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Abstract— Heterogeneous thyroid nodules with distinct
components are similar to background in ultrasound image. This
results in a difficult task when radiologists and physicians
manually delineate the complete shape of a nodule, or
distinguish what kind of components it has. Hence, this paper
presents an automatic process for nodule segmentation and
component classification. A decision tree algorithm is used to
segment the possible nodular area. A refinement process is then
applied to recover the nodular shape. Finally, a hierarchical
classification method based on support vector machine (SVM) is
used to identify the components in the nodular lesion.
Experimental results of the proposed approach were compared
with those of other segmentation methods and showed a good
performance.

I. INTRODUCTION

Thyroid glands belong to the endocrine system. They are
located in the neck just in front of the larynx. Thyroid nodules
are common in adults and are indicative of potential thyroid
cancer. The thyroid nodule rate is approximate 2-7% of the
population in United States, Europe, and Japan [1].

Previous studies primarily focused on lesion classification
with manual delineations of tumor boundaries. However,
malignant tumors are often embedded the surrounding tissue.
As a result, the boundary, which has fine linear strands
extending irregularly outward from the main tumor, is
obscured. In order to increase reliability and reduce the
number of operations such as biopsy and fine needle
aspiration, computer-aided diagnosis (CAD) is necessary [2].

Sonography is an alternative sensitive and convenient
modality for initial evaluation and follow-up [3]. The advent
of high resolution ultrasound (US) technology as a
preoperative diagnostic tool has made possible the acquisition
of detailed information and characteristics of the thyroid
gland structure. However, poor US image quality and
drawbacks caused by the nature of ultrasound limit the
performance of various segmentation methods [1].

Decision trees can be constructed using many algorithms.
Decision trees have several advantages in biomedical
applications. They can be effectively used to classify any data
structure, they can be used for prediction in non-linear
problems, and they can effectively eliminate outliers [4].

Support vector machines (SVM) constitute a supervised
learning technique rooted in Statistical Learning Theory

developed by Vapnik et al. at AT&T Bell laboratories. SVM
has gained popularity due to its many attractive advantages
and promising empirical performance [5].

In this paper, an automatic thyroid nodule segmentation
algorithm and a component classification method are
proposed. The proposed method utilizes a decision-tree-based
classifier for segmenting the nodular region. In order to obtain
a more complete nodular shape, we refine the nodular shape
using image processing technique. We then identify the
components in the detected nodular area using a hierarchical
SVM. The proposed method reduces the time required for
radiologists to manually delineate and analyze nodular lesions.
Experimental results show that the proposed method performs
well.

The rest of this paper is organized as follows. Section II
describes the preprocessing. Section III describes the
segmentation algorithm. Section IV introduces nodular shape
refinement. Section V introduces the classification. The
experimental and comparison results are shown in Section VI.
Finally, conclusion is given in Section VII.

II. PREPROCESSING

Figure 1 shows a flowchart of the proposed system. The
objective of preprocessing is to enhance the contrast of the
object (nodule) and background (non-nodule). The enhanced
image is then used to segment the nodular region. Besides,
some noise is hidden in US image, which results in a bad
image quality. The noise is filtered out in the spatial domain
by the direct manipulation of pixels in the image.

A. Image Enhancement
A histogram equalization method enhances the contrast

between the nodule and background. This improvement is
significant in results of the subsequent processes. A 3 3
median filter is applied to suppress speckle noise and to
improves image quality.

B. Suspicious Nodular Area Detection
The method utilizes two bounds: horizontal projection and

vertical projection, to locate the suspicious thyroid regions.
This restricts the location of the segmentation and excludes
some artifacts of the images. An example is shown in Fig.2.
Anatomical information in the image is obtained and the



Fig. 1 Flowchart of the proposed system.

image is divided into three parts: skin, thyroid area, and dark
region. Among of three parts, skin has higher gray levels, and
the intensity of thyroid area is between skin and dark region.

