

Instructions for use

Title Fast and Accurate Generalized Harmonic Analysis Using Newton's Method

Author(s) Noda, Hisayori; Nishihara, Akinori

Citation Proceedings : APSIPA ASC 2009 : Asia-Pacific Signal and Information Processing Association, 2009 Annual Summit
and Conference, 866-875

Issue Date 2009-10-04

Doc URL http://hdl.handle.net/2115/39825

Type proceedings

Note
APSIPA ASC 2009: Asia-Pacific Signal and Information Processing Association, 2009 Annual Summit and
Conference. 4-7 October 2009. Sapporo, Japan. Oral session: Signal Processing Theory and Methods II (7 October
2009).

File Information WA-L3-3.pdf

Hokkaido University Collection of Scholarly and Academic Papers : HUSCAP

https://eprints.lib.hokudai.ac.jp/dspace/about.en.jsp

Fast and Accurate Generalized Harmonic Analysis
Using Newton’s Method

Hisayori Noda∗ and Akinori Nishihara†
Tokyo Institute of Technology, 2-12-1-W9-108 Ookayama, Meguro-ku, Tokyo, 152-8552 Japan

∗ E-mail: hisayori@nh.cradle.titech.ac.jp Tel: +81-3-5734-3232
† E-mail: aki@cradle.titech.ac.jp Tel: +81-3-5734-3232

Abstract—A fast and accurate method for Generalized Har-
monic Analysis (GHA) is proposed. The proposed method esti-
mates the parameters of a sinusoid and subtracts it from a target
signal one by one. The frequency of the sinusoid is estimated
around a peak of Fourier spectrum using Newton’s method,
which is much faster than search methods. The amplitude and
the phase are estimated to minimize the squared sum of the
residue after extraction of estimated sinusoids from the target
signal.

A method to improve the accuracy of sinudoidal parameters
using multi-dimensional Newton’s method is also proposed. This
method is applied to the extracted sinusoidal parameters and
minimizes the partial derivative vector of the squared error.

Audio signals are analyzed by the proposed methods, which
confirms the accuracy compared to the previous method.

I. INTRODUCTION

Generalized harmonic analysis (GHA) [1] is a concept of
signal analysis introduced by N. Wiener in 1930, in which a
target signal is expressed as sum of sinusoids. Each sinusoid
has three parameters; frequency, amplitude, and phase. Unlike
short-time Fourier Transform, the frequency is not restricted
to multiples of inverse of the frame size. So the frequency
resolution is very high by its nature, and the time resolution
is also high because the frame size can be made short without
affecting the frequency resolution.

A target signal is divided into frames having size N . The
signal in a frame is approximated by the sum of sinusoids as

x0(n) ∼=
K∑

k=1

Ak sin(ωkn + ϕk), (1)

where Ak, ωk and ϕk are the amplitude, the angular frequency
and the phase of the k-th sinusoid, respectively, and K is the
number of sinusoids to be extracted. We can easily synthesize
the signal using the sinusoidal parameters. We estimate these
parameters so as to minimize the difference between the target
signal and the synthesized signal.

Actually GHA is an approach of the sinusoidal parameters
estimation and it is related to the frequency estimation. In
the research field of the frequency estimation, there are many
well-developed methods [14].

Periodgram [16] is a basic frequency estimation technique.
It finds the peak of FFT spectrum and estimates it as the
frequency. The frequency resolution is not high because the
estimated frequency is restricted to multiples of inverse of the
frame size.

The Pisarenko harmonic decomposition (PHD) [17] uses
the eigenvector associated with the minimum eigenvalue of
the autocorrelation matrix of the target signal. The frequency
is estimated as the phase of the root of the polynomial
whose coefficients are corresponding to the eigenvector. The
time complexity of the original PHD is O(N3) due to the
calculation of eigenvectors and eigenvalues. Another PHD
method in the case of a single tone is proposed by Eriksson
[18], [19]. The method estimates a frequency with O(N) of
time complexity. But the accuracy of calculation is not higher
than the other methods and this method is weak against noises.

MUSIC [20] also uses the eigenvector of the autocorre-
lation matrix. But the spectrum estimator is improved. The
computational complexity is O(N3) due to the calculation of
eigenvectors and eigenvalues.

ML estimates the frequency to minimize the probability
density function (PDF) of the residue. When the number of si-
nusoids to be estimated is one, the method is recognized as the
periodogram method. But the number of sinusoids are more
than one, the maximum likelihood estimator (MLE) becomes
highly nonlinear function of the unknown frequencies. It is
difficult to solve the equation directly in practical methods.
There are many methods [14], [15] developed to solve the
problem.

IQML [22] is an approach to solve the MLE. But the
computation complexity is also O(N3) due to its matrix
operations.

When these methods are to be implemented with General
Purpose computing on Graphics Processing Unit (GPGPU)
[10], the time complexity, O(N3), is too high to be run on
GPU. Because the calculation time of a kernel program run
on GPU is limited. In the GHA, the sinusoidal parameters
are calculated one by one and subtracted from the target
signal. The approach can make the time complexity of a kernel
program lower than the other approaches. It is more suitable
for GPGPU than the other approaches.

GHA is used for several applications. Hirata [2] and
Nakazawa [3] applied GHA to the audio coding. Hirata’s
method achieved high compression ratio for speech audio.
Nakazawa’s method achieved high quality and high speed
compression using 1/12N octave frequency quantization for
sounds of musical instruments.

Takamizawa [4] proposed a method to repair sound on a
SP record. The method reduces pulse noises using Wavelet

transform as preprocessing, extracts important sound elements
using GHA and resynthesizes the target signal.

