing stress, (P, pi, py): pulse loading (side pressure),

(NoNy, Nog» Ny,) : normal force, (Q., @) : shearing force, (M..M,): bending

moment, (M,y, M,,) : torsional moment.

p: density, E: modulus of elasticity, v: Poison’s ratio, D=FER®/{12(1—} :

rigidity in deflection, K= F/4 /(1 —»* : rigidity in elongation.

The dimensionless notations are used for the convenience of theoretical analysis.
h=h*/a*, 1=1%*/a*, x-*x"‘" ‘a¥, 2=z2"/a*, =t/ {a*V p(1—)/E}s (. v, w)= (",
U5, wN)/a¥, (0., 04)= (0% 0p)/ {E/ (1=, ty=1r/(E/ 200+ ), (Pw Dy D)=
(D% D3 DY)/ (ER*/ {a* (1—/)} J, (&, &): location and range of loading, ¢,: range
(angle) of loading, f,: the maximum value of half-sinusoidal loading, «<,:
duration of loading, z,: straight-line rise time of step-force.
wl) : natural frequency, k= (1/12)(h*/a®)*

It is convenient to use the symbols for the simplification of the description.
'=0/0x : partial derivative with respect to x, *=0/0¢ : partial derivative with
respect to ¢, { 1} : column vector, [ ]: square matrix.

2. The equations of motion of an elastic thin shell

The components of the displacement of a circular cylindrical shell and the
forces and moments acting on the element are shown in Figs. 1 and 2. These
components are taken as positive in the direction indicated in the figures. If the
small terms can be neglected under the assumption that the deformation of the
shell is small, the following equations of motion are obtained from the equilibrium
condition of the forces and moments.

02
Ni+ Nis + a*ph = pa*h*= W;‘z,
£
Ny+ Ny — Qo+ a*pl = pa*h* Bz% W
P e f
Qe+ Qe+ Ny—a*py= — pa*h* e

and

N
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Fig. 1 A thin cylindrical shell Fig. 2 Forces and moments acting on element
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M+ My—a*Q.=0, My+ My—a*Qyp=0

@*Nyg—a*Ngy+ My =0 }
where the notations ’ and - denote the partial derivatives with respect to x*/a* and
¢ rtespectively. The strain components are written by

I

! ot 2w wE I
3 4 [l=i=2’ gy= a:k a:}: a:;:+zt{<+a:{:+zz{: {
@t z¥ L, W z* [ (3)
TRV <a4 +Zi*~?z*>

under the assumption that a plane which was perpendicular to the neutral surface
before deformation continues to remain in a plane after deformation and the
thickness of the shell is not varied by the deformation (Kirchhoff-Love’s assumption).

The forces and moments acting on the element are expressed by the stress
components, which are written by the strain components according to Hooke’s law.
Since the strain is expressed by the displacement as shown in Eq. (3), the forces
and moments are written by only the displacement. By substituting €),, €, obtained
from the first two equations of Eq. (2) in Eq. (1), the forces @,, @, can be elimi-
nated. And by substituting the forces N. Ny N.» N, and the moments M., M,
M.,, M;, expressed by the components of the displacement in Eq. (1), the following
equations of motion are obtained.

D<u Lr/+1 V I:%: ~+Vl;;,uvvkl~ +yw‘*">
K-y e P S S Mo g% ok *282ZL*
+a““2< B A > +a*pi=ph*a v
D(ngu*’ Ut »1-»»»,;}»!1)*” + w‘”‘")
- . (4)
K3 wy 33—V . o w020
+ s <z (L—p)o* == 5 ‘ZU"‘”'> +a*pi= plz*‘a*‘-?—g%—
Dvu® +v* 4 w*) + a[‘; (1 ; Yokt s 3 —; Yprit qgeim
DY oo ?) ) ke _ * kZaZw_{‘
+ 20 ¥ 4 200% 0w av2p oh*a 572

If the small terms are neglected, the last equation of Eq. (2) can be automatically
satisfied. It is convenient to write Eq. (4) in the dimensionless form
Ly Ly Ly ‘ u ] J fJxl
Loy Loy Loy v o= Do (5)
Ly Ly L lw[ l —Pr [
where L;; is the partial derivatives expressed by