According to the characteristics, a horizontal projection is
utilized to separate the thyroid area from other parts. We
calculate the average intensity for each row of the image. Then, we
scan the image from bottom to top to find the first 15%
average intensity, and mark the position of the value as Tt. In
the same way, scanning the image from bottom to top
receives a lower bound, Tb, which is the last 15% average
intensity. Vertical projection is used to shrink the width of the
nodule area. Without loss of generality, gray levels of non-
nodules and artifacts are often higher and lower than thyroid
nodule, respectively. Assume that the nodule is in the central
region of the image, we compute the average intensity of each
column within the range limited by Tb and Tt. We then find
the maximum value and the minimum value of the histogram
and mark the position as Th or Tl, respectively.

C. Feature Extraction
We calculate 41 features from a block of M×M pixels. The

sliding window method is used, for which blocks are arrayed
adjacent to each other with an M×(M-1) overlap. The features
are described briefly in the following:

Fig. 2 Example of locating a suspicious nodule area.

1) Co-occurrence Matrix: The co-occurrence matrix was
proposed by Haralick et al. [6]. It is a two dimensional
array where rows and columns represent the gray level,
respectively. 13 features are extracted from the co-
occurrence matrix: F1) correlation, F2) difference
entropy, F3) difference variance, F4) sum average, F5)
sum entropy, F6) sum of squares, F7) sum variance, F8)
contrast, F9) energy, F10) entropy, F11) local
homogeneity, F12) cluster shade, and F13) cluster
prominence.

2) Statistical Feature Matrix: The statistical feature matrix
is a statistical analysis about the traits of distances
between pixels as [7]:
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where I(x, y) denotes the gray-level value of a pixel at
position (x, y) in an image I. }{E denotes the expectation
operation. x and y are user-specified inter-sample spacing
distance. The F14) dissimilarity is obtained.
3) Gray Level Run-Length Matrix: The gray level run-length

matrix is derived information from the relationship of
distance and angle. Five features are calculated from the
gray level run-length matrix [8]: F15) short runs
emphasis, F16) long runs emphasis, F17) gray level
uniformity, F18) run length uniformity and F19) run
percentage.

4) Laws’Texture Energy Measures: This texture-energy
approach uses three vectors: L3 = (1, 2, 1), E3 = (-1, 0, 1),
and S3 = (-1, 2, -1) to measures the amount of variation
within a fixed-size window [9]. L3, E3 and S3 vectors
represent a center-weighted local averaging, the edges
and the spots, respectively. Convoluting one vector with
themselves or others we obtain three new vectors: L5 =
L3＊L3 = (1, 4, 6, 4, 1), E5 = L3＊E3 = (-1, -2, 0, 2, 1),
and S5 = L3＊S3 = (-1, 0, 2, 0, -1), where ＊ represents a
convolution operator. With further operation, we can
generate five Laws’5×5 masks: LE = L5T×E5, EL =
E5T×L5, SL = S5T×L5, EE = E5T×E5, and LS = L5T×S5.
The features computed from Laws’ texture energy
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measures include: F20) LE mean, F21) EL mean, F22)
SL mean, F23) EE mean, F24) LS mean, F25) LE
variance, F26) EL variance, F27) SL variance, F28) EE
variance, and F29) LS variance.

5) Neighboring Gray Level Dependence Matrix: This is a
two-dimensional matrix constructed by the gray level
relationship between every pixel and its neighbors in an
image [10]. The following features extracted from this
matrix are: F30) small number emphasis, F31) large
number emphasis, F32) number nonuniformity, F33)
second moment and F34) entropy.