A disadvantage of GHA has been its total computational
cost, which limits the applications of GHA. In this paper, we
propose a fast and accurate algorithm for GHA using a peak
detection of Fourier spectrum, Newton’s method around that
peak to estimate the frequency parameters. The procedure of
the frequency parameter estimation is similar to Abatzoglou’s
method [23] when only one sinusoid is extracted. The other
parameters are estimated by minimizing residual signal power.

GHA estimates the sinusoidal parameters greedily. When a
sinusoidal parameter is estimated, it will be affected by the
other sinusoids. It will decrease the accuracy. To improve
the accuracy of the sinusoidal parameters, a method using
multi dimensional Newton’s method is also proposed, which
minimizes the partial difference vector of the squared error.

II. GENERALIZED HARMONIC ANALYSIS

A. ABS method
George and Smith proposed an algorithm for GHA named

Analysis By Synthesis (ABS) [5], in which sinusoids are
extracted one after another as

xk(n) = xk−1(n) − Sk(n), k = 1, 2, · · · (2)

where Sk(n) is the k-th sinusoid given by

Sk(n) = Ak sin(ωkn + ϕk). (3)

Sinusoid parameters are found by linear search to minimize
the power of the residue xk defined as

Ek =
N−1∑
n=0

{xk(n)}2, (4)

where N is the frame size. Once parameters of the k-th
sinusoid are estimated, that sinusoid is extracted from xk−1(n)
as in (2). This process is repeated K times to approximate the
original signal as

x0(n) ∼= xK(n) =
K∑

k=1

Ak sin(ωkn + ϕk). (5)

This algorithm takes much time because multiple parame-
ters are searched simultaneously by linear search.

B. Hirata’s algorithm and Muraoka’s algorithm
In 1998, Hirata proposed a fast algorithm for GHA[2], in

which FFT spectrum of the target signal is first used to find a
rough estimate of the frequency. To estimate the frequency of
the k-th sinusoid, the peak frequency of the FFT spectrum
of the previous residue xk(n) is taken as the initial value
and named as f

(0)
k . In the m-th search phase, the frequency

is searched in the region between f
(m−1)
k − Fs/(2mN) and

f
(m−1)
k +Fs/(2mN), and the frequency which minimizes the

squared sum of the residue is chosen as f
(m)
k .

This method can reduce the number of search while keeping
the accuracy of the estimated frequency.

In 2003, Muraoka proposed a more accurate algorithm for
GHA [9] than Hirata’s algorithm.

C. Noda’s algorithm

We proposed a method which applies peak detection of the
Fourier spectrum and binary search to improve the frequency
accuracy. Our method applies peak detection of the Fourier
spectrum to estimate parameters and the frequency accuracy
is improved at every iteration.

1) Frequency estimation: In the first step, we estimate the
frequency (angular frequency) of a sinusoid to be extracted.
In this step, we use discrete time fourier transform (DTFT) of
the frame defined by

Xk(ω) =
N−1∑
n=0

xke−iωn. (6)

We search ω which maximize |Xk(ω)| defined by

|Xk(ω)| =
√

X2
kr

(ω) + X2
ki

(ω) (7)

Xkr (ω) =
N−1∑
n=0

xk(n) cos(ωn) (8)

Xki(ω) =
N−1∑
n=0

xk(n) sin(ωn), (9)

where Xkr (ω) and Xki(ω) are the real and imaginary part of
(6).

Instead of DTFT, we apply FFT to a target signal to get
sampled frequencies. Among FFT spectra a peak is detected
and call it ω(0). The truly optimal ω is considered to be around
ω(0). So the range from ω(0) − 2π/N to ω(0) + 2π/N is
searched to find the optimal ω, where N is the frame size.

We assume |Xk(ω)| is convex upward in this range so that

∂|Xk(ω)|
∂ω

= 0 (10)

holds at the maximum ω.
The derivative is calculated as
∂

∂ω
|Xk(ω)| =

∂

∂ω

√
X2

kr
(ω) + X2

ki
(ω)

=
Xkr (ω) ∂

∂ω Xkr (ω) + Xki(ω) ∂
∂ω Xki(ω)√

|Xk(ω)|
= 0, (11)

where ∂
∂ω Xkr (ω) and ∂

∂ω Xki(ω) are expressed as

∂

∂ω
Xkr (ω) = −

N−1∑
n=0

nx(n) sin(ωn) (12)

∂

∂ω
Xki(ω) =

N−1∑
n=0

nx(n) cos(ωn). (13)

∂
∂ω |Xk(ω)| is a monotonically decreasing function in this

range, and ω can be found by binary search. We can narrow the
search range by 1/2 in one iteration. So calculation accuracy
of ω is 2−M where M is the number of iteration. In other
words, we can estimate ω in time complexity O(−N log ε)
where ε is tolerance of frequency.

When we search ω by binary search, the numerator of (11)
is unimportant, because only the sign of (11) is considered in
the binary search.

This algorithm may not work well when there are more than
two local maxima of |Xk(ω)| in the range from ω(0)−2π/N
to ω(0)+2π/N . Otherwise it works well even if some noises,
Gaussian noise for example, are mixed in the target signal. In
that case, not only sinusoids which construct the target signal
but also noise components are extracted.

The time complexity of this method is the same as that of
Hirata’s algorithm. But the number of calculation is about 1/4
of Hirata’s algorithm, because the number of sum calculation
in |Xk(ω)| is half of the Ak and Bk calculations in Hirata’s
method, and the iteration of the binary search is half of the
search routine of Hirata’s method.

