

HOKKAIDO UNIVERSITY

Title	Effects of disturbance history and environmental factors on the diversity and productivity of understory vegetation in a cool-temperate forest in Japan
Author(s)	Takafumi, Hino; Hiura, Tsutom
Citation	Forest Ecology and Management, 257(3), 843-857 https://doi.org/10.1016/j.foreco.2008.10.020
Issue Date	2009-02-10
Doc URL	http://hdl.handle.net/2115/39984
Туре	article (author version)
File Information	FORECO5061_HUSCAP.pdf

1	Effects of disturbance history and environmental factors on the diversity and
2	productivity of understory vegetation in a cool-temperate forest in Japan
3	
4	Authors List: Hino Takafumi and Tsutom Hiura
5	
6	Affiliation: Tomakomai Research Station, Field Science Center for Northern Biosphere,
7	Hokkaido University, Japan
8	
9	Corresponding author: Takafumi Hino
10	Tomakomai Research Station, Field Science Center for Northern Biosphere, Hokkaido
11	University, Tomakomai 053-0035, Japan
12	<i>E-mail:</i> Hino Takafumi <u>takafumi@fsc.hokudai.ac.jp</u>
13	Tsutom Hiura <u>hiura@fsc.hokudai.ac.jp</u>
14	<i>Tel:</i> +81-144-332171
15	<i>Fax:</i> +81-144-332173
16	
17	
18	

1 Abstract

2	We assessed the species richness and aboveground productivity of understory plants in
3	nine types of forest stand (116 plots in total) that had different disturbance histories that
4	were combinations of the frequency of plantation (clear-cutting, site preparation,
5	planting), typhoon damage, and selective cutting. We established two 1×1 m quadrats to
6	measure species richness and productivity and one 1×30 m belt to measure species
7	richness in each plot. Canopy leaf area index (LAI), soil NH_4^+ , soil C/N ratio, slope angle,
8	and slope aspect were measured as current environmental factors affecting each plot. The
9	variance in species richness was better explained by disturbance history (69% in
10	quadrats; 86% in the belt) than by current environmental factors. Species richness and the
11	Simpson index decreased as the frequency of plantation increased. In contrast, the
12	variance in productivity was better explained by current environmental factors (82%),
13	especially canopy LAI (45%), than by disturbance history. The relations of species
14	presence and productivity to the explanatory variables differed among species, although
15	there were some common responses within life forms. The effects of disturbance on
16	species diversity remained for 20-80 years. Forest management should therefore take
17	into account the long-term effects of disturbance history to maintain understory plant
18	diversity.

1 Key words: biodiversity, forest management, hierarchical partitioning, life form,

2 plantation, typhoon.

3

4 Introduction

The determination of the mechanisms that control species diversity is a major issue in $\mathbf{5}$ forest ecology. According to current theory, disturbance regime and resource availability 6 $\mathbf{7}$ are key factors in the structuring of plant communities (Denslow, 1980; McIntyre et al., 1995). The availability of resources such as light and soil nutrients affects species 8 9 richness through competition for resources. For example, high levels of resources decrease plant diversity because they enhance competitive exclusion (Tilman, 1984; 10 11 Goldberg and Miller, 1990; Wedin and Tilman, 1993). In contrast, natural disturbances caused by strong winds, wildfires, and volcanic eruptions, and anthropogenic 12disturbances caused by forest management (e.g., plantation, harvesting) affect species 1314richness by altering resource availability. For example, the removal of canopy trees increases light availability on the forest floor (Malcolm, 1994) and soil nutrient and water 15availability because of a decrease in uptake by disturbed canopy trees (e.g., Parsons et al., 16171994); these changes in resource availability can increase species richness via the immigration of early successional species (Brunet et al., 1996; Decocq et al., 2004). 18

1	Moreover, disturbance also affects species richness through habitat structure, e.g., coarse
2	woody debris, litter layer, pits, and mounds (Beatty, 1984; Roberts and Zhu, 2002;
3	Astrom et al., 2005), and the availability of propagules (i.e., seed banks and seedlings;
4	Meier et al., 1995; Halpern et al., 1999).
5	The diversity of plant species in most cool-temperate forest communities is
6	much higher for understory forbs, ferns, and shrubs than for canopy trees (Halpern and
7	Spies, 1995; Gilliam, 2007). Furthermore, the decomposition of understory plant litter is
8	more rapid than that of canopy tree litter; the former accounts for only 10-15% of the
9	annual total litter production in cool-temperate forests (Muller, 2003). Therefore,
10	understory plants play important roles not only in maintaining species diversity but also
11	in nutrient cycling in forest ecosystems (Siccama et al., 1970; Fukuzawa et al., 2006).
12	Once the understory species composition is altered by disturbance, the changes may
13	persist for many decades or centuries, and the understory species composition of
14	old-growth forests may not recover for centuries after disturbance (Whitney and Foster,
15	1988; Halpern and Spies, 1995; Singleton et al., 2001; Dupouey et al., 2002). Two
16	mechanisms explain the maintenance of species composition (Donohue et al., 2000).
17	First, limitations in dispersal and establishment can restrict recolonization at a site where
18	species were previously removed by disturbance, even if the environmental conditions

1	have recovered. We defined this mechanism as the effects of disturbance history. Second,
2	current environmental conditions can restrict the establishment and growth of species that
3	were formerly present at a site. Numerous studies have demonstrated the importance of
4	the effects of disturbance history on diversity; however, few studies have quantitatively
5	examined the relative importance of disturbance history and current environmental
6	conditions.
7	The natural local flora corresponds to the local disturbance regime (Hiura, 1995).
8	Anthropogenic disturbances caused by forest management greatly affect biodiversity;
9	these effects differ from those caused by natural disturbance because anthropogenic
10	disturbances differ from natural disturbances in severity and frequency (Halpern and
11	Spies, 1995; Roberts and Gilliam, 1995b). The management of forests to sustain
12	biodiversity and ecosystem functioning has become a major challenge for modern
13	forestry (Bengtsson et al., 2000; Lindenmayer et al., 2000). Most cool-temperate forests
14	have been managed for timber production. In Hokkaido, the northern island of Japan,
15	plantation stands cover $> 25\%$ of the total forested area, and most of the remaining natural
16	forests have experienced some kind of forest management (Hokkaido Government, 2005).
17	The combination of natural and anthropogenic disturbance affects the diversity and
18	functions of understory plants in these cool-temperate forests. Therefore, to understand

1	the mechanisms underlying the maintenance of biodiversity for application to forest
2	management, it is necessary to examine the effects of both natural and anthropogenic
3	disturbances within a region (Roberts, 2004). However, most studies have only examined
4	the effects of anthropogenic disturbance on understory plants by comparing
5	anthropogenically disturbed forests and undisturbed old-growth forests (Duffy and Meier,
6	1992; Halpern and Spies, 1995; Singleton et al., 2001), and the comparison of the effects
7	of natural and anthropogenic disturbance is rarely made within a region (but see Reich et
8	al., 2001; Ramovs and Roberts, 2003).
9	We addressed the following questions. Which has a stronger influence on the
10	species diversity and productivity of understory plants: disturbance history or current
11	environmental factors? How do natural and anthropogenic disturbances affect species
12	diversity and productivity? In addition, because the response to disturbance history and
13	current environmental factors is determined by both species characteristics and life form
14	(Halpern, 1989; Roberts and Gilliam, 1995a; Oguchi et al., 2006), we compared the
15	responses of both species and life forms to disturbance history and current environmental
16	factors.
17	

1 Methods

2 <u>Study site</u>

3	This study was conducted in the Tomakomai Experimental Forest (TOEF), Hokkaido
4	University, Japan (42°41' N, 141°36' E). A large part of TOEF is located on flat land with
5	slope angle $< 5^{\circ}$, and the forest covers 2715 ha. The mean monthly temperatures range
6	from –3.2 to 19.1°C, and the annual precipitation is 1450 mm. Snow cover reaches a
7	depth of 50 cm from December to March. Approximately 350 vascular plants have been
8	recorded in the TOEF (Kudo and Yoshimi, 1916). The dominant canopy tree species in
9	the natural stands are Quercus crispula, Acer mono, Sorbus alnifolia, and Tilia japonica,
10	and the understory species include Dryopteris crassirhizoma, Maianthemum dilatatum,
11	Scisandra chinensis, and Sasa nipponica (Hiura, 2001). The forest is formed on 2 m deep
12	volcanogenous regosols that accumulated from the eruptions of Mt. Tarumae in 1669 and
13	1739; the depth of the A horizon is 0–6 cm (Shibata et al., 1998). In a study, investigating
14	the effects of anthropogenic disturbance due to forest management on diversity of
15	understory plants, both disturbance and site-specific effects (e.g., due to topography and
16	geology) were detected (Hannerz and Hanell, 1997). Thus, by using the sites where
17	topographic and geologic factors are homogenous, it allows us to separate the effects of
18	disturbance history from site-specific effects.

2 <u>Disturbance history</u>

3	There was no record of anthropogenic disturbance in TOEF until the early 20th century.
4	Plantations in TOEF are created following clear-cutting and mechanical site preparation.
5	Weeding and shrub clearing occur twice per plantation stand, and some stands are in their
6	second rotation. The plantation stands are between 11 and 80 years old. The main planted
7	tree species are Larix kaempferi, Abies sachalinensis, and Picea glehnii. Harvesting
8	operations in TOEF are performed as selective cutting in plantation stands and natural
9	forests. Although 3–56 years have passed since the last harvest, depending on the stand
10	age, most harvesting occurred 10-25 years ago. The only major natural disturbance in
11	TOEF since it was established in 1904 was a severe typhoon in 1954, although there have
12	been some small disturbances caused by other typhoons. A secondary forest has
13	developed in one-third of TOEF since the severe typhoon (Mishima et al., 1958). TOEF
14	has approximately 300 permanent forest plots (Hiura, 2005). The permanent plots have
15	detailed disturbance history records and homogeneous forest structure within plots. These
16	features are useful for the study of the effects of disturbance history on understory
17	vegetation. We selected 116 square plots of 37×23 m to 50×60 m (mainly 40×50 m)
18	from the permanent plots. To determine when plantation and harvesting (including