83 1 -y 0% 82 _ 07 o l—v 0 02

5 5, &

L33w1+k+k<a 5 8¢2> +2 /eqq}z o2
(6)
1+v 0° 5 .3—y g’
Liy=L,, =Ty g(};-\ L23=L32=’a’x‘,—k' 5 5A73(7</)
0 0® 1—y 0%

Lin=La=vg =k ut o5~ 5roge

3. The dynamic response of the shell to pulse loading

By using the eigenfunctions (U,.s Vs W) of the shell, the displacement
can be written by
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J u I Upna(x) cos n¢ + Uup(x) sin n¢ ]
2 E_ Viina(%) sin 2 + V(%) cos ngp | efomns (7)
l w I mEL = OL W pina(X) €OS 78 + Wy () sin 726 |

By substituting Eq. (7) in Eq. (5) whose right-hand sides are equal to zero, the
equations of the natural vibrations of the shell are obtained as follows.

U»mf(x) ] Umnj+ <1 +k) """" % Umnf:F nvmnf +kan/’ + (kn2 "’*'—V> anf

1+v . =V
:f:'i*%Umn/ (1 + 3k)-_(" anf + nZanf:F (k?’l nmf n Wmnf)

W) Vonrl2) | =
[WW(.@ J —kU,',i;f+(V—kn2l—;—’3>Um,, ,:F</m Vi =1V s
A+ B W oy — 2002 W i+ {1+ (02— 1)2 Wy
(m,n=0,1,2,...; f=a,b) (8
where the upper sign is used for f=g and the lower sign for f=p respectively.
The displacement is written by
J u l | Uo(x, T) ] Una(X, T) COS NP + Uyp(x, T) sin 1P ‘
v o= 0 + 307 Une(x, T) sin 7 + v,5(x, T) cos ne (9)
l w } L wolx, ) J "=1l Waa(X, T) cOs NP+ W, (%, T) sin ng [
and the side pressure is

Ipxw | Xolx, f)]

I Xua(x, T) cos ne + X, (x, T) sin n¢ }

pot=""0 Ly @.(x 1) sin 16+ G,s(x, 7) cos ng (10)
lp, 1 l Ry(x, 7) J "Ill R,.(x, 7) cos ng + R,p(x, 7) sin ne J
(s Vnsr Way) and (X5, €,;, R,;) can be represented by
j Mnf 1 o I mnf( ) \ Ian] o ( mnf( ) ]
Uny 22:: ‘Imnf(f) mnf( ) mnf f :F_:: anf(f) i anf(x) (ll>
L u}nf J e L Wmnf( ) ) l Rnf me I\ Wmnf(x) j

Substituting Eq. (11) in Eq. (5) and rearranging the result by Eq. (8), the following
equation is obtained

)+ st )= Qo (2 (12)
By applying the orthogonality property of the eigenfunctions (U,.;» Vs Wins)
§ s Uas + VugVsug + Wans Wia dx=0 (i #J) 13)
to Eq. (11), @,.,(r) is given by
(XU + 0V o+ Ry W)

Qnmf(r> =0 7 (14)
S‘ (Ufrmf + V??mf + W?m:/)dx
[

The solution of Eq. (12) which is expressed by

qmnf(r) = Qme(O) COS Wy T + 0—)}-‘ dﬁ (q”mf(o)> Sin Wy T

S‘anf ) sin a)mn(r— T )d’l' (15)

w””l
gives the response functions of the shell. Thus the displacement is obtained by

Jul Z

j a® cos Aux ]

(7)

I qmoa
me=] 7’*1

l W

moa
0

l Sin AmXx ;
Since the stress components are given by the displacement in the form

o o s, | @hecos buxcosng )
+Z Z Z f)rzra[ Bi(lfi)m sin )”’x sin n¢ (16)

w=l n=1 r=1
sin X cos neg
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0 y 0% z 0

s ax Vep 1tz Cor 147097 l “ 1
s ) = y._a_ o 1 _ ,,Z_‘?_?‘ __z 0 - a7
l fT 0x op 1+z ox? 1+z0¢? l i
1 0 0 z \ 0
R B A R R P SR
by substituting Eq. (16) in Eq. (17), the stress components are written by
Tx 1 ""lma,,fﬂa"'xmz'*'iﬁ_{k—z
et 1
() (r) 2
l gy I ;L.J;‘l ;_1‘]",0“ sin AmX Zr)zya,,,0a+ 17mVZ+ 14z
T.’q’) 0
&2} L yn?
] { ‘mamna+ ang?)wm+ 1 + vn }Slll 7,,,& CcOs n¢ ]
oo 3
+ Z Z E qfr:;)m { 2"’”“7;7)1(( + nﬁg?}m + ”“'—'nz}SlI'l me cos n¢ (18>
M=1 n=1 r=1 l 1+

z .
— —1—_*—:%6( @ A1 +2) 280, + (z-i— ﬁ:é) n,l,,,}cos AmX Sin ¢

The eigenfunctions of a cylindrical shell supported at both ends can be written
in the form