2) Phase and Amplitude Estimation: After estimation of the
frequency, we can estimate the phase of the sinusoid simply
by

ϕk = arctan(
Xki

(ωk)
Xkr (ωk)

). (14)

To estimate the amplitude of the sinusoid, we use the square
sum of the residue. We estimate the amplitude to minimize Ek,
expressed by

Ek =
N−1∑
n=0

{ek(n)}2 (15)

ek(n) = xk−1(n) − Ak sin(ωkn + ϕk). (16)

To minimize it, we calculate ∂Ek

∂Ak
= 0. It is derived as

∂Ek

∂Ak
=

∂

∂Ak

N−1∑
n=0

{xk−1(n) − Ak sin(ωkn + ϕk)}2

=
N−1∑
n=0

{2(xk−1(n) − Ak sin(ωkn + ϕk))

sin(ωkn + ϕk)}
= 0 (17)

Ak =
∑N−1

n=0 xk−1(n) sin(ωkn + ϕk)∑N−1
n=0 sin2(ωkn + ϕk)

. (18)

After calculating parameters of the sinusoid, we subtract
it from the target signal. We repeat these steps until enough
number of sinusoids are extracted.

3) Time Complexity: Time complexities for FFT, frequency
estimation, phase estimation, amplitude estimation and sub-
traction are O(N log N), O(−N log ε), O(1), O(N) and
O(N), respectively. We repeat sinusoid extraction for K times.
So the time complexity of the proposed method is

O(K(N log N − N log ε + 1 + N + N))
= O(NK log N

ε). (19)

The time complexity of Hirata’s algorithm is also
O(NK log N

ε). But the number of calculations is four times
bigger than our proposed method.

D. Recalculation of extracted sinusoids

To speed up the calculation we used windowed DTFT whose
samples are actually computed by FFT. This windowed DTFT
naturally introduces an effect of the (rectangular) window,
which appears as sidelobes of spectra. Those sidelobes violate
the accurate estimation of sinusoid parameters.

To avoid this problem, the frequency of the extracted
sinusoid is recalculated after other sinusoids are extracted.
Since GHA is basically undisturbed by the window, we can
recalculate the sinusoid parameters using the ones obtained in
the previous section as good approximate values.

We propose two recalculation algorithms.
1) Single Recalculation: The first algorithm recalculates

the parameters of the extracted sinusoids one by one.
Before a new sinusoid is extracted, the parameters of the

extracted sinusoids are recalculated. The effect of the sidelobe
becomes bigger in proportion to the amplitude of the sinusoid.
So the parameters of the first extracted sinusoid, which has the
biggest amplitude, are recalculated first to have less effect to
the calculation error of the other sinusoids, and then gradually
smaller sinusoids are recalculated.

The k-th extracted sinusoid is added back to the residual
signal to recover xk−1(n). A sinusoid is extracted from
xk−1(n) again by the method in Section II-C to replace the
sinusoid parameters. This process is repeated until all the
sinusoids are recalculated.

2) Double Recalculation: The second algorithm recalcu-
lates the parameters of two sinusoids adjacent in the frequency
domain at the same time, to remove possible redundancy
where two sinusoids have the identical frequency. This prob-
lem arises because the amplitude estimation is not optimal.
That is also due to inaccuracy introduced by the windowed
DTFT, which is corrected at this stage.

The algorithm is the same as the previous subsection
except the following steps. Before recalculation the extracted
sinusoids are sorted by their frequencies, which clarifies the
existence of two identical frequencies. Possible two identical
sinusoids are combined, added back to the residual signal,
and the sinusoid of that frequency is recalculated just like
the single recalculation algorithm. This algorithm reduces the
redundancy and thus improves the overall accuracy.

3) Time Complexity: Time complexities of FFT, frequency
estimation, phase estimation, amplitude estimation, addition
and subtraction are O(N log N), O(−N log ε), O(1), O(N),
O(N) and O(N), respectively. We repeat sinusoid extraction
for 1

2K2 times. So the overall time complexity of the proposed
method is

O(K2(N log N − N log ε + 1 + N + N + N))
= O(NK2 log N

ε). (20)

E. Parallel calculation by GPU

Graphics Processing Units (GPUs) are used for general
purpose computations these days. In this case they are called
General Purpose GPUs (GPGPUs) [10]. The proposed method
in this paper computes a given signal in frames, and each

frame is independent from other frames. That is, the algorithm
has high degree of parallelism, and it is suitable for parallel
computation.

The proposed method is computed using GPU simply by
allocating each frame computation to a computational unit of
GPU.

1) Implementation: CUDA is an environment to support
programmers to code algorithms for execution on GPU. In
CUDA (compute unified device architecture) [?], the computa-
tion programs are divided into small programs which are called
“kernel program” and kernel programs are calculated by GPU.
The proposed method can be divided into five kernel programs
as INITIALIZATION, FFT, EXTRACTION, ADDITION and
SORT, where FFT is computed by CUFFT library included in
CUDA.

In the first step, INITIALIZATION program is run to locate
the target signal data to the device memory on the GPU. Then
FFT, EXTRACTION, ADDITION and SORT programs are
run on GPU according to the algorithm.

After the whole computations on GPU, the resultant data
are copied from the GPU memory to the host memory, which
are our results.

The programs except INITIALIZATION program are com-
pleted on GPU and do not transfer data between the host and
GPU during the computation, and this computation-intensive
nature of the proposed algorithm is quite suitable for GPU
computation.

III. FREQUENCY ESTIMATION USING NEWTON’S METHOD

In the previous method, binary search is used to search
ω. The number of iterations corresponds to needed accuracy.
For example, if 10−15 of accuracy is needed, more than 50
iterations are needed. The number of iterations relates to the
computation time.