Takafumi and Hiura 9

1	salvage logging) occurred in the plots, we examined TOEF forest management records
2	beginning in 1924. Damage from the severe typhoon in 1954 was estimated at four levels:
3	undisturbed, low-severity disturbance with single canopy gaps, intermediate severity
4	with patchy disturbed areas, and high severity with overall disturbance. Typhoon damage
5	was determined using aerial photographs and maps created from field surveys of the
6	damage (Mishima et al., 1958). In the study plots, the relation between damage from the
7	severe typhoon and harvesting or plantation frequency was not significant (likelihood
8	ratio test, df = 112, harvesting: $\chi = 64.54$, $P = 0.38$, plantation: $\chi = 95.04$, $P = 0.35$). The
9	study plots were divided into nine forest types based on disturbance history (Table 1).
10	
10 11	Sampling design and data collection
10 11 12	Sampling design and data collection Vegetation and environment surveys were conducted between 25 June and 23 July 2004.
10 11 12 13	Sampling design and data collection Vegetation and environment surveys were conducted between 25 June and 23 July 2004. These data and data collected in July 2000 (Hiura, 2001) were combined (78 plots in 2004,
10 11 12 13 14	Sampling design and data collection Vegetation and environment surveys were conducted between 25 June and 23 July 2004. These data and data collected in July 2000 (Hiura, 2001) were combined (78 plots in 2004, 38 plots in 2000) and analyzed, with the assumption that the environmental conditions did
10 11 12 13 14	Sampling design and data collection Vegetation and environment surveys were conducted between 25 June and 23 July 2004. These data and data collected in July 2000 (Hiura, 2001) were combined (78 plots in 2004, 38 plots in 2000) and analyzed, with the assumption that the environmental conditions did not change between summer 2000 and summer 2004. The differences in current
10 11 12 13 14 15 16	Sampling design and data collection Vegetation and environment surveys were conducted between 25 June and 23 July 2004. These data and data collected in July 2000 (Hiura, 2001) were combined (78 plots in 2004, 38 plots in 2000) and analyzed, with the assumption that the environmental conditions did not change between summer 2000 and summer 2004. The differences in current environmental factors were not significant between the two data sets in stands that had the
10 11 12 13 14 15 16 17	Sampling design and data collection Vegetation and environment surveys were conducted between 25 June and 23 July 2004. These data and data collected in July 2000 (Hiura, 2001) were combined (78 plots in 2004, 38 plots in 2000) and analyzed, with the assumption that the environmental conditions did not change between summer 2000 and summer 2004. The differences in current environmental factors were not significant between the two data sets in stands that had the same disturbance history (all P > 0.09). The 2000 data set had five quadrats within plots,

1	measure the diversity and productivity of understory plants, two 1×1 m quadrats were
2	established randomly at least 5 m from the plot edges in each plot (232 quadrats in total).
3	The plant species that appeared in each quadrat were recorded. To estimate aboveground
4	productivity, we clipped the current-year product parts of understory plants, i.e.
5	aboveground parts of forbs, ferns, monocots < 1 m tall, and current-year leaves and
6	shoots for woody species < 1 m tall. In which the non-woody plants in this study area
7	consisted mostly of current-year products. All samples were sorted by species, dried, and
8	weighed. Data from the two quadrats in each plot were summed for analysis. Diversity
9	was expressed using Simpson's index $(1/\Sigma P_i^2)$, where p_i is the relative mass of species <i>i</i> .
10	The relative mass was calculated as the mass of a single species divided by the total mass
11	of vegetation from the plot for the two quadrats combined.
12	In addition to the quadrats, we used 1×30 m belt transects located at least 5 m
13	from plot edges to detect species of low abundance. The species names were recorded for
14	all vascular plants < 1 m tall that occurred in the belts.
15	We collected environmental data on light availability, soil nutrients, and
16	topography as factors that might explain species diversity and productivity in the plots.
17	To estimate light availability, the leaf area index (LAI) at a height of 1 m was measured in
18	each plot using an optical analyzer (LAI-2000; Li-Cor, Lincoln, NE, USA). Some

1	previous study reported that the LAI-2000 analyzer may underestimate the actual LAI
2	(Kussner and Mosandl, 2000; Law et al., 2001). However, previous studies in this region
3	found that the LAI-2000 produced reliable estimates that were not much smaller than
4	direct measurements made in a secondary stand (LAI of around 4.0; Takahashi et al.,
5	1999) and a mature stand (LAI of 7.59; Fukushima et al., 1998).
6	To measure soil nutrient availability, two soil samples were taken from a depth
7	of 10 cm near the quadrats in each plot. Soil ammonium (NH_4^+) was extracted in water
8	and analyzed using ion chromatography (DX500; Dionex Corp., Sunnyvale, CA, USA).
9	The soil C/N ratio was measured using a C/N analyzer (Sumitomo NC-900, Osaka,
10	Japan).
10	
10	Although the canopy tree composition and density indirectly affect understory
10 11 12	Although the canopy tree composition and density indirectly affect understory plants via light and soil nutrient availability, we did not use canopy tree composition and
10 11 12 13	Although the canopy tree composition and density indirectly affect understory plants via light and soil nutrient availability, we did not use canopy tree composition and density as explanatory variables because we measured light and soil nutrient availability
10 11 12 13 14	Although the canopy tree composition and density indirectly affect understory plants via light and soil nutrient availability, we did not use canopy tree composition and density as explanatory variables because we measured light and soil nutrient availability directly. For topography, slope aspect and slope angle were analyzed in ArcGIS 9.0
10 11 12 13 14 15	Although the canopy tree composition and density indirectly affect understory plants via light and soil nutrient availability, we did not use canopy tree composition and density as explanatory variables because we measured light and soil nutrient availability directly. For topography, slope aspect and slope angle were analyzed in ArcGIS 9.0 (ESRI Inc., Redlands, CA, USA) using a digital elevation model.
10 11 12 13 14 15 16	Although the canopy tree composition and density indirectly affect understory plants via light and soil nutrient availability, we did not use canopy tree composition and density as explanatory variables because we measured light and soil nutrient availability directly. For topography, slope aspect and slope angle were analyzed in ArcGIS 9.0 (ESRI Inc., Redlands, CA, USA) using a digital elevation model.
 11 12 13 14 15 16 17 	Although the canopy tree composition and density indirectly affect understory plants via light and soil nutrient availability, we did not use canopy tree composition and density as explanatory variables because we measured light and soil nutrient availability directly. For topography, slope aspect and slope angle were analyzed in ArcGIS 9.0 (ESRI Inc., Redlands, CA, USA) using a digital elevation model.

1 Data analysis

2	The coefficient of each explanatory variable (i.e., LAI, NH ₄ ⁺ , slope angle, slope aspect,
3	plantation frequency, harvesting, typhoon damage, and lack of damage) for the dependent
4	variables of species richness, Simpson index, productivity, and species presence/absence
5	was estimated using a generalized linear model (GLM). The likelihood ratio test was used
6	to determine whether the data supported a full model over a null model. The effect of
7	disturbance history on species richness and productivity was examined using a likelihood
8	ratio test. The effect of the number of years since the last anthropogenic disturbance on
9	species richness was also examined using a likelihood ratio test. To compare species
10	richness in quadrats and belts, and Simpson index in quadrats among stands with different
11	plantation frequency, we carried out multiple comparisons general linear hypothesis tests
12	in the MULTCOMP library version 1.0-2 (Hothorn et al., 2008) in R statistical software.
13	Hierarchical partitioning alleviates problems of multicollinearity among
14	variables (MacNally, 2000, 2002) and has been used in numerous studies (e.g., Heikkinen
15	et al., 2004; Banks et al., 2005). Disturbance history and environmental factors are
16	closely related. For example, LAI (Kashian et al., 2005) and soil N (Zimmerman et al.,
17	1995) both change with the number of years since the last disturbance. Thus, we used
18	hierarchical partitioning to examine the contribution of each explanatory variable to

1	species richness, Simpson index, productivity, and species presence/absence by
2	examining each explanatory variable separately. The significance of the independent
3	contribution of each explanatory variable was tested using randomizations (MacNally,
4	2002). Hierarchical partitioning examines all model combinations jointly to identify the
5	average influence of parameters, rather than just the single best model, and then estimates
6	the percentage independent contribution of each parameter to the total explained variation
7	in the dependent variable. This analysis was performed for life form richness and
8	productivity, as well as for all understory species. To asses the contributions of the
9	explanatory variables to the presence of each species, we analyzed the presence/absence
10	of individual understory species in the plots using the belt transect survey data. We show
11	the results for species presence/absence for species that occurred in more than five plots
12	and for which the full model was significant ($P < 0.05$). Because the productivity of all
13	understory plants can be affected by the dominant species, we estimated the contributions
14	of the explanatory variables to the productivity of each species using hierarchical
15	partitioning. We show the results for species productivity for species that occurred in
16	more than five plots and for which the full model was significant ($P < 0.05$). All statistical
17	analyses were conducted using R version 2.6.0 (R Development Core Team 2006).

1 Results

2	We detected 207 species in the survey. The total dry mass of understory plants was 20–50
3	g/m ² , which corresponded to approximately 10–20% of the canopy tree litter of 300–400
4	g/m^2 (Shibata <i>et al.</i> , 2005) in this forest. The results corresponded with the average total
5	above ground dry mass of 41 g/m ² and 15.9 % of the canopy litter in North American
6	forests (Muller, 2003).
7	
8	Effects of disturbance history on understory plants
9	The type of disturbance history had a significant effect on species richness (in quadrats: χ^2
10	= 46.838, df = 8, $P < 0.001$, in belts: $\chi^2 = 72.794$, df = 8, $P < 0.001$). However, the number
11	of years since the last anthropogenic disturbance did not significantly affect species
12	richness or the Simpson index (all $P > 0.24$), except for plantation species richness in the
13	belt surveys ($P < 0.001$). The sum of the variance explained by disturbance history
14	variables (i.e., plantation frequency, harvesting, and typhoon severity) composed a large
15	portion of the variation in species richness (69% in quadrats; 77% in belts; Fig. 1A, B). In
16	particular, plantation frequency explained 34.6% of the variation in species richness, and
17	species richness decreased as plantation frequency increased (Fig. 2). In contrast, species
18	richness tended to be higher in harvested stands than in unharvested stands (Table 2).

1	Furthermore, the 1954 typhoon influenced a single peak model of species richness;
2	namely, low-severity typhoon-disturbed stands had higher species richness than
3	undisturbed stands and high-severity disturbed stands, although the effect was significant
4	only in the quadrat survey ($P < 0.05$).
5	For productivity, the sum of the variance explained by parameters representing
6	disturbance history (18.4%) was lower than that of environmental factors. The
7	disturbance history parameters were not statistically significant, although the type of
8	disturbance history had a significant effect on productivity ($F = 2.573$, df = 8, 107, $P =$
9	0.013). For the Simpson index, disturbance history and current environmental factors
10	explained similar amounts of variance (disturbance history: 46.8%, current
11	environmental factors: 46.2%).
12	
13	Effects of current environmental factors on understory plants
14	The sum of the variance explained by current environmental factors constituted a large
15	part of the variation in productivity (81.6%): LAI explained 45.3% and NH_4^+ explained
16	15.0% (Fig. 1D, Table 2). However, these parameters explained only a small part of the
17	variation in species richness. LAI and NH_4^+ had significant negative effects on
18	productivity and species richness (Table 2). The topographic variables were not

1	significant in explaining the variation in species richness, the Simpson index, or
2	productivity.
3	
4	Life form and species differences
5	The response of species richness and productivity to disturbance history and current
6	environmental factors differed among life forms. For example, in the belt survey, LAI
7	explained 0.0% of the variation in the species richness of forbs, but 5.4% in that for trees.
8	The sum of the variance explained by current environmental factors was higher for the
9	productivity of vines (98.4%) that for that of other life forms.
10	There were various responses of species presence/absence and productivity to
11	disturbance history and current environmental factors, although there were some
12	common responses within life forms (Appendices A, B). For example, the presence of
13	Phryma leptostachya var. asiatica was significantly positively related to LAI, but this
14	pattern was not reflected by all forbs in the belt survey.
15	
16	Discussion
17	Our results clearly illustrate that disturbance history has a stronger influence on the

18 species richness of understory plants than do current environmental factors. In particular,