6) Homogeneity: The method is a major measurement for
degree of smoothness. Let hx,,y be a pixel located at (x,y).
The equation is defined as:
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where yx, is local mean and yx, is local variance of a

pixel located at (x,y) with a block size of MM. The feature
is applied as F35) homogeneity feature.
7) Histogram: The value of histogram HFx,y is yielded

using:
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where histo(I) is MM block size histogram and I presents
gray-level value. The feature is F36) histogram feature.
8) Block Difference of Inverse Probability: This feature [11]

is evaluated difference between the number of pixels in a
block and the ratio of the sum of pixel intensities in the
block to the maximum in the block. That is
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where I(x,y) is a gray level of a pixel and B means the size of
MM block. According the operation, F37) BDIP feature is
attained.
9) Discrete Cosine Transform (DCT): Rather than space

domain, DCT is used to calculate variation of frequency
of an image in frequency domain. Here we involved the
lowest band in DCT coefficient as F38) DCT feature.

10) Normalized Multi-scale Intensity Different: This feature
[12] mainly computes differences between pixels with
vertical, horizontal, diagonal and asymmetric diagonal
directions. The feature presents as F39) NMSID feature.

11) Haar Wavelet: The haar wavelet is a common and
preferred method in frequency domain. It retrieves the
characteristics by transforming information in spatial
domain to frequency domain. So we utilize two features:
F40) Mean of LL band F41) Variance of LL band.

III. SEGMENTATION ALGORITHM

Figure 3 shows a flow diagram of the decision-tree-based

Fig. 3 Flow diagram for segmentation using a decision tree.

Fig. 4 Example of a decision tree.

segmentation. The regions of interest (ROIs) were outlined by
a physician and confirmed by biopsy. We extracted and
discretized the features of nodules and non-nodules for use as
a training set in the data preprocessing phase. Then we
calculated the features to construct a model and used specific
features for segmenting the US image. The result of a
segmented nodule is a binary tree.

A. Data Discretization
After extracting the features, we obtain the input vectors

defined as:
],...,,[ 41i2i1ii fffX  i = 1,…,N (6)

where Xi is the ith sample with the values of 41 features, N is
total number of training data points.

The features are derived through Z-Score normalization
[13], which normalizes each feature with mean and standard
deviation as following:
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where ijf is the jth feature of the ith data point, ijf ' is

transferred from ijf , jA and
jA are the mean and standard

deviation of the jth feature , respectively.
Because the normalization of features has continuous

distributions, we use the equi-width binning method with ten
intervals, whose length of each interval is defined as (max_

jf ' - min_ jf ' ) /10. In the formula max_ jf ' is the

maximum value and min_ jf ' is the minimum value of the

jth feature. The normalized values are then discretized into
these intervals.

B. Decision Tree Model Concept
In the tree structure, each internal node (including the root)

is associated with a feature. And a condition determined by
the feature splits a branch node into two. The leaf nodes
represent classification results of nodules or non-nodules in
our method. An example is shown in Fig.4.
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C. Specific Feature Evaluation with Gain Ratio
To construct the decision tree, we need to attain a feature

corresponding to an internal node. The gain ratio is a
measurement used for selecting the adequate feature [4].
Before evaluating the gain ratio, the entropy is calculated as:
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where N is the training set, C is the number of the classes,
p(N,r) is the ratio that the number of the data of the rth class
is consisted in N. Because there are two classes, nodule and
non-nodule, we set C=2.

Based on the equation (8), for each feature we calculate the
information gain using:
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where Nk is a subset of the training set N corresponding to the
value k of the jth feature, kN is the number of subsets Nk, and
M represents the total partitions of the jth feature. The
derivation of )( kNEntropy is similar to that of (8).

In order to calculate the gain ratio, the SplitInfo(N,j) is
obtained using:

)(log),(
N

N

N

N
jNSplitInfo k

2

M

1k

k


 (10)

Finally, the ratio of information gain is calculated as:
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We select the feature for internal nodes using:
),((maxarg jNGainRatioj (12)

The decision tree is constructed by maximizing the gain
ratio of the jth feature for partitioning.

D. Feature with Maximum Entropy Score
There may be more over than one feature for a particular

gain ratio. To avoid this situation, entropy score obtains the
optimal feature with the maximum entropy score for an
internal node. The equation is as:

(13)

where j is the jth feature, and are the averages of the
jth feature of the nodule, and non-nodule samples. and
are the standard deviations.