In this section, we use Newton’s method to search ω.
Newton’s method has quadratic convergence if its initial point
is near enough to the optimal solution. Since Fourier spectrum
is considered to be a good estimate of GHA, ω can be searched
very fast using Newton’s method.

The algorithm is another aspect of an ML-based estimation
method proposed by Abatzoglou [23]. In the below descrip-
tion, the expression is transformed to be suitable for GHA.

A. Newton’s method

Newton’s method is a method to find the zero of a real-
valued function. It finds the zero quickly if a near point of the
zero is given.

Newton’s method is represented as

xk+1 = xk − f(xk)
f ′(xk)

, (21)

where xk is an approximate zero of k-th iteration, f(x) is
a real-valued function and f ′(xk) is a first derivative of the
function.

B. Frequency estimation

After applying FFT to a target signal, among FFT spectra
a peak is detected and call it ω(0). Newton’s method starts
from the ω(0). The approximation ω(k + 1) is

ω(k + 1) = ω(k) −
∂|Xk(ωk)|

∂ωk

∂2|Xk(ωk)|
∂ω2

k

, (22)

where
∂|Xk(ωk)|

∂ωk

= ∂
∂ωk

√
X2

kr
(ωk) + X2

ki
(ωk)

= F (ωk)
G(ωk) (23)

∂2|Xk(ωk)|
∂ω2

k

= ∂
∂ωk

F (ωk)
G(ωk)

= 1
G2(ωk) (

∂F (ωk)
∂ωk

G(ωk) − F (ωk)∂G(ωk)
∂ωk

), (24)

where

F (ωk) = Xkr (ωk)
∂

∂ωk
Xkr (ωk) +

Xki(ωk)
∂

∂ωk
Xki(ωk) (25)

G(ωk) = |Xk(ωk)| (26)

∂F (ωk)
∂ωk

= Xkr (ωk)
∂2

∂ω2
k

Xkr (ωk) + (
∂

∂ωk
Xkr (ωk))2 +

Xki(ωk)
∂2

∂ω2
k

Xki(ωk) + (
∂

∂ωk
Xki(ωk))2 (27)

∂G(ωk)
∂ωk

=
∂|Xk(ωk)|

∂ωk
(28)

Xkr (ωk) =
N−1∑
n=0

xk(n) cos(ωkn) (29)

Xki(ωk) =
N−1∑
n=0

xk(n) sin(ωkn) (30)

∂

∂ωk
Xkr (ωk) = −

N−1∑
n=0

nx(n) sin(ωkn) (31)

∂

∂ωk
Xki(ωk) =

N−1∑
n=0

nx(n) cos(ωkn) (32)

∂2

∂ω2
k

Xkr (ωk) = −
N−1∑
n=0

n2x(n) cos(ωkn) (33)

∂2

∂ω2
k

Xki(ωk) = −
N−1∑
n=0

n2x(n) sin(ωkn). (34)

This calculation sometimes becomes unstable. It is due to a
selection of starting point and calculation error. To avoid this,

ωk must be normalized between 0 and π after each iteration.
In the normalizing, change the sign of ωk if it is negative
value, subtract 2π if it is greater than 2π and replace ωk by
2π − ωk if it is greater than π.

Pseudo code to search ω is shown below.
searchOmega() returns a value of ω searched by
Newton’s method, where r is ω(0) detected by FFT, N is the
frame size and x are samples of the frame.

float searchOmega(float w, int N, float x[])
{

for (int loop=0;loop<MAX_LOOP;++loop){
float C = 0;
float S = 0;
float dC = 0;
float dS = 0;
float ddC = 0;
float ddS = 0;
for (int n = 0; n < N; ++n){

floag c = cos(w * n);
float s = sin(w * n);
C += x[n] * c;
S += x[n] * s;
dC -= n * x[n] * s;
dS += n * x[n] * c;
ddC -= n * n * x[n] * c;
ddS -= n * n * x[n] * s;

}
float f = C * dC + S * dS;
float g = sqrt(C * C + S * S);
float dXg = f;
float df = C * ddC + dC * dC +

S * ddS + dS * dS;
float dg = f / g;
float ddXg = (df * g - f * dg) / g;
float dw = dX / ddX;
w -= dw;
if (w < 0){w *= -1;}
while (w > PI2){w -= PI2;}
if (w > PI){w = PI2 - w;}

}
return w;

}

1) Time Complexity: Time complexities for FFT, frequency
estimation, phase estimation, amplitude estimation and sub-
traction are O(N log N), O(N log log ε

log π
N

), O(1), O(N) and
O(N), respectively, where π

N is the maximum initial error of
ω(0) We repeat sinusoid extraction for K times. So the time
complexity of the proposed method is

O(K(N log N + N log log ε
log π

N
+ 1 + N + N))

= O(NK(log N + log ε
log π

N
)). (35)

For example, if 10−15 of accuracy is needed, binary search
method needs about 50 times of iterations. On the other hand,

Newton’s method needs

log ε

log π
N

< 7 (36)

times of iterations, where N is 512. It is much faster than
binary method.

IV. PARAMETER ADJUSTMENT USING
MULTI-DIMENSIONAL NEWTON’S METHOD

In this section, we propose a method to improve the
accuracy of the extracted parameters. In the previous method,
the detected sinusoids are subtracted from the target signal one
by one. When an extracted sinusoidal parameter has an error,
that error affects the following parameters, and we may have
larger errors in the later estimation of parameters. We propose
a method to adjust the extracted sinusoidal parameters at the
same time to suppress error propagation.