1	as the plantation frequency increased, species richness decreased. In contrast, current
2	environmental factors had a stronger influence on the productivity of understory plants
3	than did disturbance history. The responses of presence and productivity to disturbance
4	history and current environmental factors varied among the species, although there were
5	some common responses within life forms.
6	
7	Species richness is more strongly affected by disturbance history than current
8	environmental factors
9	Disturbance history affects species richness by altering propagule availability and habitat
10	structure (Meier et al., 1995; Buckley et al., 1997; Halpern et al., 1999; Astrom et al.,
11	2005). In contrast, environmental factors affect species richness through resource
12	competition (Tilman, 1984; Goldberg and Miller, 1990; Wedin and Tilman, 1993). We
13	found that disturbance history explained more of the variation in species richness (69% in
14	quadrats; 86% in belts) than did current environmental factors, even long after the
15	disturbance had occurred (50 years after the typhoon, an average of 58 years since
16	plantation, and an average of 16 years since harvesting). Therefore, for local flora in this
17	area, the effects of propagule availability and habitat structure on species richness were
18	most likely greater than the effects of resource competition. These results agree with

1	previous studies that indicated that species that are lost from the understory might not
2	reappear even by one century after severe disturbance (Whitney and Foster, 1988;
3	Singleton et al., 2001; Dupouey et al., 2002) because of dispersal and establishment
4	limitations (Donohue et al., 2000). There are two possible explanations for these results.
5	First, the number of forb species, which are particularly sensitive to disturbance,
6	composed approximately half of the total species in our study. The dispersal ability of
7	forbs is generally low (Cain et al., 1998); thus, forbs tend to retain disturbance effects
8	longer than other life forms. Second, species that are adapted to the predisturbance
9	canopy tree phenology might have difficulty persisting in highly disturbed stands. The
10	seasonality of light resource availability for understory plants is greatly affected by
11	canopy tree phenology (Uemura, 1994). If most canopy trees are removed from stands by
12	clear-cutting in preparation for plantation establishment or by a severe typhoon, the forest
13	floor receives abundant light throughout the year.
14	
15	Effects of anthropogenic and natural disturbance on species richness
16	Species richness and the Simpson index decreased as the plantation frequency increased
17	(Fig. 2). There are two possible explanations for these results. First, the creation of a
18	plantation is a very severe form of disturbance that involves clear-cutting and mechanical

1	site preparation (Roberts and Zhu, 2002). Thus, species that prefer a stable habitat in the
2	forest may be extirpated. Second, the establishment of a plantation usually creates a
3	homogenous environment (microtopography, coarse woody debris, light distribution, and
4	litter content), in contrast to the environment of an old-growth forest. Machinery
5	preparation with plantation obliterates heterogeneity in microtopography (e.g. mound,
6	pit), which allows coexistence and higher richness in stands (Beatty, 1984). Several
7	studies reported that diversity of understory plants in clear cutting stands recover more
8	quickly than our plantation stands (Reiners, 1992; Ford et al., 2000; Gilliam, 2002). One
9	of the reason why diversity of understory plants recover more slowly in plantation stands,
10	the heterogeneity in microtopography would not recover in long-term (Beatty, 2003).
11	Clear-cutting and site preparation eliminate coarse woody debris, which is related to
12	heterogeneity on the forest floor (Goodburn and Lorimer, 1998; Roberts and Zhu, 2002;
13	Ramovs and Roberts, 2003), and reduce plant species diversity (Thomas et al., 1999;
14	Miller et al., 2002). Furthermore, because plantations are usually even aged and have
15	only one or several canopy species, the understory light distribution and litter content are
16	homogeneous. The conversion of a stand from deciduous broadleaf tree species to one or
17	several coniferous tree species changes the seasonality of resource availability on the
18	forest floor via leaf phenology of canopy, thus decreasing species that are adapted to the

1	seasonality of resource availability (Sparks et al., 1996; Amezaga and Onaindia, 1997).
2	This type of forest conversion also changes the litter quality on the forest floor because
3	coniferous leaf litter has lower pH (Binkley and Valentine, 1991; Brandtberg et al., 2000)
4	and greater accumulation because of slower decomposition (Klemmedson, 1992;
5	Cornelissen, 1996) than does broadleaf leaf litter. This may also affect the understory
6	species composition. The replanting of stands through rotations may increase the
7	negative effects on species richness over those of a single plantation.
8	Harvesting had a positive effect on species richness (Table 2). Previous studies in
9	broadleaf forest suggest that understory species richness increases after selective tree
10	harvesting because these species are tolerant to intermediate canopy disturbance and
11	some early successional species favor such disturbance (Brunet et al., 1996; Gotmark et
12	al., 2005). The presence of Potentilla freyniana, Hypericum erectum, Rubus
13	crataegifolius, Rubus idaeus var. aculeatissimus, and Aralia elata was positively related
14	to harvesting (Appendix A). These species prefer relatively open stands (Satake et al.,
15	1981, 1989) and their immigration would increase the total species richness.
16	In terms of natural disturbance, the species richness of quadrats indicated a
17	single peak model related to the 1954 typhoon: species richness was high in stands in
18	which only single trees were disturbed. Typhoons create canopy gaps that increase light

1	and soil nutrient availability in the understory (Liechty et al., 1997; Carlton and Bazzaz,
2	1998), promoting the immigration of early successional species (Peterson and Pickett,
3	1995). Furthermore, typhoons can create microenvironmental heterogeneity (e.g., pit and
4	mound topography), allowing species with various ecological characteristics to coexist in
5	a stand. Nevertheless, stands that received severe typhoon disturbance had lower species
6	richness than undisturbed stands. Severe typhoon disturbance might result in excess
7	irradiance and dry soils, negatively affecting species that prefer dark and humid
8	environments. Moreover, if a poor disturbance-tolerant species becomes extirpated from
9	a stand because of high-severity disturbance, it may be difficult for the species to
10	reestablish if the available seed sources are located far from the center of the disturbed
11	area.
12	
13	Productivity is more strongly affected by current environmental factors than disturbance
14	history
15	Current environmental factors, particularly LAI and NH_4^+ , explained much of the
16	variation in productivity (Fig. 1D). These results agree with the theory that light and soil
17	nutrients explain most of the variation in productivity when water availability is high
18	(Tilman, 1988). Furthermore, the predominance of LAI in explaining productivity was

1	consistent with previous findings that understory plant productivity is closely related to
2	the size of the canopy opening (Malcolm, 1994; Stone and Wolfe, 1996).
3	
4	Management implications
5	Our results demonstrate that the effects of disturbance can remain for 50-80 years. The
6	plantation frequency explained most of the variation in species richness (Fig. 1A, B).
7	Thus, understory plants in this area are much more sensitive to plantation than to selective
8	harvesting and typhoon disturbance. Therefore, plantations should not be created over
9	large areas and should have rotations of $>$ 50-80 years so that stand-level species diversity
10	can be maintained. Future research should clarify whether plantations have a permanent
11	negative effect on species diversity and how much time is needed for recovery to a
12	pre-plantation state. When examining the effects of disturbance and environmental
13	factors on understory plants, it is necessary to account for the influence of dominant life
14	forms and species characteristics. If this is not considered, the response of rare species to
15	disturbance and current environmental factors can be overlooked, even though it is
16	important to the maintenance of species diversity.
17	

1 Acknowledgments

2	We thank A. Okuda and the staff and graduate students of TOEF for their help during the
3	study. We also thank Drs. T. Yoshida, M. Nakamura, M. Ishihara, O. Muller, T. Hirao, and
4	A. Toyota for discussion and H. Shibata, M. Ozawa for soil analysis. This work was
5	partly supported by grants from the Ministry of Education, Science, Sports, and Culture
6	of Japan (12740418, 15208014 to T. Hiura).
7	
8	
9	Reference
10	Amezaga, I., Onaindia, M., 1997. The effect of evergreen and deciduous coniferous
11	plantations on the field layer and seed bank of native woodlands. Ecography 20,
12	308-318.
13	Astrom, M., Dynesius, M., Hylander, K., Nilsson, C., 2005. Effects of slash harvest on
14	bryophytes and vascular plants in southern boreal forest clear-cuts. J. Appl. Ecol.
15	42, 1194-1202.
16	Banks, S.C., Finlayson, G.R., Lawson, S.J., Lindenmayer, D.B., Paetkau, D., Ward, S.J.,
17	Taylor, A.C., 2005. The effects of habitat fragmentation due to forestry plantation
18	establishment on the demography and genetic variation of a marsupial carnivore,

1	Antechinus agilis. Biol. Conserv. 122, 581-597.
2	Beatty, S.W., 1984. Influence of microtopography and canopy species on spatial patterns
3	of forest understory plants. Ecology 65, 1406-1419.
4	Beatty, S.W., 2003. Habitat heterogeneity and maintenance of species in understory
5	communities. In: Gilliam, F.S., Roberts, M.R. (Eds.), The Herbaceous Layer in
6	Forests of Eastern North America. Oxford University Press, New York, USA, pp.
7	177-197.
8	Bengtsson, J., Nilsson, S.G., Franc, A., Menozzi, P., 2000. Biodiversity, disturbances,
9	ecosystem function and management of European forests. For. Ecol. Manage. 132,
10	39-50.
11	Binkley, D., Valentine, D., 1991. Fifty-year biogeochemical effects of green ash, white
12	pine, and Norway spruce in a replicated experiment. For. Ecol. Manage. 40,
13	13-25.
14	Brandtberg, P.O., Lundkvist, H., Bengtsson, J., 2000. Changes in forest-floor chemistry
15	caused by a birch admixture in Norway spruce stands. For. Ecol. Manage. 130,
16	253-264.
17	Brunet, J., FalkengrenGrerup, U., Tyler, G., 1996. Herb layer vegetation of south Swedish
18	beech and oak forests - Effects of management and soil acidity during one decade.

1	For. Ecol. Manage. 88, 259-272.
2	Buckley, G.P., Howell, R., Anderson, M.A., 1997. Vegetation succession following ride
3	edge management in lowland plantations and woods. 2. The seed bank resource.
4	Biol. Conserv. 82, 305-316.
5	Cain, M.L., Damman, H., Muir, A., 1998. Seed dispersal and the Holocene migration of
6	woodland herbs. Ecol. Monogr. 68, 325-347.
7	Carlton, G.C., Bazzaz, F.A., 1998. Resource congruence and forest regeneration
8	following an experimental hurricane blowdown. Ecology 79, 1305-1319.
9	Cornelissen, J.H.C., 1996. An experimental comparison of leaf decomposition rates in a
10	wide range of temperate plant species and types. J. Ecol. 84, 573-582.
11	Decocq, G., Aubert, M., Dupont, F., Alard, D., Saguez, R., Wattez-Franger, A., De
12	Foucault, B., Delelis-Dusollier, A., Bardat, J., 2004. Plant diversity in a managed
13	temperate deciduous forest: understorey response to two silvicultural systems. J.
14	Appl. Ecol. 41, 1065-1079.
15	Denslow, J.S., 1980. Patterns of plant-species diversity during succession under different
16	disturbance regimes. Oecologia 46, 18-21.
17	Donohue, K., Foster, D.R., Motzkin, G., 2000. Effects of the past and the present on
18	species distributions: the influence of land-use history on the demography of