J Ur(nr;Z/( ) ] [ar(nrrzf cos me

Vi x) =18, sin ixl (19)
l Wf,f,)zf( x) l sin Apx

where A,,=mmn/l, and there are three values of # for the (m, #) th mode of vibration
respectively.  In this case, by substituting Eq. (19) in Eq. (7), the following
homogeneous equations are derived.

wfﬁf {)‘?n + lg—g(l + ]3)722} :tl :;Kn)m v k(l?,, N }-%y%2>
il ;vnzm w2 {nz + L..-,,,(l +3k)2 m} +n <1 +* leAZ:)
v+ k(2,25 00) (1 +55508) oIkl + 2+ (22— 1) ]
f)zrr)zf l
X BE,TZ, = (20)
u

The positive roots of the equation obtained by taking the determinants of the
coefficient matrix of Eq. (20) as zero, give the natural frequencies w$). It should
be noted that there are three natural frequencies in the (m, %) th mode of vibration
respectively. By applying «{, ’s values thus obtained to Eq. (20), the coefficients

a, and B, are calculated, and hence the eigenfunctions are determined by
Eq. (19).

4. The response of the shell simply supported at both ends
to side pressure acting on a rectangular surface area

When a side pressure which is expressed by

) Eme< Al < E4E  —h< < )
”(""”’”‘{0 O< sl <b—ty Et&<al<l, d<od<2n—py) D
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acts on a rectangular surface area along the axial and circumferential direction as
shown in Fig. 3, the dynamic response of the shell simply supported at both ends
is calculated as follows. Eg. (21) can be expressed by the Fourier series

4
plx, 6, ) =p(r)=% %) 7 Z sm mné sin mnaé, sin Aux
T

L m=17
x ( /Z-O nml% sin 72, cos n</)> (22)
In this case, p, and p, in Eq. (10) are zero. Thus
an(-x, T) ‘“w,,/(”t T) :Rnb<x: T) =0 (12 2 O) ]
R . .
R (x, t)= p(r)—;;; sin nqbo 25 . sin mmé sin mné sin A% (23)
Ry(x, v)= ,)f lim R,.(x, ) j
~ =0

By substituting Eqs. (19) and (23) in Eq. (14), @{).(z) is determined and then the
response function ¢in.(z) is expressed by

o 8 sin mné sin mn&, sin n¢,
mna( )_ 2 3 ]9 511’1
72 mn(l+ ol B<’> o)

mn mn mn

(r) €3] (r) —
qnioa( > hm q»ma' 3})’1’0 =0

o c—tde (1 0) !
[ (24)

if the initial displacement and Veloc1ty of the shell are zero.
When the side pressure is a half-sinusoidal pulse shown in Fig. 4, the function
qindz) is calculated by

F T
U= (g {7, i ol — o sin Zejute)

“ mn

+ {TT sin D (t—7,) —wf) sin- 'cj(f T )}u(r—rl)} (25)

o - ; -

Fig. 3 A side pressure acting on the shell Fig. 4 A halfsinusoidal loading

When the side pressure is a step-load with a straight-line rise as shown in Fig. 5,
the function ¢, is written by

(7)

)= e [{oipz—sin oyt~ o) —sinofF—r)ulr—e) | (26)
mu
where

fo—

=

=/
|

[ | .
0 z

T

Fig. 5 A step-force with a straight-line rise



7 Dynamic Response of a Thin Cylindrical Shell 41

0 =§f sin m7§ sin ;7177:50 s21n no, (11 0)
mna” 250 77271(1‘*‘6{’(7) +B(?’) )w(r) S

mn mu mian

” 1., > ) —
o -_Q Hm F&) BE”Z)—«O J

moa mna
70

and y(r—t)=1 (r;<<7), 0 (z < r,) is a unit step function.