The purpose of GHA is to minimize the error Ek, where
Ek is represented as

Ek =
N−1∑
n=0

{xk(n)}2

=
N−1∑
n=0

{x0(n) −
k−1∑
i=0

Si}

=
N−1∑
n=0

{x0(n) −
k−1∑
i=0

Ai sin(ωin + ϕi)} (37)

This equation represents that Ek is a function of
{A0, ..., Ak−1, ω0, ..., ωk−1, ϕ0, ..., ϕk−1}. ({x(0), ..., x(N −
1)} are constant values in the equation.) This is formulated as
an optimization problem. We use Newton’s method to solve it

To minimize Ek, p must be zero, where

p = (
∂Ek

∂A0
, ...,

∂Ek

∂Ak−1
,
∂Ek

∂ω0
, ...,

∂Ek

∂ωk−1
,

∂Ek

∂ϕ0
, ...,

∂Ek

∂ϕk−1
) (38)

To approximate it, we use an approximation represented as

pn+1 = pn − γ∂Ek(pn)−1Ek(pn), (39)

where pn is n-th iteration of p approximation, γ is a constant
value which satisfies 0 < γ < 1 and ∂Ek(pn) is Jacobian
matrix of Ek(pn). ∂Ek(pn) is represented as

∂Ek(pn) =

 MAA MAω MAϕ

MωA Mωω Mωϕ

MϕA Mϕω Mϕϕ

 , (40)

where

MAA =


∂2Ek

∂A2
0

· · · ∂2Ek

∂Ak−1∂A0

...
. . .

...
∂2Ek

∂A0∂Ak−1
· · · ∂2Ek

∂A2
k−1

 (41)

MAω =


∂2Ek

∂A0∂ω0
· · · ∂2Ek

∂Ak−1∂ω0

...
. . .

...
∂2Ek

∂A0∂ωk−1
· · · ∂2Ek

∂Ak−1∂ωk−1

 (42)

MAϕ =


∂2Ek

∂A0∂ϕ0
· · · ∂2Ek

∂Ak−1∂ϕ0

...
. . .

...
∂2Ek

∂A0∂ϕk−1
· · · ∂2Ek

∂Ak−1∂ϕk−1

 (43)

MωA =


∂2Ek

∂ω0∂A0
· · · ∂2Ek

∂ωk−1∂A0

...
. . .

...
∂2Ek

∂ω0∂Ak−1
· · · ∂2Ek

∂ωk−1∂Ak−1

 (44)

Mωω =


∂2Ek

∂ω2
0

· · · ∂2Ek

∂ωk−1∂ω0

...
. . .

...
∂2Ek

∂ω0∂ωk−1
· · · ∂2Ek

∂ω2
k−1

 (45)

Mωϕ =


∂2Ek

∂ω0∂ϕ0
· · · ∂2Ek

∂ωk−1∂ϕ0

...
. . .

...
∂2Ek

∂ω0∂ϕk−1
· · · ∂2Ek

∂ωk−1∂ϕk−1

 (46)

MϕA =


∂2Ek

∂ϕ0∂A0
· · · ∂2Ek

∂ϕk−1∂A0

...
. . .

...
∂2Ek

∂ϕ0∂Ak−1
· · · ∂2Ek

∂ϕk−1∂Ak−1

 (47)

Mϕω =


∂2Ek

∂ϕ0∂ω0
· · · ∂2Ek

∂ϕk−1∂ω0

...
. . .

...
∂2Ek

∂ϕ0∂ωk−1
· · · ∂2Ek

∂ϕk−1∂ωk−1

 (48)

Mϕϕ =


∂2Ek

∂ϕ2
0

· · · ∂2Ek

∂ϕk−1∂ϕ0

...
. . .

...
∂2Ek

∂ϕ0∂ϕk−1
· · · ∂2Ek

∂ϕ2
k−1

 , (49)

where
∂2Ek

∂A2
i

= 2
N−1∑
n=0

(
∂R(n)
∂Ai

)2 (50)

∂2Ek

∂Ai∂Aj
= 2

N−1∑
n=0

∂R(n)
∂Ai

∂R(n)
∂Aj

(51)

∂2Ek

∂Ai∂ωi
= 2

N−1∑
n=0

(R(n)
∂2R(n)
∂Ai∂ωi

+
∂R(n)
∂Ai

∂R(n)
∂ωi

) (52)

∂2Ek

∂Ai∂ωj
= 2

N−1∑
n=0

∂R(n)
∂Ai

∂R(n)
∂ωj

(53)

∂2Ek

∂Ai∂ϕi
= 2

N−1∑
n=0

(R(n)
∂2R(n)
∂Ai∂ϕi

+
∂R(n)
∂Ai

∂R(n)
∂ϕi

) (54)

∂2Ek

∂Ai∂ϕj
= 2

N−1∑
n=0

∂R(n)
∂Ai

∂R(n)
∂ϕj

(55)

∂2Ek

∂ω2
i

= 2
N−1∑
n=0

{R(n)
∂2R(n)

∂ω2
i

+ (
∂R(n)
∂ωi

)2} (56)

∂2Ek

∂ωi∂ωj
= 2

N−1∑
n=0

∂R(n)
∂ωi

∂R(n)
∂ωj

(57)

∂2Ek

∂ωi∂ϕi
= 2

N−1∑
n=0

(R(n)
∂2R(n)
∂ωi∂ϕi

+
∂R(n)
∂ωi

∂R(n)
∂ϕi

) (58)

(59)