1	wintergreen. J. Ecol. 88, 303-316.
2	Duffy, D.C., Meier, J.A., 1992. Do Appalachian herbaceous understories ever recover
3	from clearcutting? Conserv. Biol. 6, 196-201.
4	Dupouey, J.L., Dambrine, E., Laffite, J.D., Moares, C., 2002. Irreversible impact of past
5	land use on forest soils and biodiversity. Ecology 83, 2978-2984.
6	Ford, W.M., Odom, R.H., Hale, P.E., Chapman, B.R., 2000. Stand-age, stand
7	characteristics, and landform effects on understory herbaceous communities in
8	southern Appalachian cove-hardwoods. Biol. Conserv. 93, 237-246.
9	Fukushima, Y., Hiura, T., Tanabe, S., 1998. Accuracy of the MacArthur-Horn method for
10	estimating a foliage profile. Agric For Met. 92, 203-210.
11	Fukuzawa, K., Shibata, H., Takagi, K., Nomura, M., Kurima, N., Fukazawa, T., Satoh, F.,
12	Sasa, K., 2006. Effects of clear-cutting on nitrogen leaching and fine root
13	dynamics in a cool-temperate forested watershed in northern Japan. For. Ecol.
14	Manage. 225, 257-261.
15	Gilliam, F.S., 2002. Effects of harvesting on herbaceous layer diversity of a central
16	Appalachian hardwood forest in West Virginia, USA. For. Ecol. Manage. 155,
17	33-43.
18	Gilliam, F.S., 2007. The ecological significance of the herbaceous layer in temperate

1	forest ecosystems. Bioscience 57, 845-858.
2	Goldberg, D.E., Miller, T.E., 1990. Effects of different resource additions on
3	species-diversity in an annual plant community. Ecology 71, 213-225.
4	Goodburn, J.M., Lorimer, C.G., 1998. Cavity trees and coarse woody debris in
5	old-growth and managed northern hardwood forests in Wisconsin and Michigan.
6	Can. J. For. Res. 28, 427-438.
7	Gotmark, F., Paltto, H., Norden, B., Gotmark, E., 2005. Evaluating partial cutting in
8	broadleaved temperate forest under strong experimental control: Short-term
9	effects on herbaceous plants. For. Ecol. Manage. 214, 124-141.
10	Halpern, C.B., 1989. Early successional patterns of forest species - interactions of
11	life-history traits and disturbance. Ecology 70, 704-720.
12	Halpern, C.B., Evans, S.A., Nielson, S., 1999. Soil seed banks in young, closed-canopy
13	forests of the Olympic Peninsula, Washington: potential contributions to
14	understory reinitiation. Can. J. Bot. 77, 922-935.
15	Halpern, C.B., Spies, T.A., 1995. Plant-species diversity in natural and managed forests
16	of the pacific-northwest. Ecol. Appl. 5, 913-934.
17	Hannerz, M., Hanell, B., 1997. Effects on the flora in Norway spruce forests following
18	clearcutting and shelterwood cutting. For. Ecol. Manage. 90, 29-49.

1	Heikkinen, R.K., Luoto, M., Virkkala, R., Rainio, K., 2004. Effects of habitat cover,
2	landscape structure and spatial variables on the abundance of birds in an
3	agricultural-forest mosaic. J. Appl. Ecol. 41, 824-835.
4	Hiura, T., 1995. Gap formation and species-diversity in Japanese beech forests - a test of
5	the intermediate disturbance hypothesis on a geographic scale. Oecologia 104,
6	265-271.
7	Hiura, T., 2001. Stochasticity of species assemblage of canopy trees and understory plants
8	in a temperate secondary forest created by major disturbances. Ecol. Res. 16,
9	887-893.
10	Hiura, T., 2005. Estimation of aboveground biomass and net biomass increment in a cool
11	temperate forest on a landscape scale. Ecol. Res. 20, 271-277.
12	Hokkaido Government, 2005. Hokkaido Forestry Statistics (in Japanese). In.
13	http://www.pref.hokkaido.lg.jp/sr/sum/kcs/rin-toukei/15rtk.htm.
14	Hothorn, T., Bretz, F., Westfall, P., R., H.M., 2008. MULTCOMP: Simultaneous
15	Inference for General Linear Hypotheses. URL
16	http://cran.r-project.org/web/packages/multcomp/index.html.
17	Kashian, D.M., Turner, M.G., Romme, W.H., 2005. Variability in leaf area and stemwood
18	increment along a 300-year lodgepole pine chronosequence. Ecosystems 8,

1	48-61.
-	

2	Klemmedson, J.O., 1992. Decomposition and nutrient release from mixtures of Gambel
3	oak and. ponderosa pine leaf litter. For. Ecol. Manage. 47, 349-361.
4	Kudo, Y., Yoshimi, T., 1916. Flora of Tomakomai Experimental Forest, Hokkaido
5	University. Research Bulletin of Tohoku Emperor University Forests 3, 1-62.
6	Kussner, R., Mosandl, R., 2000. Comparison of direct and indirect estimation of leaf area
7	index in mature Norway spruce stands of eastern Germany. Can. J. For. Res. 30,
8	440-447.
9	Law, B.E., Van Tuyl, S., Cescatti, A., Baldocchi, D.D., 2001. Estimation of leaf area
10	index in open-canopy ponderosa pine forests at different successional stages and
11	management regimes in Oregon. Agric For Met. 108, 1-14.
12	Liechty, H.O., Jurgensen, M.F., Mroz, G.D., Gale, M.R., 1997. Pit and mound topography
13	and its influence on storage of carbon, nitrogen, and organic matter within an
14	old-growth forest. Can. J. For. Res. 27, 1992-1997.
15	Lindenmayer, D.B., Margules, C.R., Botkin, D.B., 2000. Indicators of biodiversity for
16	ecologically sustainable forest management. Conserv. Biol. 14, 941-950.
17	MacNally, R., 2000. Regression and model-building in conservation biology,
18	biogeography and ecology: The distinction between and reconciliation of

1	'predictive' and 'explanatory' models. Biodivers. Conserv. 9, 655-671.
2	MacNally, R., 2002. Multiple regression and inference in ecology and conservation
3	biology: further comments on identifying important predictor variables. Biodivers.
4	Conserv. 11, 1397-1401.
5	Malcolm, J.R., 1994. Edge effects in central amazonian forest fragments. Ecology 75,
6	2438-2445.
7	McIntyre, S., Lavorel, S., Tremont, R.M., 1995. Plant life-history attributes - their
8	relationship to disturbance responses in herbaceous vegetation. J. Ecol. 83, 31-44.
9	Meier, A.J., Bratton, S.P., Duffy, D.C., 1995. Possible ecological mechanisms for loss of
10	vernal-herb diversity in logged eastern deciduous forests. Ecol. Appl. 5, 935-946.
11	Miller, T.F., Mladenoff, D.J., Clayton, M.K., 2002. Old-growth northern hardwood
12	forests: Spatial autocorrelation and patterns of understory vegetation. Ecol.
13	Monogr. 72, 487-503.
14	Mishima, T., Taniguchi, S., Taniguchi, M., Hishinuma, Y., 1958. The actual states of wind
15	damage in the Tomakomai Experimental Forest of Hokkaido University. Research
16	Bulletin of Hokkaido University Forests 19, 1-39.
17	Muller, N.R., 2003. The environment of the herbaceous layer. In: Gilliam, F.S., Roberts,
18	M.R. (Eds.), The Herbaceous Layer in Forest of Eastern North America. Oxford

1	University Press, New York, USA, pp. 15-37.
2	Oguchi, R., Hikosaka, K., Hiura, T., Hirose, T., 2006. Leaf anatomy and light acclimation
3	in woody seedlings after gap formation in a cool-temperate deciduous forest.
4	Oecologia 149, 571-582.
5	Parsons, W.F.J., Knight, D.H., Miller, S.L., 1994. Root gap dynamics in lodgepole pine
6	forest: nitrogen transformations in gaps of different size. Ecol. Appl. 4, 354-362.
7	Peterson, C.J., Pickett, S.T.A., 1995. Forest reorganization - a case-study in an old-growth
8	forest catastrophic blowdown. Ecology 76, 763-774.
9	Ramovs, B.V., Roberts, M.R., 2003. Understory vegetation and environment responses to
10	tillage, forest harvesting, and conifer plantation development. Ecol. Appl. 13,
11	1682-1700.
12	Reich, P.B., Bakken, P., Carlson, D., Frelich, L.E., Friedman, S.K., Grigal, D.F., 2001.
13	Influence of logging, fire, and forest type on biodiversity and productivity in
14	southern boreal forests. Ecology 82, 2731-2748.
15	Reiners, W.A., 1992. 20 Years of Ecosystem Reorganization Following Experimental
16	Deforestation and Regrowth Suppression. Ecol. Monogr. 62, 503-523.
17	Roberts, M.R., 2004. Response of the herbaceous layer to natural disturbance in North
18	American forests. Can. J. Bot. 82, 1273-1283.

1	Roberts, M.R., Gilliam, F.S., 1995a. Disturbance effects on herbaceous layer vegetation
2	and soil nutrients in Populus forests of northern lower Michigan. J. Veg. Sci. 6,
3	903-912.
4	Roberts, M.R., Gilliam, F.S., 1995b. Patterns and mechanisms of plant diversity in
5	forested ecosystems - implications for forest management. Ecol. Appl. 5,
6	969-977.
7	Roberts, M.R., Zhu, L.X., 2002. Early response of the herbaceous layer to harvesting in a
8	mixed coniferous-deciduous forest in New Brunswick, Canada. For. Ecol.
9	Manage. 155, 17-31.
10	Satake, Y., Hara, H., Watari, S., Tominari, T., 1989. Wild Flowers of Japan. Woody Plants.
11	Heibonsha, Tokyo (in Japanese).
12	Satake, Y., Ohwi, J., Kitamura, S., Watari, S., Tominari, T., 1981. Wild Flowers of Japan.
13	Herbaceous Plants. Heibonsha, Tokyo (in Japanese).
14	Shibata, H., Hiura, T., Tanaka, Y., Takagi, K., Koike, T., 2005. Carbon cycling and budget
15	in a forested basin of southwestern Hokkaido, northern Japan. Ecol. Res. 20,
16	325-331.
17	Shibata, H., Kirikae, M., Tanaka, Y., Sakuma, T., Hatano, R., 1998. Proton budgets of
18	forest ecosystems on volcanogenous regosols in Hokkaido, northern Japan. Water,

1	Air, Soil Pollut. 105, 63-72.
2	Siccama, G.T., Bormann, H.F., Likens, E.G., 1970. The Hubbard Brook ecosystem study:
3	Productivity, nutrients and phytosociology of the herbaceous layer. Ecol. Monogr.
4	40, 389-402.
5	Singleton, R., Gardescu, S., Marks, P.L., Geber, M.A., 2001. Forest herb colonization of
6	postagricultural forests in central New York State, USA. J. Ecol. 89, 325-338.
7	Sparks, T.H., GreatorexDavies, J.N., Mountford, J.O., Hall, M.L., Marrs, R.H., 1996. The
8	effects of shade on the plant communities of rides in plantation woodland and
9	implications for butterfly conservation. For. Ecol. Manage. 80, 197-207.
10	Stone, W.E., Wolfe, M.L., 1996. Response of understory vegetation to variable tree
11	mortality following a mountain pine beetle epidemic in lodgepole pine stands in
12	northern Utah. Vegetatio 122, 1-12.
13	Takahashi, K., Yoshida, K., Suzuki, M., Seino, T., Tani, T., Tashiro, N., T., I., Sugata, S.,
14	Fujito, E., Naniwa, A., Kudo, G., Hiura, T., Kohyama, T., 1999. Stand biomass,
15	net production and canopy structure in a secondary deciduous broad-leaved forest,
16	northern Japan. Research bulletin of the Hokkaido University forest 56.
17	Thomas, S.C., Halpern, C.B., Falk, D.A., Liguori, D.A., Austin, K.A., 1999. Plant
18	diversity in managed forests: Understory responses to thinning and fertilization.