E. Pruning
A pre-pruning method is used to improve the complex tree

model. It increases the tolerance for new data [14]. We use a
pre-pruning method with two criteria: expected error and
backed-up error. Expected error is defined as:

k)(N/)1-kn-N((Node)ErrorExpect  (14)
where Node is a current node to be evaluated, N presents
samples in the current node, n is the number of N samples in
the node that belongs to the majority class, and k is the
number of classes.

Fig. 5 Flowchart of classification.

Backed-up error is defined as:
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where Pi i=1,2 are the weights of left child and right child of
the current node Node, respectively.

If backed-up error is larger than expected error for a node,
pruning is necessary to remove the children of the node for
decreasing misclassification.

IV. REFINING SHAPE OF NODULAR AREA

The above procedures can be almost segment the thyroid
region completely. However, there still existed some artifact
may be classified as part of a nodule. A morphological
technique is utilized to separate the artifacts from a nodule.
Erosion with a 33 structuring element is derived to remove
the connection between artifacts and nodules. In our
experiment, 4-time erosion is effective to acquire adequate
results. In order to remove artifacts near a nodule, a labeling
process is applied [9]. The principle of the labeling technique
is that many objects which are not connected together are
marked with different labels to resent various objects. Hence,
the nodule and artifacts are distinct objects to own label
themselves and the object owning a larger number of labels is
viewed as the nodule. In other words, small parts are regarded
as artifacts and removed. Because the process of erosion
shrinks the size of original nodule and made some “holes”in
the nodule, two specific region growing stages are utilized to
recover the shape of the nodule. One stage is the region filling
[15], which fills“holes”in the nodule after erosion. The other
stage is based on the convex hull concept [16], which uses
four structuring elements to fill the shape of the nodule
completely. If the structuring element mask matches the 33
region of the thyroid gland region, an action of filling is
triggered. Through the procedure, the final contour of nodule
shape is delineated smoother and similar to the status of
original one.

V. THE CLASSIFICATION METHOD

We now need to understand the components hiding in the
nodule. Support vector machine (SVM), a popular and robust
classifier, is utilized for our experiment. The training set is
collected from the ROIs of four components outlined by
radiologist and confirmed by biopsy. Fig. 5 shows a flowchart
of the hierarchical SVM, which combines with three binary-
SVMs. Each one probes different characteristics and elements
in the segmented nodule.
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Because there are a large number of features to analyze the
thyroid nodule, a powerful feature selection for reducing
features and increasing accuracy of classification is required
[17]. First, given normalized vectors Vi, i=1,…, N, where N is
total number of feature vectors. Then calculate F-score
defined:
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where jv , )(
jv and )(

jv are the average of the jth feature of

the whole, positive, and negative data sets, respectively. )(
ijv is

the jth feature of the ith negative instance, )(
ijv is the jth

feature of the ith positive instance, n+ and n- are number of
positive and negative instances such as follicle and fobrosis
base, respectively.

The SVM classifier generates a hyperplane which separates
two classes using the equation as follows [3]:
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where i represents weight parameters, )( VVk T
i is the kernel

function, Vi is the input pattern of the ith example, V is the
input vector, di  1,1 is the desired output, and b is the bias.

A 3-fold cross validation-SVM is then used to evaluate the
performance of dissimilar combination with the features. In
this paper, we utilize libsvm [18] to implement the SVMs.

B. Hierarchical SVM
Figure 6 shows the structure of the hierarchical classifier.

Four components in a nodule, enlarged follicles, cells with
follicles, fibrosis and cells with fibrosis are detected by three
SVMs ─ SVM1, SVM2 and SVM3 which composed the
hierarchical SVM.