∂2Ek

∂ωi∂ϕj
= 2

N−1∑
n=0

∂R(n)
∂ωi

∂R(n)
∂ϕj

(60)

∂2Ek

∂ϕ2
i

= 2
N−1∑
n=0

{R(n)
∂2R(n)

∂ϕ2
i

+ (
∂R(n)
∂ϕi

)2} (61)

∂2Ek

∂ϕi∂ϕj
= 2

N−1∑
n=0

∂R(n)
∂ϕi

∂R(n)
∂ϕj

, (62)

where

R(n) = x0(n) −
k−1∑
i=0

Ai sin(ωin + ϕi) (63)

∂R(n)
∂Ai

= − sin(ωin + ϕi) (64)

∂R(n)
∂ωi

= −Ain cos(ωin + ϕi) (65)

∂R(n)
∂ϕi

= −Ai cos(ωin + ϕi) (66)

∂2R(n)
∂Ai∂ωi

= −n cos(ωin + ϕi) (67)

∂2R(n)
∂Ai∂ϕi

= − cos(ωin + ϕi) (68)

∂2R(n)
∂ωi∂ωi

= Ain
2 sin(ωin + ϕi) (69)

∂2R(n)
∂ωi∂ϕi

= Ain sin(ωin + ϕi) (70)

∂2R(n)
∂ϕi∂ϕi

= Ai sin(ωin + ϕi). (71)

Pseudo code to realize above algorithm is shown
below. adjustParameters() improves the accuracy
of the parameters using Newton’s method, where x
are samples of the frame, N is the frame size, p
are the extracted sinusoidal parameters aligned like
{A0, ..., Ak−1, ω0, ..., ωk−1, ϕ0, ..., ϕk−1} and r is γ.

void adjustParameters(double x[],
int N, double p[], double r)
{

for (int loop=0;loop<MAX_LOOP;++loop){
double B[N];
for (int n = 0; n < N; ++n){
B[n] = x[n];
}
double BA[K][N];
double Bw[K][N];
double Bp[K][N];
double BAw[K][N];
double BAp[K][N];
double Bww[K][N];
double Bwp[K][N];
double Bpp[K][N];

for (int n = 0; n < N; ++n) {
for (int k = 0; k < K; ++k) {
double Ak = p[k + K * 0];
double wk = p[k + K * 1];
double pk = p[k + K * 2];
double s = sin(wk * n + pk);
double c = cos(wk * n + pk);
B[n] -= Ak * s;
BA[k][n] = -s;
Bw[k][n] = -Ak * n * c;
Bp[k][n] = -Ak * c;
BAw[k][n] = -n * c;
BAp[k][n] = -c;
Bww[k][n] = Ak * n * n * s;
Bwp[k][n] = Ak * n * s;
Bpp[k][n] = Ak * s;

}
}

double M[K3][K3];
for (int i = 0; i < K; ++i) {
for (int j = 0; j < K; ++j) {
for (int n = 0; n < N; ++n) {
if (i == j) {
M[i+K*0][j+K*0]+=
BA[i][n]*BA[i][n];

M[i+K*0][j+K*1]+=
B[n]*BAw[i][n]+BA[i][n]*Bw[i][n];

M[i+K*0][j+K*2]+=
B[n]*BAp[i][n]+BA[i][n]*Bp[i][n];

M[i+K*1][j+K*1]+=
B[n]*Bww[i][n]+Bw[i][n]*Bw[i][n];

M[i+K*1][j+K*2]+=
B[n]*Bwp[i][n]+Bw[i][n]*Bp[i][n];

M[i+K*2][j+K*2]+=
B[n]*Bpp[i][n]+Bp[i][n]*Bp[i][n];

} else {
M[i+K*0][j+K*0]+=BA[i][n]*BA[j][n];
M[i+K*0][j+K*1]+=BA[i][n]*Bw[j][n];
M[i+K*0][j+K*2]+=BA[i][n]*Bp[j][n];
M[i+K*1][j+K*1]+=Bw[i][n]*Bw[j][n];
M[i+K*1][j+K*2]+=Bw[i][n]*Bp[j][n];

M[i+K*2][j+K*2]+=Bp[i][n]*Bp[j][n];
}
}
M[i + K * 0][j + K * 0] *= 2;
M[i + K * 0][j + K * 1] *= 2;
M[i + K * 0][j + K * 2] *= 2;
M[i + K * 1][j + K * 1] *= 2;
M[i + K * 1][j + K * 2] *= 2;
M[i + K * 2][j + K * 2] *= 2;

M[i+K*0][j+K*1]=M[i+K*1][j+K*0];
M[i+K*0][j+K*2]=M[i+K*2][j+K*0];
M[i+K*1][j+K*2]=M[i+K*2][j+K*1];

}
}

double[] fp[K3];
for (int k = 0; k < K; ++k) {
for (int n = 0; n < N; ++n) {
fp[k + K * 0] += B[n] * BA[k][n];
fp[k + K * 1] += B[n] * Bw[k][n];
fp[k + K * 2] += B[n] * Bp[k][n];

}
fp[k + K * 0] *= 2;
fp[k + K * 1] *= 2;
fp[k + K * 2] *= 2;

}

double[] fx0 = solve(M, fp);
for (int k = 0; k < K3; ++k) {
p[k] -= r * fx0[k];

}

for (int k = 0; k < K; ++k) {
if (p[k] < 0) {
p[k] *= -1;
p[k + K * 2] += Math.PI;

}

if (p[k] > 1) {
p[k+K*0]=rand()/(double)RAND_MAX;
p[k+K*1]=rand()/(double)RAND_MAX;
p[k+K*2]=rand()/(double)RAND_MAX;