5. Numerical calculation and experiment

5.1 Convergence of the solution
Since the displacement and stress components are expressed by infinite series,
the convergence of which should be checked in the process of numerical calculation.
Fig. 6 shows the situation of convergence

20 10 60 80 n
T

T T T

of the stress components (s,),, when one 0

of (m, n) is fixed and the other is varied. -2 )

In this paper, by taking the values of = o =65
(), obtained for (m, m)=(100, 1) or  “°| ,

(1, 100) as the standard, the least number (@) m=1

of the terms (7, ) was determined in 2 10 50 80 n
such a way that the relative error between 0 ' ' ' '

the value of the finite series with a £ y
certain number of terms and the standard 2t o000
value is within +194. Noting that the X107 (b) n=1

infinite series for the displacement con- Fig.6 Theconvergence of infinite series for (ox)s
verges more quickly than that for the (x=15, ¢=0; &,=5%10"%, ¢,=5xx107%;
stress, it is considered that a sufficient 7=3.0)

accuracy of the calculation could be secured.
5.2 Numerical example

As a numerical example, the response of a circular cylindrical shell ([=3, A=
0.01; v=0.3) simply supported at both
ends was calculated, when a half-sinusoidal
side pressure acts inwards on a square
surface area (Jx —1.5]£0.12, |¢!20.12==7°)
whose center is located at the midpoint
of the cylinder (x=1.5, ¢==0).

Figs. 7~9 present the variation of
the deflection and the stress at the mid-
point and the distribution of them at
time (r=3.0) produced under the action
of the side force (—f,=107%, r,=mn).

Figs. 7a and 7b show the variation
of the lateral deflection v and the normal
stress o,, o, produced at the midpoint.
The deflection and stress attain maximum X107 (0.}
values immediately after the end of loading
period, and then the deflection decreases 0
gradually and the stress becomes small
at a rapid rate. It should be noted that T O el CPOH
remarkable deformation and stresses occur _2
within the double loadin‘g period.  On the Fig. 7 The variation of lateral deflection and
inner surface (2= —5/2), tensile stress stress components (x=1.5, ¢=0)

20 _ 30 T,
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(a) =0.15 b) ¢=0
Fig. 8 The distribution of deflection in thes ymmetrical
plane and the circular section (r=3.0)

a) =0
X107
1r
iy
5
1
0 0.5 ¥
.—-1_
(b) ¢=0
Fig. 10 The variation of lateral deflection Fig. 9 The distribution of stress components
(x=1.5,¢=0) in the symmetrical plane (¢v=3.0)
,=n1/2 X107 y=n/2
- ™ 1 7
X10°% / \\ / \\' T ox
ir ! = /R T ir
!XT & I/ e e
. I 7NN IS - TR =~
-2 !/ \ _}__“217 | Loem D e L ~N
& e N 4 [ — “z T ¢ g
| S ST e, TS :
2 Y N e M

T, =n/2

Fig. 11 The variation of sress components (x=1.5, $=0)
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10~
1
—_ 5\
ORI X107
s 1k \\ \,
) AN 1t
M SN (o), W
B ~ T —— !
s \\\ — -
. (o0); \“T"" " 0.5k
0 2 n 6 i
{oghe 0
.—] — \OQB
—0.5+ ]
_sl » Fig. 13 The relation of duration of loading
and the time producing the maxi-
mum deflection and stress

Fig. 12 The maximum values of deflection (#=15,¢=0)

and stress components (x=1.5, ¢$=0)

(0., 0,); is caused and on the outer surface (z2=/%/2), compressive stress (o,, 0;), is
caused at the beginning. The compressive stress is larger than the tensile stress
and almost [(0,),|=1.7|(0.)i!, |(04)s' =3 | (0,);|. Either of displacement components #, v
and shearing stress 7., do not occur at the midpoint.

Figs. 8 and 9 show the distribution of the deflection and the normal stress,
which are produced in the symmetrical plane and the circular section including
the loading point at the time v=3.0 when large stresses occur. Compressive stress
occurs on the outer surface and tensile stress occurs on the inner surface within
the narrow surface |x—1.5]/<0.15,[¢|<7° at 7=3.0. Although the stresses may
turn over outside of the range and in course of time, the stress level decreases
rapidly. However, it should be noted that remarkable stresses occur within the
range of two or three fold on the loading surface.