Trained SVM1 is constructed to separate the follicle base
and fibrosis base. We extract the optimal features using
MM blocks from the US image as testing data for SVM1.
Here we denote the result of follicles base as +1, and that of
fibrosis base as -1. In order to locate the address of region of
the nodule, we use a functional map which records the labels
of the nodule. Each label corresponds to a coordinate of the
image f(x, y). We then form a reference map for the next step
to analyze components of the nodule. In the next stage, for
further analyze the elements of the nodule, SVM2 predicts the
results and we use +1 for enlarged follicles and -1 for cells
with follicles. Similarly, SVM3 discriminates between
fibrosis (+1) and cells with fibrosis (-1).

VI. EXPERIMENTAL RESULTS

The source of US images with 256 gray levels pixels and
300360 pixels in size, were supplied by the radiologist in
the Department of Radiology, Buddhist Dalin Tzu Chi
General Hospital. From January 2005 to March 2007, 61
patients (48 females and 13 males, age range: 23-82 years old)

Fig. 6 Architecture of hierarchical SVM for four components.

with 76 thyroid nodular lesions were studied. Furthermore,
there were 324 ROIs of non-nodules obtained, 59 ROIs of
enlarge follicles, 141 ROIs of follicle base, 57 ROIs of cells
with fibrosis and 50 ROIs of fibrosis. The software
development environment was Builder 6.0, Matlab 7.1 and
Python 2.5 on an Intel Pentium IV 2.8 GHz processor with
1GB of RAM; moreover, we selected the RBF kernel of
libsvm, which is defined as [19]:
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where 2 is the width of the kernel.
The proposed method was compared with well-known

methods such as region growing algorithm [20] and fuzzy c-
means clustering algorithm [21]. For region growing
algorithm, the position of the seed point and the criterion of
absolute difference between any pixel and its 8-adjacency
pixels were two significant parameters taken into account.
These parameters which obtained the most reasonable result
were applied by trial-and-error. In fuzzy c-means clustering
algorithm, the initial number of the clusters was 2. Fig. 7(a)－
(c) illustrate the contours of three distinct nodules manually
delineated by the radiologist. Fig. 7(d)－(f) show the detected
suspicious thyroid nodule area.

Because the more complete the prototype of nodule was
obtained, the easier shape refinement of the nodule recovered
afterwards. Based on the idea, Fig. 7(g) － (i) show the
segmentation results of the proposed segmentation algorithm
before refining shape within the area in Fig. 7(d)－(f). Fig.7(j)
－(l) show the results of the region growing algorithm, which
presented slightly fragmental shapes of the nodules. Fig. 7(m)
－(o) show the segmented results of fuzzy c-means clustering
algorithm, and the results had an over-sensitive phenomenon
that more pixels of non-nodule were clustered as nodule.
Compare the proposed method with region growing algorithm
and fuzzy c-means clustering algorithm, the latters obtained
fragmental appearance. Moreover, the proposed method
gained a proper result with automatic process than semi-
automatic process of the region growing algorithm. We also
compared k-nearest neighbor (KNN) classifier and disk
expansion (DE) segmentation method [2] with our proposed
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(a) (b) (c)

(g) (h) (i)

method. Here we used the parameter k=3 as 3-NN and the
results are shown in Fig. 7(p)－(r). Fig. 7(s)－(u) show the
results of DE scheme which were set the percent p = 70%
empirically at first round. In order to derive an appropriate
result, the DE segmentation performed dilation following
erosion two times to eliminate some small holes. The results
presented that the boundaries were not smooth enough
because adaptive thresholding was retarded in uneven gray
levels of boundaries. Fig. 7(v)－(x) show the results of the
proposed method after nodular shape refinement.

The semi-automatic segmentation algorithm active contour
model (ACM) [22] and the watershed segmentation algorithm
[15] were compared with the proposed method. These two
methods were implemented with Open Source Computer
Vision Library (OpenCV), a popular image processing library,
to assist us in deriving the results. For ACM, two parameters
can be adjusted: internal forces and external forces, which
controlled the curve compactness and the motion toward the
curve borders, respectively. Additionally, an initial contour is
given for delineating the nodule. The watershed segmentation
algorithm is subject to set the initial internal marker
associated with objects in interest and external marker
associated with the background. The accuracy of the results
depends on the initial contours, so the stability is easily
affected by users’initial selection.