}
}

for (int k = 0; k < K; ++k) {
if (p[k + K] < 0) {
p[k + K] *= -1;
p[k + K * 2] = PI * 2 - p[k + K * 2];

}
while (p[k + K] > PI * 2) {
p[k + K] -= PI * 2;

}
if (p[k + K] > Math.PI) {
p[k + K] = PI * 2 - p[k + K];

TABLE I
MACHINE ENVIRONMENT

CPU Intel Core 2 Quad Q6600
MEM 2.0GB
HDD 80GB
OS Windows Vista 64-bit
IDE Visual Studio 2008

Eclipse 3.4.2

}
}

for (int k = K * 2; k < K * 3; ++k) {
while (p[k] < -PI) {
p[k] += PI * 2;

}
while (p[k] > PI) {
p[k] -= PI * 2;

}
}

}
}

2) Time Complexity: Time complexities for creating
∂Ek(pn), creating Ek(pn) and solving ∂Ek(pn)r = Ek(pn)
are O(K2N), O(KN) and O(K3), respectively. So the time
complexity of the proposed method is

O(K2N + KN + K3)
= O(K2N + K3). (72)

V. EXPERIMENT

A. Experimental method

We implemented the proposed methods using CUDA[?] and
Java, and measured the extraction accuracy and the computa-
tional time. Ten-second, 44.1kHz sampled, 16-bit, stereo, pop
music was used as the target signal.

In the experiment of frequency searching, we extracted 1-
128 sinusoids from each of 512-point frames of the target
signal, resynthesized them and measured the PSNR between
the target signal and the resynthesized signals, where the repeat
count of binary search is 20 times and that of Newton’s method
is 5 times.

In the experiment of parameter adjustment, we extracted 1-
64 sinusoids from the first frame of the target signal, applied
the Newton’s method and measured the PSNR between the
target signal and the resynthesized signal, where γ is 1/K
and the frame size is 512.

Microsoft Visual C++ 9.0 and NVIDIA CUDA 2.1 are used
for the CUDA program and JDK 6 Update 13 is used for the
Java program. Table I shows the specifications of a machine
used for our experiment.

B. Results

Figure 1 - 4 show the results of the experiments.
Figure 1 shows the PSNR between the original audio

signal and the signals resynthesized by the no recalculation

 18.5

 19

 19.5

 20

 20.5

 21

 21.5

 22

 22.5

 23

 0 10 20 30 40 50 60 70

P
S

N
R

 (
d

B
)

number of sinusoids

PSNR

Newton’s method + no recalculation
Binary search method + no recalculation
Newton’s method + single recalculation

Binary search method + single recalculation

Fig. 1. PSNR of resynthesized sinusoids

algorithm and single recalculation algorithm. Their frequencies
are searched by binary search method and Newton’s method.
The PSNR of the Newton’s method is equal to or a bit less
than binary search method. But the difference is not so much.

Figure 2 shows the computation time of no recalculation
method whose frequencies are searched by binary search
method and Newton’s method. The computation time of New-
ton’s method is 1.91 times faster than binary search method.
This meets the difference of the time complexities between
binary search method and Newton’s method.

Figure 3 shows the computation time of single recalculation
method whose frequencies are searched by binary search
method and Newton’s method. The computation time of New-
ton’s method is 1.72 times faster than binary search method.
This also meets the difference of the time complexities be-
tween binary search method and Newton’s method.

These results show that the Newton’s method can esitmate
frequency parameters faster than binary search. Newton’s
method has quadratic convergence if the starting point is
enough near to the optimal solution. They mean that FFT
approximates the peak of DTFT spectrum well enough.

Table II and III show the PSNR between the original audio
signal and the resynthesized signal of each Newton’s method
iteration. The PSNR rise up to 0.68 dB in no calculation
method and up to 0.48 dB in recalculation method. Almost
all the PSNR rise from 0-th iteration and converge to some
values. This means that Newton’s method can converge the
extracted sinusoidal parameters to an optimal solution. But It
can not be evaluated the global optimal solution or a local
optimal solution.

The PSNR of 64 sinusoids with no recalculation is dis-
rupted. This is due to smallness of the eigenvalue of Jacobian
matrix ∂Ek(pn). It makes computation of ∂Ek(pn)−1 unsta-
ble. This problem may be resolved by using another stable
method to calculate ∂Ek(pn)−1 or using quasi-Newton’s
method.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 10 20 30 40 50 60 70

ti
m

e
 (

m
s
)

number of sinusoids

calculation time

Newton’s method
Binary search

Fig. 2. Computation Time with no recalculation

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

 50000

 0 10 20 30 40 50 60 70

ti
m

e
 (

m
s
)

number of sinusoids

calculation time

Newton’s method
Binary search

Fig. 3. Computation Time with single recalculation

VI. CONCLUSIONS

A new method for searching a frequency parameter in GHA
and a parameter improving method are proposed. The method
for searching frequency uses Newton’s method to estimate the
peak of Fourier spectrum. The parameter adjustment method
uses Newton’s method to optimize the extracted sinusoidal
parameters.