1	Ecol. Appl. 9, 864-879.
2	Tilman, D., 1984. Plant Dominance Along an Experimental Nutrient Gradient. Ecology
3	65, 1445-1453.
4	Tilman, D., 1988. Plant strategies and the dynamics and structure of plant communities.
5	Princeton University Press, Princeton, New Jersey, USA.
6	Uemura, S., 1994. Patterns of leaf phenology in forest understory. Can. J. Bot. 72,
7	409-414.
8	Wedin, D., Tilman, D., 1993. Competition among grasses along a nitrogen gradient:
9	initial conditions and mechanisms of competition. Ecol. Monogr. 63, 199-229.
10	Whitney, G.G., Foster, D.R., 1988. Overstorey composition and age as determinants of the
11	understorey flora of central New England's woods. J. Ecol. 76, 867-879.
12	Zimmerman, J.K., Pulliam, W.M., Lodge, D.J., Quinonesorfila, V., Fetcher, N.,
13	Guzmangrajales, S., Parrotta, J.A., Asbury, C.E., Walker, L.R., Waide, R.B., 1995.
14	Nitrogen immobilization by decomposing woody debris and the recovery of
15	tropical wet forest from hurricane damage. Oikos 72, 314-322.
16	
17	

Table 1. Env	ironmental	variables, sp	ecies richnes	ss, Simpson i	ndex, and produce	ctivity in nine stand	l types.					
Disturbance	Plantated	Harvested	Typhoon	Replication	LAI	$\mathrm{NH_4}^+$	CN ratio	Slope	Species richness	Species richness	Simpson index	Productivity
history	frequency				(m^2/m^2)	(mg/100g dry soi	1)	(degree)	in quadrats	in belt transects		(dry g/m ²)
PPHT	2	Harvested	Disturbed	5	3.27 ± 0.54	1.79 ± 0.19	13.90 ± 0.59	3.10 ± 1.04	18.80 ± 3.97	38.80 ± 3.87	4.22 ± 1.02	46.33 ± 11.98
PPH	2	Harvested	ı	ω	$3.29 \hspace{0.2cm} \pm \hspace{0.2cm} 0.33$	1.81 ± 0.27	14.59 ± 0.46	4.75 ± 1.26	21.00 ± 4.58	35.67 ± 3.84	4.25 ± 1.31	49.48 ± 17.09
PHT	1	Harvested	Disturbed	4	4.25 ± 0.43	1.93 ± 0.02	13.55 ± 0.49	1.75 ± 0.87	27.75 ± 7.11	40.75 ± 6.73	2.56 ± 0.85	44.51 ± 18.53
PH		Harvested	ı	35	$4.08 \hspace{0.1in} \pm \hspace{0.1in} 0.09$	1.97 ± 0.13	13.01 ± 0.38	2.45 ± 0.37	25.53 ± 1.26	49.74 ± 1.41	5.30 ± 0.45	26.71 ± 1.55
Р		ı	ı	9	3.78 ± 0.09	2.37 ± 0.16	15.06 ± 0.72	2.89 ± 0.69	26.33 ± 2.36	50.33 ± 3.54	5.73 ± 0.75	38.93 ± 5.40
HT		Harvested	Disturbed	7	4.07 ± 0.15	2.20 ± 0.38	13.45 ± 0.23	2.61 ± 0.92	32.71 ± 2.45	58.43 ± 3.94	8.63 ± 0.68	23.64 ± 2.67
Н		Harvested	ı	19	4.21 ± 0.13	1.98 ± 0.14	13.20 ± 0.49	3.81 ± 0.77	27.05 ± 1.49	56.56 ± 1.41	5.83 ± 0.64	34.99 ± 4.32
Т		ı	Disturbed	18	3.99 ± 0.09	2.16 ± 0.15	13.93 ± 1.74	2.99 ± 0.54	31.67 ± 1.44	51.42 ± 1.22	6.57 ± 0.55	33.09 ± 3.99
Z		ı	ı	16	3.87 ± 0.10	2.07 ± 0.13	15.00 ± 0.36	5.80 ± 0.77	29.56 ± 1.28	57.94 ± 1.36	6.06 ± 0.63	35.75 ± 5.04
Total				116	3.99 ± 0.05	2.06 ± 0.06	13.87 ± 0.17	3.32 ± 0.25	27.66 ± 0.70	51.63 ± 0.87	5.75 ± 0.25	33.04 ± 1.64
PPHT: First PPH: First p	plantation (c lantation, su	bsequently s	and planted econd planta), subsequent ttion, and the	ly second plantat m, harvesting.	ion, and then, harv	esting (selective cut	ting). Experienced	some kind of damag	ge by typhoon in 19	54.	
PHT: Planta	tion and ther	n, harvesting	. Experienc	ed some kind	1 of damage by ty	phoon in 1954.						

PH: Plantation and then, harvesting.P: Plantation. H: Harvesting. T: Experienced some kind of damage by typhoon in 1954. N: not disturbed.

	Life form (Dominance) I	ntercepts	Environm	ent factor										
			LAI (m ² /1	n ²)	NH_4^+ (mg	y/100g dry soi	l) CN ratio		Slope (deg	gree)	Aspect			
			Explained	1 Coeffi _P	Explained	1 Coeffi _P	Explaine	d Coeffi _P	Explained	Coeffi _P	Explained	Coeffic	ient	P
			(2 / 2	erente	(2 /)	o torte	(2 /)	e rei re	(27)	erent	())	W	s	E
Species richness	All species	4.44	4.3	-0.15 **	3.1	- n.s.	18.8	-0.04 ***	0.0	- n.s.	5.3	,		- n.s.
in quadrats	Forbs(47%)	4.04	4.9	-0.25 **	5.5	- n.s.	10.0	-0.04 **	1.0	- n.s.	1.8	•	•	- n.s.
	Trees (27%)	3.17	5.5	- n.s.	0.2	- n.s.	29.2	-0.04 ***	1.3	- n.s.	1.3	ŀ	·	- n.s.
	Ferns (12%)	0.49	19.4	- n.s.	2.4	- n.s.	0.1	- n.s.	43.9	- n.s.	24.4	ī	ŀ	- n.s.
	Monocotyledons (9%)	2.85	24.5	-0.25 **	0.0	- n.s.	53.1	-0.06 ***	1.4	- n.s.	10.6		·	- n.s.
	Vines (5%)	0.95	3.9	- n.s.	9.8	- n.s.	10.5	- n.s.	31.5	- n.s.	0.5	-0.01	-0.02	-0.05 *
Species richness	All species	4.63	0.7	- n.s.	1.4	- n.s.	8.0	-0.02 **	1.3	- n.s.	2.4	ı	ī	- n.s.
in belts	Forbs(44%)	3.77	0.0	- n.s.	0.6	- n.s.	3.2	- n.s.	3.3	- n.s.	0.1	ı	ı	- n.s.
	Trees (31%)	3.55	5.4	-0.12 *	0.3	- n.s.	17.6	- n.s.	4.9	- n.s.	0.1	ı	ı	- n.s.
	Ferns (10%)	2.11	0.5	- n.s.	0.1	- n.s.	0.5	- n.s.	21.6	-0.19 ***	39.8	-0.02	-0.07	-0.24 *
	Monocotyledons (9%)	2.35	10.3	- n.s.	8.0	- n.s.	11.3	- n.s.	6.5	- n.s.	1.0		'	- n.s.
	Vines (6%)	1.60	7.8	- n.s.	12.5	- n.s.	36.6	- n.s.	29.0	- n.s.	10.0			- n.s.
Simpson index	All species	13.29	0.0	- n.s.	14.4	0.51 *	33.5	-0.51 ***	0.0	- n.s.	11.8	ı	•	- n.s.
Productivity	All species	5.65	45.3	-0.39 ***	15.0	-0.17 ***	4.5	- n.s.	10.6	- n.s.	6.3	ī		- n.s.
	Forbs (24%)	4.23	27.1	- n.s.	13.9	- n.s.	0.2	- n.s.	30.7	- n.s.	3.8	·	·	- n.s.
	Trees (14%)	6.43	58.0	-0.59 ***	0.1	- n.s.	8.4	-0.11 **	5.1	- n.s.	1.7	·	·	- n.s.
	Ferns (33%)	2.54	3.9	- n.s.	43.4	-0.65 ***	9.5	- n.s.	2.1	- n.s.	22.9		'	- n.s.
	Monocotyledons (15%)	7.12	26.1	-0.95 ***	2.1	- n.s.	8.4	- n.s.	16.5	- n.s.	3.6		1	- n.s.
	Vines (14%)	5.62	37.7	-0.60 ***	8.6	- n.s.	44.0	-0.15 ***	0.0	- n.s.	7.9	,	•	- n.s.
Explained (%): P Each categories' (roportions of variance expla coefficients were estimated	ained by t based on	he parame following	ter. Given as tl categories. Asj	he percenta pect: north,	ge of the total Harvested:ur	explained	variance (Tota) Plantation: unp	l = indepen blanted, Tyj	lent + joint) bhoon: undis	sturbed.			
<i>P</i> : Significance c Full model χ or <i>I</i>	 ⁷: Chi-square statistics (d.f. 	n of a cer $= 103$) u	tain parame	eter. Values of cies richness,	<i>P</i> shown <i>z</i> F-statistics	(d.f. = $13, 10$	of the rand 3) used for	omization test.	***: P < 0nd Simpson).001, **: <i>P</i> -index.	< 0.01, *: <i>P</i>	< 0.05, 1	1.s.: not	significant.
from GLM (spec	ue: 1 he likelihood-ratio tes ies richness: poisson distrib	t was use oution, Si	d for the di mpson inde	tterence in dev x: Gamma dis	viance betw stribution, i	veen the tull n productivity: 1	og-normal	ne null model distribution) w	ith depende	nt variable.				
ITOM GLIVI (spec	ies richness: poisson distric	oution, Si	mpson inde	ex: Gamma dis	stribution, J	productivity: 1	og-normal	distribution) w	ith depende	nt variabie.				

Table2. Independent Explained ratio and coefficients of variables in species richness, Simpson index, and productivity for each of life forms.