Figures 8(a)－(c) show the manual contours of three

(d) (e) (f)

(j) (k) (l)

representative nodules. Fig. 8(d)－(f) are the results of ACM,
the yellow line is the initial contour given by user. And the
green line is the result of ACM. The initial internal and
external markers of the watershed algorithm obtained using
manual delineation are shown in Fig. 8(g)－(i). The results of
the watershed algorithm are shown in Fig. 8(j)－(l). Figures
8(m)－(o) show the detection results for the proposed
method.

To evaluate the capability of the proposed method, the
corresponding performances of our method, ACM and
watershed algorithm in Fig. 8 were measured. Five measures,
including accuracy, sensitivity, specificity, negative predictive
value (NPV), and positive predictive value (PPV) were
calculated. Each equation is defined as:
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Fig. 7 (a) －(c) Manual delineation of three nodules. (d) －(f) Suspicious nodular area from (a) －(c). (g) －(i) The proposed method without
refinement.(j) －(l) Region growing. (m) －(o) FCM. (p) －(r) KNN. (s) －(u) DE scheme. (v) －(x) Final contours of the segmentation using
our method.



Fig. 8 (a)－(c) Manual delineation. (d)－(f) ACM results. (g)－(i)
Internal and external markers of watershed. (j)－(l) Results for the
watershed algorithm. (m)－(o) Results for proposed method.

where we let pN be the total number of nodular pixels and

nN denotes the total number of non-nodular pixels. tpN is the

number of pixels in the actual nodule and detected by the
proposed method and fpN is the number of pixels detected as

a nodule but actually part of the normal tissue. Hence, the true
negative pixels tnN and false negative fnN can be defined as

tnN = nN - fpN and fnN = pN - tpN , respectively.

Table 1 shows the performance of the proposed method.
Table 2 and Table 3 are performances of the ACM and the
watershed algorithm, respectively. We discovered our method
presented higher average performances than the others. And
the performances of the proposed method obtained from five
measures of each case were all larger than 80%. This meant
our method had capable of stability.

Furthermore, Fig. 9(a)－(c) show the classification results
of four components in three representative nodules from
original images in Fig. 8(a)－(c). The corresponding colors of
the four components are depicted in Table 4.

To show that the feature selection method can attain the
optimal features, the scatter distributions using SVM classifier
are shown in Fig. 10. Fig. 10(a) shows a feature space of two

Table 1. The performance of the proposed method
Accuracy Sensitivity Specificity NPV PPV

Case 1 96.4% 91.0% 98.9% 96.0% 97.3%
Case 2 97.8% 93.5% 98.4% 99.0% 90.4%
Case 3 98.8% 96.3% 99.1% 99.5% 93.5%
Case 4 96.4% 93.8% 97.2% 97.9% 92.0%
Case 5 97.3% 82.9% 98.4% 98.6% 80.2%
Case 6 98.6% 80.3% 99.3% 99.2% 81.7%

Average 97.5% 89.6 % 98.5% 98.3% 89.1%

Table 2. The performance of ACM
Accuracy Sensitivity Specificity NPV PPV

Case 1 94.8% 95.9% 94.3% 98.1% 88.4%
Case 2 81.3% 58.2% 85.0% 93.0% 37.1%
Case 3 83.4% 47.7% 88.1% 92.7% 34.8%
Case 4 93.2% 99.9% 91.0% 99.9% 78.9%
Case 5 96.0% 99.5% 95.7% 99.9% 64.6%
Case 6 98.2% 94.7% 98.3% 99.8% 67.8%

Average 91.1% 82.6% 92.0% 97.2% 61.9%

Table 3. The performance of the watershed algorithm
Accuracy Sensitivity Specificity NPV PPV

Case 1 89.2% 70.3% 97.8% 88.0% 93.4%
Case 2 94.8% 72.0% 98.3% 96.0% 87.0%
Case 3 95.3% 83.4% 97.0% 98.5% 78.2%
Case 4 89.0% 79.4% 92.3% 92.8% 78.3%
Case 5 96.7% 79.2% 98.1% 98.3% 76.8%
Case 6 97.6% 85.9% 98.0% 99.7% 62.0%

Average 93.7% 78.3 % 96.9 % 95.5 % 79.2 %

(a) (b) (c)
Fig. 9. (a)－(c) Distributions of components in three nodule from Fig. 8.