TABLE II
PSNR OF RESYNTHESIZED SINUSOIDS WITH NO RECALCULATION

METHOD

Number of PSNR PSNR Improvement
sinusoids before (dB) after (dB) (dB)

1 9.48 9.56 0.08
2 11.45 11.93 0.48
4 13.74 14.28 0.54
8 15.79 16.17 0.38

16 16.76 17.33 0.57
32 19.71 20.39 0.68
64 22.58 0.82 -21.76

TABLE III
PSNR OF RESYNTHESIZED SINUSOIDS WITH NO RECALCULATION

METHOD

Number of PSNR PSNR Improvement
sinusoids before (dB) after (dB) (dB)

1 9.48 9.56 0.08
2 11.45 11.93 0.48
4 13.83 14.29 0.46
8 15.87 16.19 0.32
16 18.16 18.56 0.40
32 20.74 20.86 0.12
64 25.20 25.37 0.17

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 90000

 100000

 0 10 20 30 40 50 60 70

ti
m

e
 (

m
s
)

number of sinusoids

calculation time

no recalculation
single recalculation

Fig. 4. Computation Time

Using the proposed methods, up to sixty four sinusoids are
extracted from each frame of 10-second audio signal. Signal
is resynthesized and compared with the original audio signal.
The proposed frequency searching method shows 1.91 times
faster than the previous method and the parameter improving
method improved 0.68dB in PSNR.

REFERENCES

[1] N. Wiener, “Generalized harmonic analysis,” Acta Mathematica, vol.55,
pp.117–285, 1930.

[2] Y. Hirata and T. Koike, “Speech band compression using a generalized
harmonic analysis,” Technical report of IEICE. EA, vol.98, no.277,
pp.17–24, 1998.

[3] M. Nakazawa and Y. Yamasaki, “Sound coding using 1/12n octave
analysis,” GITS/GITI research bulletin, vol.2002, pp.81–85, 20030731.

[4] R. Takamizawa, K. Katayama, Y. Kanda, and T. Muraoka, “Scratch
noise reduction of sp record utilizing generalized harmonic analysis
(gha),” IPSJ SIG Technical Reports. SLDM, vol.2004, no.102, pp.1–6,
20041021.

[5] E.B. George, “Analysis-by-synthesis/overlap-add sinusoidal modeling
applied to the analysis and synthesis of musical tones,” J. Audio Eng.
Soc., vol.40, no.6, pp.497–515, 1992.

[6] S. Ushiyama, M. Tohyama, M. Iizuka, and Y. Hirata, “Generalized har-
monic analysis of non-stationary waveforms,” IEICE Technical Report.
EA, vol.93, no.527, pp.39–44, 1994.

[7] M. Tohyama and T. Koike, “High resolution frequency analysis.,” The
Journal of the Acoustical Society of Japan, vol.54, no.8, pp.568–574,
1998.

[8] T. Terada, “Nonstationary waveform analysis and synthesis using gen-
eralized harmonic analysis,” IEEE TF/TS Symp., pp.429–432, 1994.

[9] T. Muraoka and S. Kiriu, “Reduction of frequency searching processes
for generalized harmonic analysis(gha),” IEICE Technical Report. DSP,
vol.103, no.146, pp.1–6, 2003.

[10] gpgpu.org, “General-purpose computation on gpus (gpgpu),”
http://gpgpu.org/.

[11] N. Corp. “NVIDIA CUDA Compute Unified Device Architecture Pro-
gramming Guide Version 2.1,” 2008.

[12] Hisayori Noda and Akinori NISHIHARA: “Fast and Accurate General-
ized Harmonic Analysis and Its Parallel Computation by GPU,” IEICE
Trans. Fundamentals., E92-A, 3, pp.745-752, Mar. 2009.

[13] Hisayori Noda and Akinori Nishihara: “Fast Algorithm and Implementa-
tion of Generalized Harmonic Analysis,” 2009 International Symposium
on Multimedia and Communication Technology, JP-5, Bangkok, Jan.
2009. (Invited Paper)

[14] S. M. Kay, “Modern Spectral Estimation,” Englewood Cliffs, NJ:
Prentice-Hall, 1988.

[15] S. L. Marple, “Digital Spectral Analysis,” Englewood Cliffs, NJ:
Prentice-Hall, 1987.

[16] A. Schuster, “On the investigation of hidden periodicities with appli-
cation to a supposed 26 day period of meteorological phenomena,”
Terrestrial Magnetism and Atmospheric Electricity, vol.3, pp.13-41,
1898.

[17] V. F. Pisarenko, “The retrieval of harmonics by linear prediction,”
Geophys. J. Roy. Astron. Soc., vol.33, pp.347-366, 1973.

[18] A. Eriksson, P. Stoica, “On statistical analysis of Pisarenko tone fre-
quency estimator,” Signal Process., vol.31, no.3, pp.349-353, April.
1993.

[19] K. W. Chan and H.C. So, “An exact analysis of Pisarenko’s singletone
frequency estimation algorithm,” Signal Process., vol.83, no.3, pp.685-
690, March. 2003.

[20] R. O. Schmidt, “Multiple emitter location and signal parameter estima-
tion,” IEEE Trans., vol. AP-34, pp.276-280, 1986.

[21] D. W. Tufts and R. Kumaresan, “Estimation of frequencies of multiple
sinusoids: Making linear prediction perform like maximum likelihood,”
Proc. IEEE, vol.70, pp.675-989, Sept. 1982.

[22] V. Nagesha and S. M. Kay, “On frequency estimation with IQML
algorithm,” IEEE Trans. Acoust., Speech, Signal Processing, vol.42,
pp.2509-2513, Sept. 1994.

[23] T. J. Abatzoglou, “A fast maximum likelihood algorithm for frequency
estimation of a sinusoid based on Newton’s method,” IEEE Trans. Signal
Process., vol.SP-33, no.1, pp.77-89, Feb. 1985.

	pg866: 866
	pg867: 867
	pg868: 868
	pg869: 869
	pg870: 870
	pg871: 871
	pg872: 872
	pg873: 873
	pg874: 874
	pg875: 875