Table 2 (co	ntinued												
Disturbance	factor											Full model χ	Full
	IACIUI											or F	P-value
Plantation				Harvesting	09		Typhoon					I	
Explained	Coefficient		P	Explained	Coeffi	P	Explained	Coefficie	nt		P	ļ	
(%)	Onetime	Two times		(%)	cient		(%)	Iow	Middle	Hinh		I	
34.6	-0.10	-0.47	* * *	13.6	0.21	* *	20.4	0.06	-0.03	-0.07	*	92.74	< 0.001
55.0	-0.26	-1.00	***	21.3	0.20	* * *	0.5	ı	ı	ı	n.s.	107.49	< 0.001
43.4	-0.11	-0.25	* *	19.0	0.07	*	0.0		·	ı	n.s.	20.48	0.08
7.5	0.35	-0.32	* * *	0.8	,	n.s.	1.5	0.43	0.09	0.02	* *	13.60	0.40
1.0			n.s.	1.1		n.s.	8.2	,		,	n.s.	21.46	0.06
28.5	0.30	0.16	* * *	13.9		n.s.	1.5	0.30	0.09	0.08	* * *	16.51	0.22
58.2	-0.10	-0.38	***	23.0	0.03	* * *	5.0	ı	ı	ı	n.s.	78.52	< 0.001
65.7	-0.21	-0.70	* * *	24.8	0.00	* * *	2.3	·		ŀ	n.s.	89.59	<0.001
36.8	-0.03	-0.41	* * *	4.3	,	n.s.	30.8	ı	ı	ı	n.s.	25.72	0.02
0.1	ı	,	n.s.	21.8	0.20	* * *	15.6	ı	ı	ı	n.s.	17.47	0.18
35.0	-0.20	-0.05	*	26.4	,	n.s.	1.5	ı	ı	ı	n.s.	11.28	0.59
2.1			n.s.	0.0		n.s.	1.9	ı	·		n.s.	4.69	0.98
24.7	-0.71	-1.57	*	4.8	·	n.s.	10.8		ı	·	n.s.	3.38	< 0.001
11.4	ı	ı	n.s.	3.5	·	n.s.	3.5	ı	ı		n.s.	3.42	<0.001
1.6			n.s.	22.7		n.s.	0.1			,	n.s.	1.44	0.16
6.1	-0.46	0.23	***	19.6	-0.01	* * *	1.0	,		,	n.s.	3.63	< 0.001
0.7			n.s.	0.0		n.s.	17.4			·	n.s.	1.52	0.12
14.9	ı	ı	n.s.	15.6	·	n.s.	13.0	ı	ı	ı	n.s.	1.89	0.04
0.7	ı	ı	n.s.	1.0	,	n.s.	0.1				n.s.	2.54	0.01

Takafumi and Hiura 37

1 Figure captions

2	Figure 1. The effects of the explanatory variables on species richness, the Simpson index,
3	and productivity. Solid and open bars indicate independent and joint explained variance,
4	respectively. Asterisks indicate the significance of independently explained variance: ***
5	P < 0.001, ** P < 0.01, * P < 0.05.
6	
7	Figure 2. The effect of plantation frequency on (A) species richness in quadrats (2 m ²),
8	(B) species richness in belts (30 m ²), and (C) the Simpson index. Vertical bars indicate
9	standard error. Lower case letters represent results of multiple comparisons ($P < 0.05$).
10	
11	
12	
13	
14	
15	
16	
17	
18	

Plantation frequency

Appendix A. Explained ratio a	nd coefficients of variables of the	presence/absence for species w	ith significant full model (p<0.05).
-------------------------------	-------------------------------------	--------------------------------	--------------------------------------

Life Intercepts Environment factor Species name

opeeres name	form	intercept		2															
			LAI (m ² /I Explained	n²) 1 Coeff	ï	NH ₄ (mg	/100g d 1 Coeff	ry soil) i	CN ratio Explained	Coeff		Slope (de	gree)	ï	Aspect	d			
			(%)	cient	' P	(%)	cient	' P	(%)	cient	` P	(%)	cient	' P	(%)	¹ Coeffici	ent		Р
	_															W	S	E	_
Aralia cordata	Fo	-42.88	25.5	-	n.s.	3.0	-	n.s.	0.5	-	n.s.	-	-	n.s.	9.0	-	-	-	n.s.
Agrimonia japonica	Fo	2.77	15.6	-1.04	*	3.6	-	n.s.	6.0	-	n.s.	-	-	n.s.	36.8	1.34	1.36	1.57	*
Angelica genuflexa	Fo	-4.56	0.5	-	n.s.	10.5		n.s.	8.8	-	n.s.	-	-	n.s.	12.7	-	-	-	n.s.
Arisaema peninsulae	Fo	-2.14	0.5	-	n.s.	21.4	0.75	***	2.0	-	n.s.	28.3	0.21	***	3.5	-	-	-	n.s.
Cardamine leucantha	Fo	-5.77	0.1	-	n.s.	11.6	-5.41	***	0.3	-	n.s.	45.9	1.04	***	12.1	-	-	-	n.s.
Chamaele decumbens	Fo	6.95	1.1	-	n.s.	3.4	-	n.s.	5.3	-	n.s.	-	-	n.s.	8.6	-		-	n.s.
Chloranthus serratus	Fo	2.59	0.1	-	n.s.	11.0	0.87	*	4.7	-	n.s.	-	-	n.s.	20.1	0.79	1.26	-20.19	**
Codonopsis lanceolata	Fo	8.72	7.8	-1.42	*	6.7	-	n.s.	2.9	-	n.s.	-	-	n.s.	35.3	-1.56	0.20	-16.93	*
Eupatorium chinense var. simplicifolium	Fo	10.90	20.0	-2.80	***	2.4	-	n.s.	12.9	-	n.s.	-	-	n.s.	23.4	-	-	-	n.s.
Galium japonicum	Fo	0.43	5.4	-	n.s.	1.0	-	n.s.	0.1	-	n.s.	-	-	n.s.	7.3	-	-	-	n.s.
Galium paradoxum	Fo	-3.13	0.0	-	n.s.	0.1	-	n.s.	0.1	-	n.s.	15.8	0.53	***	7.0	-		-	n.s.
Galium trifloriforme	Fo	12.30	1.0	-	n.s.	2.5	-1.90	**	3.7	-0.50	*	-	-	n.s.	23.8	-0.83	-2.22	-19.10	**
Hypericum erectum	Fo	-1.39	10.3	-	n.s.	4.6	-	n.s.	25.0	-0.65	**	-	-	n.s.	4.4	-	-	-	n.s.
Lilium cordatum var. glehnii	Fo	3.86	0.8	-	n.s.	0.2	-	n.s.	0.1	-	n.s.	-	-	n.s.	3.2	-	-	-	n.s.
Maianthemum dilatatum	Fo	3.45	0.4	-	n.s.	15.1	-0.73	*	0.1	-	n.s.	-	-	n.s.	29.4	-1.22	-1.69	15.25	*
Moehringia lateriflora	Fo	2.58	14.2	-0.99	**	1.7	-	n.s.	6.3	-	n.s.	36.7	0.27	***	14.8	-	-	-	n.s.
Oxalis acetosella	Fo	-22.46	7.3	-	n.s.	18.0	-1.76	*	2.2	-	n.s.	-	-	n.s.	13.4	-	-	-	n.s.
Patrinia villosa	Fo	5.41	4.3	-	n.s.	1.1	-	n.s.	16.4	-	n.s.	18.9	0.19	*	15.9	-	-	-	n.s.
Peracarpa carnosa var. circaeoides	Fo	2.74	0.5	-	n.s.	12.2	-0.91	**	0.1	-	n.s.	21.1	-0.24	**	15.0	-	-	-	n.s.
Phryma leptostachya var. asiatica	Fo	47.08	14.2	4.01	***	3.2	-	n.s.	1.4	-1.81	**		-	n.s.	5.2	-	-	-	n.s.
Potentilla freyniana	Fo	-24.82	7.9	-	n.s.	3.2	-	n.s.	2.7	-	n.s.	24.4	0.75	*	24.0	-	-	-	n.s.
Sanicula chinensis	Fo	4.62	0.9	-	n.s.	1.0	-	n.s.	0.5	-	n.s.		-	n.s.	6.5	-	-	-	n.s.
Scutellaria indica	Fo	-2.52	0.5	-	n.s.	0.0	-	n.s.	1.7	-	n.s.	32.3	0.22	***	4.0	-		-	n.s.
Senecio cannabifolius	Fo	8.89	9.4	-2.85	***	1.1	-	n.s.	0.7	-	n.s.	-	-	n.s.	69.1	0.03	-0.96	22.54	***
Smilacina japonica	Fo	2.50	8.3	-	n.s.	7.2	-	n.s.	2.4	-	n.s.	-	-	n.s.	6.7	-	-	-	n.s.
Solidago virga-aurea var. asiatica	Fo	8.89	15.7	-1.35	*	2.9	-	n.s.	16.9	-0.25	*	-	-	n.s.	31.4	-	-	-	n.s.
Teucrium japonicum	Fo	6.69	6.4	-	n.s.	0.5	-	n.s.	5.4	-	n.s.	-	-	n.s.	31.9	0.54	1.83	0.69	***
Torilis japonica	Fo	2.68	10.3	-	n.s.	1.2	-	n.s.	0.1	-	n.s.	7.5	-0.24	**	15.7	-	-	-	n.s.
Tripterospermum japonicum	Fo	-1.10	8.2	-	n.s.	8.7	-	n.s.	2.8	-	n.s.	27.0	-0.24	***	20.0	-		-	n.s.
Turritis glabra	Fo	-1.46	2.7	-	n.s.	0.5	-	n.s.	1.2	-	n.s.	26.9	0.16	**	36.8	0.36	2.39	-16.39	***
Acer japonicum	Т	-13.05	38.6	2.07	***	4.3	-	n.s.	1.2	-	n.s.	-	-	n.s.	21.0	-	-	-	n.s.
Acer palmatum var. matsumurae	Т	9.74	4.0	-	n.s.	10.8	-	n.s.	3.9	-	n.s.	-	-	n.s.	5.0	-	-	-	n.s.
Aralia elata	Т	41.03	23.7	-7.85	***	10.0	-5.90	*	5.1	-	n.s.	-	-	n.s.	2.6	-	-	-	n.s.
Euonymus alatus	Т	4.79	13.4	-1.81	***	4.7	1.24	**	3.7	-	n.s.	7.9	0.22	**	1.1	-	-	-	n.s.
Euonymus oxyphyllus	Т	1.05	0.7	-	n.s.	11.6	0.57	**	0.3	-	n.s.	-	-	n.s.	3.6	-	-	-	n.s.
Fraxinus lanuginosa	Т	-1.06	11.1	-	n.s.	0.0	-	n.s.	5.0	-	n.s.	-	-	n.s.	18.1	-	-	-	n.s.
Magnolia kobus var. borealis	Т	3.49	2.8	-	n.s.	0.9	-	n.s.	5.8	-	n.s.	-	-	n.s.	17.7	-	-	-	n.s.
Morus bombycis	Т	0.96	2.7	-	n.s.	0.8	-	n.s.	3.5	-	n.s.	26.2	0.23	***	32.8	-0.48	1.21	1.70	*
Pinus koraiensis	Т	-9.08	32.7	1.66	***	1.3	-	n.s.	0.4	-	n.s.	-	-	n.s.	2.9	-	-	-	n.s.
Prunus sargentii	Т	4.79	0.5	-	n.s.	0.3	-	n.s.	0.9	-	n.s.	-	-	n.s.	24.6	-	-	-	n.s.
Prunus ssiori	Т	2.67	2.9	-	n.s.	4.1	-0.97	*	1.9	-	n.s.	-	-	n.s.	13.6	-	-	-	n.s.
Quercus mongolica var. grosseserrata	Т	9.56	2.7	-	n.s.	0.4	-	n.s.	35.0	-0.46	***	-	-	n.s.	10.8	-	-	-	n.s.
Rubus crataegifolius	Т	-12.42	2.7	-	n.s.	3.2	-	n.s.	16.5	-0.77	*	-	-	n.s.	14.8	-	-	-	n.s.
Rubus idaeus var. aculeatissimus	Т	7.52	32.4	-4.07	***	6.0	-	n.s.	3.8	-	n.s.	-	-	n.s.	5.9	-	-	-	n.s.
Sorbus alnifolia	Т	4.54	6.9	-	n.s.	11.6	-0.65	*	6.7	-	n.s.	-	-	n.s.	18.9	-	-	-	n.s.
Sorbus commixta	Т	-17.64	4.4	-	n.s.	9.3	-	n.s.	2.5	-	n.s.	-	-	n.s.	15.8	-	-	-	n.s.
Spiraea salicifolia	Т	0.45	25.1	-1.08	***	0.2	-	n.s.	0.5	-	n.s.	18.8	0.17	**	26.1	-	-	-	n.s.
Syringa reticulata	Т	-5.62	4.5	-	n.s.	7.6	-	n.s.	1.8	-	n.s.	24.0	0.20	***	15.2	-	-	-	n.s.
Taxus cuspidata	Т	12.78	3.4	-	n.s.	0.5	-	n.s.	12.0	-	n.s.	-	-	n.s.	7.5	-	-	-	n.s.
Athyrium conilii	Fe	-1.36	0.1	-	n.s.	7.5	-	n.s.	0.0	-	n.s.	-	-	n.s.	35.1	0.58	-1.04	-17.15	**
Dryopteris austriaca	Fe	-3.87	10.2	-	n.s.	0.4	-	n.s.	7.1	-	n.s.	44.6	-0.34	***	13.7	-	-	-	n.s.
Dryopteris monticola	Fe	7.07	0.9	-	n.s.	2.9	-	n.s.	0.0	-	n.s.	-	-	n.s.	35.5	-3.14	-2.06	-17.73	**
Osmundastrum cinnamomum var. fokiense	Fe	13.27	23.4	-1.09	*	28.1	-1.35	***	3.8	-	n.s.	-	-	n.s.	17.1	-	-	-	n.s.
Agropyron yezoense	М	4.81	2.3	-	n.s.	0.0	-	n.s.	0.7	-	n.s.	11.4	-0.28	**	4.9	-	-	-	n.s.
Diarrhena japonica	М	13.87	1.3	-	n.s.	7.7	-	n.s.	14.6	-0.57	***	-	-	n.s.	3.4	-	-	-	n.s.
Festuca parvigluma	М	-6.90	3.5	-	n.s.	0.2	-	n.s.	1.2	-	n.s.	-	-	n.s.	19.9	-	-	-	n.s.
Muhlenbergia japonica	М	-1.00	4.6	-	n.s.	0.8	-	n.s.	1.5	-	n.s.	17.8	0.25	**	12.5	-	-	-	n.s.
Hydrangera petiolaris	v	-1.79	4.7	-	n.s.	5.1	-	n.s.	5.7	-	n.s.	-	-	n.s.	22.9	-	-	-	n.s.
Schizophragma hydrangeoides	V	-6.61	23.9	0.95	***	10.3	-	n.s.	0.0	-	n.s.	-	-	n.s.	17.5	-	-	-	n.s.