Table 4. Four components and their corresponding colors
Component Description Color used

Enlarged follicle Yellow
Cells with follicles Blue

Fibrosis Red
Cells with fibrosis Green

(a) (b) (c)

Fig. 10. Effectiveness of the selected features for classification. (a) F38
and F40 classify follicle base and fibrosis base, (b) F40 divides follicle
base and fibrosis base, and (c) F4 separates fibrosis from cells with
fibrosis of SVM1, SVM2 and SVM3, respectively.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

(m) (n) (o)



dimensions associated with a hyperplane. In Fig. 10(b) and
Fig. 10 (c), the x-axis and the y-axis present the training set
and the output of SVM classifier with the optimal feature,
respectively. Fig. 10(a) shows that F38) DCT feature and
F40) Mean of LL-band divided follicle base and fibrosis base.
Fig. 10(b) shows F40) Mean of LL-band was the optimal
feature for separating enlarged follicles and cells with follicles
in SVM2. Finally, Fig. 10(c) shows F4) Sum average of co-
occurrence matrix was an excellent feature for classifying
fibrosis and cells with fibrosis in SVM3.

VII. CONCLUSION

Ultrasound imaging is widely used to inspect the thyroid
gland. However, similar gray levels between thyroid nodule
and non-nodule can confuse the experts. In addition, artifacts
also degrade the quality of US images making the real shape
and the components of the nodules difficult to determine
easily. To solve these problems, this paper presents an
automatic method for segmenting nodules and classifying the
components in the nodules. We develop a decision tree to
segment the nodular area, and a shape refinement process is
then applied to obtain a complete nodular contour. Finally, a
hierarchical SVM classifier consisting of three SVMs is
applied to analyze the components of a thyroid nodule.
Experimental results show that the proposed method achieve
high accuracy than other segmentation algorithm. In the
future, the proposed method will be utilized to classify more
components of nodules rather then four. Additionally, too
many morphological operations should be avoided. The
extended idea of our proposed method will persist to derive a
delicate probe and large samples will be essential to valid the
process.

ACKNOWLEDGMENT

This work was supported by the National Science Council,
Taiwan, under grant NSC 96-2221-E-224-070. The author
would like to thank the Department of Radiology, Buddhist
Dalin Tzu Chi General Hospital, Chia-Yi, Taiwan, R.O.C., for
support and guidance.

REFERENCES

[1] S. Tsantis, N. Dimitropoulos, D. Cavouras and G. Nikiforidis,
“A hybrid multi-scale model for thyroid nodule boundary
detection on ultrasound images,” Computer Method and
Program in Biomedicine, vol. 84, pp. 86-98, 2006.

[2] C. K. Yeh, Y. S. Chen, W. C. Fan and Y. Y. Liao, “A disk
expansion segmentation method for ultrasonic breast lesions,”
Pattern recognition, vol. 42, pp. 596-606, 2009.

[3] S. J. Chen, S. N. Yu, J. E. Tzeng, Y. T. Chen, K. Y. Chang, K. S.
Cheng, F. T. Hsiao and C. K. Wei, “Characterization of the
major histopathological components of thyroid nodules using
sonographic texture features for clinical diagnosis and
management,”Ultrasound in Med. & Biol., vol. 35, no.2 , pp.
201-208, 2008.

[4] W. H. Chao, Y. Y. Chen, C. W. Cho, S.H. Lin, Y.Y. I. Shih and
S. Tsang, “Improving segmentation accuracy for magnetic

resonance imaging using a boosted decision tree,”Journal of
Neuroscience Methods, vol. 175, pp. 206-217, 2008.