Figs. 10 and 11 present the variation of the lateral deflection and the normal
stress produced at the midpoint under the action of half-sinusoidal pressure with
various loading periods z,. In this case, the maximum value f, of loading is
chosen for each z; so that a constant impulse is always given to the shell surface.
Fig. 12 shows the maximum values of the deflection and stress and Fig. 13 shows
the difference between time 7,, at which time the maximum values occur and the
loading period, by taking =, as the axis of the abscissa. The shorter the loading
period becomes, the larger the deflection and the stress level is. And when the
loading period is short, the time causing the maximum stress becomes fast and
occurs during loading. This fact is considered to result from the inertia of the
shell.

5.3 Experimental result

-An experiment was conducted on a steel circular cylinder ([¥=662, g*=106,
h*=5.5 mm) by using an impacting hammer (5“mm) shown in Fig. 14. The strain
components were measured at several points on the cylinder surface and the side
pressure was estimated by transducing the strain detected with a pick up. The
measured side force was almost similar to a half-sinusoidal wave, which was
expanded into Fourier series as inputs of the computer.

Fig. 15 shows the variation of the stress measured at a point (x//—0.5|=0.03,
|¢|=0.06~=3.5°) on the outer surface of the cylinder loaded at midpoint and the
results obtained by the theoretical calculation. The theoretical values of the
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20 30
0 19 T — =7
X \ ////
\ /7
N\, /
—0.5¢ AN 7
c N\ o
5 - \@3‘%
Strain gauge I mpacting piece ~1.0k o
X110
Hammer
g- = - 10 20 30
~,
///
-0.5}- \\\\ \:/;-3'//
| ——Synchro [ - Qp@
i Transducer scope | Trigger pulse 5 O\
[E— . L B
1.0
Circular cylinder X101
Fig. 14 The apparatus of experiment Fig. 15 The result of theoretical calculation

and experiment on stress components
(&=05, ¢=0; §,=0.008, #,=0.008~
0.5%)

maximum stress are larger than the experimental one by 25~45%5. The reason
is explained from the fact that completely simple supports of the cylinder could
not be made, thus side pressure loaded by a hammer might not be uniformly
distributed on the surface and moreover damping of the cylinder was not taken
into consideration.

6. Conclusions

A theory was developed on the dynamic response of a thin cylindrical shell to
side pressure acting on a narrow surface and the following results were obtained.

(1) The response function was obtained by Fourier series in the general form,
which can be applied to any transient loading under arbitrary boundary conditions.

(2) The dynamic response was calculated numerically in the case where a
half-sinusoidal load acted on the shell simply supported at both ends.

(3) The maximum deflection and stresses occur immediately after the end of
loading and remarkable deformation and stresses are caused in a range of two or
three fold loaded surface during the double loading period.

(4) When the loading period becomes short, the deflection and stress levels
increases and the time at which the maximum stresses occur becomes fast.

(5) The result of the theoretical calculation qualitatively agrees with that of
the experiment conducted on a steel cylinder.

References

1) Lord Rayleigh, Proc. Roy. Soc., 45 (1889), p. 113 & p. 443.

2) Love, A. E. H.,, Phil. Trans. Roy. Soc., A179 (1888), p. 538.

3) Fliigge, W., Statik und Dynamik der Schalen, (1935), p. 268, Springer.

4) Donnel, L. H., NACA TR 479 (1933).

5) Arnold, R. N. and Warburton, G. B,, Proc. Roy. Soc., A197 (1947), p. 238.

6) Arnold, R. N.and Warburton, G. B.,, Proc. Inst. Mech. Engrs., 167 (1953), p. 62.
7) Baron, M. L. and Bleigh, H. H., J. Appl. Mech., 21 (1954), p. 167.

8 Yu, Y-Y., J. Appl. Mech., 22 (1955), p. 547.

N Yu, Y-Y, J. Aerospace. Sci., 25 (1958), p. 669.



11 Dynamic Response of a Thin Cylindrical Shell 45
10) Forsberg, K., AIAA J., 2 (1964), p. 2150.

11) Humphreys, J. F. and Winter, R., ATAA J., 3 (1965), p. 27.
12) Sheng, J., AIAA J., 3 (1965), p. 701.

The authors wish to thank the Computing Center of Hokkaisdo University, for providing

the facilities and valuable cooperation whithout which the present calculations could
not be made.