Schtzophrägmä hydrangeoladis V -6.61 25.9 0.95 **** 10.5 - n.s. 0.0 - n.s. - n.s. 17.5 - 1.5Explained (%): Proportions of variance explained by the parameter. Given as the percentage of the total explained variance (Total = independent + joint). Each categories' coefficients were estimated based on following categories. Aspect: north, Harvested: unharvested, Plantation: unplanted, Typhoon: undisturbed. *P* : Significance of independent contribution of a certain parameter. Values of *P* shown are the results of the randomization test. ***: P < 0.001, **: P < 0.01, *: P < 0.05, n.s.: not significant. χ -value: χ -statistics (d.f. = 103). Life form abbreviation Fo: forbs, T: trees, Fe: ferns, M:monocots, V:vines. Full model *P*-value: The likelihood-ratio test was used for the difference in deviance between the full model and the null model, from GLM (binomial distribution) with dependent variable.

Disturba	nce factor											χ-value	Full model P -value
Plantatio	n]	Harvestin	g		Typhoon						
Explaine	d Coefficient		Р	Explaine	d Coefficient	P	Explained	Coeffici	ent		Р	-	
(%)	One time	Two times	,	(%)			(%)	Low	Middle	High		-	
31.4	31.61	26.92	*	16.9	-	n.s.	12.5		-		- n.s.	28.18	0.009
3.6	-		n.s.	7.7	-	n.s.	12.3	_	-	-	n.s.	25.64	0.019
38.4	-1.24	-17.42	***	15.2	-	n.s.	6.6	-	-	-	n.s.	25.62	0.019
14.1	-	-	n.s.	14.9	-	n.s.	15.3	-	-	-	n.s.	25.88	0.018
18.5	-	-	n.s.	8.0	-	n.s.	3.6	-	-	-	n.s.	32.38	0.002
65.5	-2.94	-4.00	***	12.2	-0.52	*	3.7	-	-	-	n.s.	41.25	< 0.001
53.1	-1.65	-36.77	***	1.0	-	n.s.	9.3	-	-	-	n.s.	48.03	< 0.001
17.8	-1.27	-2.86	*	0.2	-	n.s.	19.4	-	-	-	n.s.	29.32	0.006
16.3	-0.18	-21.23	*	11.4	-	n.s.	11.1	-	-	-	n.s.	29.15	0.006
50.8	-1.47	-16.69	***	21.6	-1.33	***	13.4	-	-	-	n.s.	39.99	< 0.001
36.0	-18.14	-16.49	***	28.8	-2.82	***	12.1	-	-	-	n.s.	45.73	< 0.001
20.5	0.24	-17.34	*	24.7	-3.07	***	22.6	0.13	5.43	1.51	~~	47.43	<0.001
1.0	1.11	16.94	n.s. ***	41.5	19.87	***	12.0	-	-	-	n.s.	22.81	<0.044
20.4	-1.11	-10.04	*	41.4	-1.94		12.2	-	-	-	n.s.	22.86	<0.001
2.9	-	-	n s	66	-	n.s.	12.5	-	-	-	n.s.	20.80	0.032
35.1	3,84	-19.05	***	11.8	-	n.s.	7.1	_	_	_	n.s.	30.92	0.003
27.1	-0.92	-20.39	***	4.5	-	n.s.	11.8	-	-	-	n.s.	28.53	0.008
6.1	-		n.s.	1.9	-	n.s.	43.0	1.91	0.82	1.50	**	30.83	0.004
49.0	-7.36	-31.32	***	21.9	-25.96	***	5.1	-9.51	12.30	-5.97	*	80.90	< 0.001
8.9	-	-	n.s.	16.6	26.60	**	12.4	-	-	-	n.s.	34.98	< 0.001
54.3	-1.49	-32.80	***	29.8	-1.57	***	6.9	-	-	-	n.s.	48.07	< 0.001
48.3	-1.24	-2.34	***	12.5	-	n.s.	0.6	-	-	-	n.s.	25.17	0.022
10.2	-	-	n.s.	2.9	-	n.s.	0.6	-	-	-	n.s.	28.34	0.008
42.0	-0.77	-2.69	***	24.0	-1.40	***	8.7	-	-	-	n.s.	36.96	< 0.001
6.1	-	-	n.s.	3.5	-	n.s.	21.7	-	-	-	n.s.	23.92	0.032
18.1	-	-	n.s.	19.0	-1.21	**	14.8	-	-	-	n.s.	34.78	< 0.001
43.9	-1.28	-17.22	***	16.8	-1.26	***	4.4	-	-	-	n.s.	38.95	<0.001
21.3	-0.11	-29.51	~~	1.4	-	n.s.	10.6	-	-	-	n.s.	39.28	< 0.001
10.2	-	-	n.s.	1.5	-	n.s.	14.2	-	-	-	n.s.	23.44	0.004
48.1	-2.42	-5.80	***	15.5	_	n.s.	10.4	_	_	_	n s	29.78	0.005
17.9	-	-	n.s.	24.3	24.74	***	16.1	9.99	-25.33	4.21	***	49.08	< 0.001
14.8	0.73	-0.71	*	6.0	1.45	*	48.4	-18.75	-3.57	-1.02	***	55.49	< 0.001
49.0	-0.98	-33.56	***	29.3	-1.02	***	4.5	-	-	-	n.s.	42.50	< 0.001
18.3	-	-	n.s.	26.0	-1.31	***	11.5	-	-	-	n.s.	25.44	0.020
45.4	-0.55	-17.75	***	0.6	-	n.s.	25.3	-	-	-	n.s.	24.19	0.029
3.8	-	-	n.s.	0.0	-	n.s.	30.1	1.14	1.17	-17.09	*	29.48	0.006
22.4	-	-	n.s.	6.3	-	n.s.	33.7	-18.22	0.32	-0.02	*	23.03	0.041
34.6	-0.24	-2.61	*	0.4	-	n.s.	35.1	-0.89	-1.97	-1.77	*	24.77	0.025
31.0	-0.41	-16.69	**	25.8	-1.57	***	17.9	-	-	-	n.s.	34.98	< 0.001
2.9	-	-	n.s.	3.0	-	n.s.	30.8	-	-	-	n.s.	24.28	0.029
9.6	-	- 1.70	n.s. *	32.1	19.92	**	20.7	4.93	-15.24	2.61	~~	32.31	<0.002
24.8	2.40	1.72	n c	20.8	1 42	***	0.0	-	-	-	n.s.	35.53	<0.001
9.1	-	-	n.s.	24.4	1.45	***	4.4	-	-	-	n.s.	20.52	0.015
19.9	-	-	n.s.	85	1 30	*	0.8	-	-	-	n.s.	27.50	0.008
22.6	_	_	n.s.	0.0	-	ns	24 3	_	_	_	n s	25.25	0.017
18.8	_	-	n.s.	20.0	-3.48	***	37.2	_	_	_	n.s.	23.65	0.035
9.3	-	-	n.s.	11.9	-	n.s.	29.6	2.28	-0.01	1.12	*	28.08	0.009
5.8	-	-	n.s.	2.5	-	n.s.	15.7	-	-	-	n.s.	37.99	< 0.001
15.9	-	-	n.s.	30.8	-2.25	***	12.9	-	-	-	n.s.	24.65	0.026
1.0	-	-	n.s.	3.5	-	n.s.	18.6	-	-	-	n.s.	22.42	0.049
31.3	-	-	n.s.	38.6	-1.27	***	10.7	-	-	-	n.s.	23.62	0.035
39.2	-2.15	-5.77	***	8.6	-	n.s.	23.6	2.93	17.65	20.67	*	35.08	< 0.001
20.9	-	-	n.s.	28.9	-1.86	***	20.4	-	-	-	n.s.	23.43	0.037
13.2	-	-	n.s.	1.4	-	n.s.	48.2	-0.52	1.66	-17.03	**	25.27	0.021
6.9	-	-	n.s.	7.0	-	n.s.	34.3	-	-	-	n.s.	27.72	0.010
14	-	-	n.s.	0.6	-	n.s.	39.8	1.86	1.99	1.37	**	24.04	0.031

Δ.		. D	Englaines	I motio om	1 an affi ai anta	of moniph	an fam the	hiomeooo o	famaaiaa t	Lat 6.11	man dal	man significant	(D < 0.05)	
A	DDentitix	D.	Explained	і гашо апо	r coerricients	of variadi	es for the	: DIOIIIASS O	I SDECIES I	пат плп	moder	was significant	$T_{r} < 0.001$	
													(