[5] I. Maglogiannis, H. Sarimveis, CT. Kiranoudis, AA.
Chatziioannou, N. Oikonomou and V. Aidinis, “Radial basis
function neural networks classification for the recognition of
idiopathic pulmonary fibrosis in microscopic images,”IEEE
Trans. Inf. Technol. Biomed., vol. 12, No. 1, pp. 42-54, 2008.

[6] R. M. Haralick, K. Shanugam and I. Dinstein,“Textural features
for image classification,” IEEE Trans. Sys., Man and Cyb., vol.
3, pp. 610-621, 1973.

[7] C. M. Wu and Y. C. Chen,“Statistical feature matrix for texture 
analysis”, CVGIP: Graphical Models and Image Processing,
Vol. 54, No. 5, pp. 407-419, 1992.

[8] M. M. Galloway, “Texture analysis using gray run lengths”, 
Computer Graphics and Image Processing, vol. 4, pp. 172-179,
1975.

[9] L. G. Shapiro and G. C. Stockman, Computer Vision, Prentice
Hall, 2001.

[10] C. J. Sun and W. G. Wee, “Neighboring gray level dependence
matrix for texture classification”, Computer Vision, Graphics,
and Image Processing, vol. 23, no. 3, pp. 341-352, 1983.

[11]Y. D. Chum, S. Y. Seo, “Image retrieval using BDIP and BVLC
moments,” IEEE Trans. Cir. & Sys. for Video Tech., vol. 13, no.
9, pp. 951-957, 2003.

[12] E. L. Chen, P. C. Chung, C. L. Chen, H. M. Tsai, C. I. Chang,
“An automatic diagnostic system for CT liver image 
classification,” IEEE Trans. Biol. Eng., vol. 45, no. 6, pp. 783-
794, 1998.

[13] S. Dua, H. Singh and H. W. Thompson, “Associative
classification of mammograms using weighted rules,”Expert
system with application, vol.36, issue 5, pp.9250–9259, 2009.

[14] Quinlan, J. R., C4.5: Programs for Machine Learning,
Morgan Kaufmann Publishers, 1993.

[15] R. C. Gonzalez and R. E. Woods, Digital Image Processing, 2nd

ed., Prentice-Hall International Edit, 2002.
[16] C. Y. Chang, Y.F. Lei, “Thyroid segmentation and volume 
estimation in Ultrasound images,” Proc. of the IEEE Conf. on
Sys., Man and Cyb., pp. 3442-3447, 2008.

[17] C. Y. Chang, M. F. Tsai and S. J. Chen, “Classification of the
thyroid nodules using support vector machines,”Proc. of the
IEEE Inter. Join. Conf. on Neural Network, pp.3093-3098, 2008.

[18] C. C. Chang and C. J. Lin, LIBSVM: a library for support
vector machines, 2001. Software available at
http://www.csie.ntu.edu.tw/~cjlin/libsvm.

[19] S. Haykin, Neural Networks, Prentice-Hall, Upper Saddle River,
1998.

[20] J. Dehmeshki, H. Amin, M. Valdivieso, and X. Ye,
“Segmentation of pulmonary nodules in thoracic CT scans: a
region growing approach,”IEEE Trans. Med. Imag., vol. 27,
no.4, pp.467-480, 2008.

[21] S. Shen, W. Sandham, M. Granat, and A. Sterr, “MRI fuzzy
segmentation of brain tissue using neighborhood attraction with
neural-network optimization,”IEEE Trans. BIOM., vol. 9, no.3,
pp.459-467, 2005.

[22] M. Kass, A. Witkin and D. Terzopoulos,“Snake: active contour
model,”International Journal of Computer Vision, pp.321 –
331, 1987.


	pg910: 910
	pg911: 911
	pg912: 912
	pg913: 913
	pg914: 914
	pg915: 915
	pg916: 916
	pg917: 917