Life Species name Intercepts Environment factor form LAI (m^2/m^2) $\mathrm{NH_4^+}\,(\mathrm{mg}/\mathrm{100g}~\mathrm{dry}~\mathrm{soil})~\mathrm{CN}$ ratio Slope (degree) Aspect Explained Coeffi Explained Coeffi Explained Coeffi Explained Coeffi Explained Р Р Р Р Coefficient Р (%) cient (%) cient (%) cient (%) cient (%) W Actaea asiatica Fo -1.54 4.4 n.s. *** 0.7 8.3 -0.14 ** 0.2 _ 12.4 n.s. n.s n.s 1.24 -0.87 0.3 -0.20 *** 3.2 29.3 35.1 Cacalia hastata var. orientalis Fo 16.5 n.s. n.s. n.s. Cardamine leucantha Fo -2.16 0.5 1.5 12.7 -0.15 *** 24.6 0.06 *** 4.8 n.s n.s. n.s. -0.88 Chamaele decumbens Fo 1.0 n.s. 4.9 n.s. * 8.3 -0.13 0.4 n.s. 3.4 n.s. -Chloranthus serratus -0.02 16.3 0.60 6.9 17.2 6.5 13.0 Fo n.s. n.s n.s. n.s. Cirsium kamtschatiam Fo -0.82 27 n.s. 04n.s. 16.3 -0.15 ** 20.4n.s. 27.8 n.s. -9.3 Galium trifloriforme var. nipponicum Fo -3.86 0.0 0.3 10.5 0.3 n.s. n.s. n.s n.s. n.s. Lactuca raddeana var. elata Fo -2.68 0.5 n.s. 12.9 0.31 * 31.3 -0.09 ** 4.2 _ n.s. 13.2 n.s. Maianthemum bifolium Fo -3.400.2 n.s. * 12.0 n.s. 0.8 5.1 2.2 n.s. n.s. *** n.s. ** Moehringia lateriflora -2.09 8.8 -0.31 18.7 -0.09 21.5 0.04 n.s. Fo 0.1 26.1 n.s. *** Patrinia villosa Fo -4.88 10.5 -0.35 * 9.5 0.32 ** 0.0 n.s. 55.4 0.12 11.9 n.s. 2.11 Phryma leptostachya var. asiatica 5.4 0.2 Fo 1.1 n.s. n.s. 1.0 n.s. n.s. 1.5 n.s. Sanicula chinensis -1.00 5.4 0.1 0.5 Fo 0.8 n.s. n.s 3.4 n.s. n.s. n.s. * 0.07 Scutellaria indica Fo -1.54 2.7 n.s. 0.0 n.s. 3.9 n.s. 16.6 4.1 n.s. Smilacina japonica -2.49 0.6 2.2 Fo 1.6 9.3 n.s. n.s. 12.5 n.s. n.s. n.s. Teucrium viscidum var. miquelianum Fo 0.53 1.8 n.s. 2.4 n.s. 11.4 -0.19 ** 11.5 7.6 . n.s. n.s 0.2 3.4 7.7 Trillium smallii Fo 3.08 n.s. n.s. n.s 1.1 n.s. 2.4 n.s. Tripterspermum japonicum -3.61 0.3 2.9 n.s. 0.1 25.9 Fo n.s. n.s. 6.2 n.s. n.s. -0.31 -0.17 Tulotis ussuriensis Fo 5 36 24 n s 0.2 n.s. 149 *** 28 2.0 n s -0.22 2.4 7.0 Acer palmatum var. matsumurae Т 0.2 1.4 1.3 n.s. n.s. n.s. n.s. n.s. ---2.36 -0.94 Euonymus oxyphyllus 0.0 4.7 n.s. 0.3 -3.3 12.7 T T n.s. n.s. n.s. n.s. *** -0.19 1.9 0.5 17.0 Fraxinus lanuginosa 7.6 n.s. n.s. n.s. 18.0 n.s. Fraxinus mandshurica var. japonica -0.91 1.0 -0.20 *** Т n.s. 1.0 n.s. 48.7 3.6 5.3 n.s. n.s. n.s. *** 0.04 Kalopanax pictus Т -3.37 21.14.7 n.s. 1.3 n.s. 17.3 * 5.0 n.s. --2.27 35.8 -0.58 0.5 0.3 1.7 Morus australis 9.2 _ Т n.s. n.s. n.s n.s. Quercus mongolica var. grosseserrata Т 0.11 2.1 n.s. *** 0.1 n.s. 0.9 n.s. 22.8 0.14 ** 4.9 n.s. -0.80 38.8 Rubus idaeus var. aculeatissimus Т -1.391.5 n.s. 0.1 n.s. * 0.0 n.s. * 1.2 n.s. Spiraea salicifolia Т 0.86 37.8 -0.90 *** 1.5 n.s. 9.9 -0.14 13.6 0.11 18.7 n.s. * Dryopteris expansa Fe -3.61 -3.45 19.0 0.72 3.2 n.s. 0.3 n.s 43.9 -0.15 *** 7.0 -n.s. *** 1.3 5.4 * Lastrea thelypteris 2.2 14.4 -0.21 39.5 -0.81 -0.09 -1.11 Fe n.s. n.s. n.s. Onoclea sensibilis var. interrupta Fe -2.89 0.5 n.s. 6.4 n.s. 14.8 n.s 3.2 n.s. 11.0 n.s. *** 0.35 0.09 -0.32 Calamagrostis hakonensis Μ -4.12 10.8 n.s. 0.8 n.s. 1.9 n.s. 3.2 n.s. 58.4 0.11 -0.81 21.1 ** 3.0 Carex leucochlora Μ 6.3 10.9 -0.15 24.6 n.s. n.s. n.s. *** Diarrhena iaponica М 5.70 55 n s 81 n.s. 32.1 -0.41 48 n.s. 2.0 n s -3.14 ** -0.49 М 2.1 1.9 12.9 Festuca parvigluma 19.9 n.s. n.s. n.s. 19.1 n.s. Celastrus orbiculatus v -2.95 3.3 7.3 9.9 26.7 0.12 *** 17.0 n.s n.s. n.s. n.s. *** v Hydrangera petiolaris -0.642.2 n.s. 1.1 n.s. 3.4 n.s. *** 40.6 0.03 2.9 n.s. 5.73 -0.30 0.01 * 7.9 Rhus ambigua ν 0.3 0.3 n.s. 19.0 16.2 n.s. n.s. Schisandra chinensis v 2.92 22.4 -1.13 *** 7.0 0.82 ** 7.2 n s 3.0 n.s. 158 n.s. -7.26 5.9 0.1 Schizophragma hydrangeoides 6.3 n.s. 8.3 14.0 n.s n.s. n.s. n.s. 5.44 32.8 0.88 *** 30.0 0.43 -0.93 Vitis coignetiae 4.4 47 0.83 n.s n.s n.s

Explained (%): Proportions of variance explained by the parameter. Given as the percentage of the total explained variance (Total = independent + joint).

Explained (%): Proportions of variance explained by the parameter. Of the as the percent as the percent explained variance (visual – interpercent sprint). Each categories' coefficients were estimated based on following categories. Aspect: north, Harvested:unharvested, Plantation: unplainted, Typhoon: undisturbed. P: Significance of independent contribution of a certain variable. Values of P shown are the results of the randomization test. ***: P < 0.001, *: P < 0.01, *: P < 0.05, n.s.: not significant.

Life form abbreviation Fo: forbs, T: trees, Fe: ferns, V: vines. F -value: F-statistics (d.f. = 12, 103).

Full model P-value: The likelihood-ratio test was used for the difference in deviance between the full model and the null model, from GLM (log-normal distribution) with dependent variable.

Appendix B.	(continued).
-------------	--------------

17.6

8.9

10.6

3.1

-

F-value $\frac{Full model}{P}$ -value Disturbance factor Plantation Harvesting Typhoon Explained Coefficient Explained Coefficient Explained Р Coefficient P Р (%) (%) One time Two times Low Middle High 2.75 2.12 14.1 n.s. 26.1 -0.60 *** 33.8 -0.22 0.83 0.64 ** -n.s. *** ** 3.5 5.4 n.s. 6.6 n.s. 22.5 27.7 -0.55 5.8 2.41 n.s. *** n.s. -0.94 -1.85 12.9 51.2 17.8 -0.34 n.s. 3.11 27.6 -0.67 ** 4.0 -2.16 8.6 n.s. 1.89 -n.s. 19.6 22.4 1.9 34.7 10.9 22.7 1.94 2.40 n.s n.s. *** n.s. * --0.55 0.80 -0.08 0.14 n.s. 9.8 n.s. *** 9.2 0.46 * 18.9 n.s. 2.15 ---2.30 3.54 2.73 2.92 60.5 13.4 n.s. 5.9 -_ n.s. 11.3 * 2.7 10.9 -0.49 -0.54 n.s. n.s. 5.7 57.1 n.s. *** n.s. *** 0.16.9 --n.s. 3.32 -1.29 -3.04 31.0 -1.42 2.7 5.75 n.s. * -1.98 -1.53 42.4 -1.25 *** 27.0 -0.75 *** 20.5 0.99 1.09 0.09 3.59 *** n.s. ** ** 4.7 6.6 2.27 61.4 -0.90 n.s. * 32.7 *** 20.8 -0.43 20.3 -0.61 2.91 -1.15 -2.07 0.68 1.33 n.s. ** 32.5 42.7 * -0.56 -1.16 22.0 -0.55 10.7 2.08 *** -0.94 -1.62 -0.89 -0.38 3.1 39.5 1.98 -1.79 n.s. n.s. ** 17.8 n.s. *** 12.3 34.6 0.52 1.24 0.67 1.97 -1 57 -3 14 -0.82 n.s. * 59.3 11.1 7.4 4.73 42.7 *** 27.2 -0.94 *** *** 17.8 1.00 1.41 0.51 3.00 -0.78 -1.50 23.7 27.5 n.s. ** 32.4 9.3 22.9 18.3 -0.75 n.s. 1.91 -0.67 -2.03 n.s. 2.63 --n.s. 10.2 19.1 0.65 ** 11.0 1.98 n.s. n.s. * 8.3 43.2 3.2 4.0 n.s. n.s. 39.2 5.3 -0.15 0.40 n.s. ** 0.22 1.82 0.55 0.98 n.s. 1.94 -18.7 7.1 2.1 19.3 48.0 n.s. *** 31.2 -1.28 *** n.s. 2.12 5.50 0.12 1.89 3.3 3.0 n.s. n.s. 13.5 n.s. n.s. n.s. 2.20 18.9 -n.s. 0.1 n.s. *** 7.6 -n.s. 1.92 3.2 30.9 -1.05 3.0 2.57 n.s. n.s. *** 0.9 1.4 61.8 13.2 1.5 -_ n.s. n.s. 1.25 0.03 0.19 1.99 10.3 n.s. 2.15 n.s. n.s. 8.3 25.0 4.6 8.5 21.3 13.9 2.74 2.66 n.s. ** 1.26 ** n.s. -0.88 -1.39 n.s. n.s. * 3.2 0.5 40.3 1.01 -0.20 0.11 1.91 n.s. n.s. 8.3 21.8 n.s. ** 9.5 0.3 18.0 27.7 n.s. * 2.28 2.06 n.s. 1.38 0.54 1.82 2.04 1.12 n.s. *** 2.33 2.89

22.8 23.0

8.3

0.1

-1.58

1.58

0.93 *

n s

15.8

12.7

46.4

23.7

2.35

1.39

n.s.

n.s.

n.s

n.s. 0.002

0.019

0.007

<0.001

0.040

0.033 0.007

0.017

0.002

0.001

< 0.001

< 0.001

< 0.001

0.012

0.001

0.022 0.030

0.031

<0.001

< 0.001

0.037

0.003

0.030

0.049

0.034

0.019 <0.001

0.014

0.036

0.004

0.029 0.017

0.002

0.003

0.038

0.011

0.023

0.009

0.001

0.005

0.011

n.s.

n.s. ***

n s

2.51

2.27

-

0.51