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Abstract—An improved hybrid particle swarm optimization
(PSO) that incorporates a wavelet-based multi-mutabn operation
is proposed. It applies wavelet theory to enhand@SO in exploring
solution spaces more effectively for better solutits. A suite of
benchmark test functions are employed to evaluate he
performance of the proposed method. It is shown epirically that
the proposed method outperforms significantly the xsting
methods in terms of convergence speed, solution dita and
solution stability.

I. INTRODUCTION

Particle swarm optimization (PSO) is a recentlyposed
population based stochastic optimization algoritiMmich is
inspired by the social behaviours of animals lilsh fschooling
and bird flocking [6]. Comparing with other poptiten based
stochastic optimization methods, such as the eoolaty

under that approach, the mutating space is ketaunyzd all the
time throughout the search. It can be further owpd by
varying the mutating space along the search.

On doing GA’s mutation operation, the solution spascmore
likely to be explored in the early stage of therskdy setting a
larger mutating space, and it is more likely tdfibe-tuned to a
better solution in the later stage of the searchating a smaller
mutating space, based on the properties of way2]et This
technique can also be applied to improve the hyB&® with
GA’s mutation. A mutation operation with a dynamiatating
space that incorporates a wavelet function [2f@ppsed. The
wavelet is a tool to model seismic signals by caninigj dilations
and translations of a simple, oscillatory functi¢gmother
wavelet) of a finite duration. The PSO’s mutatisigace is
varying dynamically based on the properties of wevelet
function. However, in recent research [16] of R&M wavelet

algorithms, PSO has comparable or even superiorctsegy, iation (WPSO0), only one element in each particiay

performance for many hard optimization problemsaitfaster
and more stable convergence rate [7]. Howevererohtions
reveal that PSO converges sharply in the earlyest#gthe

searching process, but it saturates or even tetesima the later
stage. It behaves like the traditional local skiag methods that

trap in local optima. It is hard to obtain any rsfigant
improvement by examining neighbouring solutiongha later

undergo the mutation process in an iteration stépis may
pre-maturely restrict the searching space, althdligisearching
space has been varying during the searching process

improved wavelet mutation is proposed in this papérich

allows more than one element in each particle tsmbtated in
each searching process. The resulting multi-nariadperation
aids the hybrid PSO to perform more efficiently gndvide a

stage of the s_earch. Vaes_sehsal. [11] and Reeves [14] put ¢ qiar convergence than the PSO with wavelet nauiathe
these searching methods into the context of loeafch or . 14arg PSO, and other hybrid PSOs [1][9] in sghd suite of

neighbourhood search. ) ) 8 benchmark test functions.
Ahmedet al. [1] proposed a hybrid PSO that integrated the ;g paper is organized as follows: Section Il pres the

Genetic AIgorithm_(GA) mutation Wit_hin a constan_umting operation of the hybrid PSO with multi-wavelet ntiga.
space. Under this approach, partlcle_z_s can seafereat Experimental studies and analysis are given ini@edi. Eight
directions by themselves, and local positions efigias can be ,onpmark test functions are used to evaluatedtfermance of

perml_Jtated. Th_e SO_IUt'On space can still be eepldsy the the proposed method. A conclusion will be drawBéttion IV.
mutation operation in the later stage of the seawnd

pre-mature convergence is more likely to be avaidddwever, . HYBRID PSOWITH MULTI-WAVELET MUTATION

PSO is a novel optimization method developed by lidreet
al. [6-7]. It models the sociological behaviour ofdbftocking,
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and is one of the important evolutionary computatechniques.
Within a number of particles that constitute a swaeach
particle traverses the search space looking for dglubal

optimum. The standard PSO (SPSO) process is simokig. 1.

In this paper, a hybrid PSO with multi-wavelet ntigia

(MWPSO) is proposed and shown in Fig. 4. The 8etdiSPSO,
WPSO and MWPSO will be discussed as follows.

A. Standard particle swarm optimization (SPSO)

In Fig.1, X(t) denotes a swarm at theh iteration. Each
particle x(t)0 X(t) contains « elementsxjp(t)Dxp(t) at the

t-th iteration, wherep = 1, 2,... ,yandj =1, 2,... ,k; )

denotes the number of particles in the swarm.t,Regticles of
the swarm are initialized and then evaluated bgfandd fithess
function. The objective of SPSO is to minimize titeess value
(cost value) of a particle through iteration stepehe swarm

following equation [7]:

W,

max

~ Wmin xt

(4)

wheret is the current iteration numbéF,is the total number of
iteration, w,,,, and w,;, are the upper and lower limits of the
inertia weight, and are set as 1.2 and 0.1 regmdgtin this
paper.

In (1), the particle velocity is limited by a maxim value
Viax- The parametey,,,, determines the resolution, or fitness,
of regions between the present position and thyetanosition to
be searched. This limit enhances the local exptoraof the
problem space, and it realistically depicts therenental
changes of human learning. If the valuevgf, is too high,
particles might fly past good solutions; if it tsmall, particles
may not explore sufficiently beyond local solutiofi@om many

evolves from iteratiort to t +1 by repeating the procedure agxperiments with PSOy, . was often set at 10%—20% of the

given in Fig. 1. The SPSO operations are discuasddllows.

dynamic range of the variables on each dimension.

The velocity v} (t) (corresponding to the flight speed in a search

space) and the coordinand.T?(t) of thej-th elementof the p-th

particle at thet-th generation can be calculated using tf
following formulas [12]:

wvP(t-1)
VP(t) = k O+ ¢, [Tand() ({pbesf - x(t 1)) @
+ ¢, (fand() Eﬂgbes} - X} (t —1))
xP(t) = xP(t-2)+vP(t) 2
where  pbesf = [pbesf pbesf ... pbesf] ,

gbest= [gbes; gbess ... gbes;],j =1,2,...,k. The best
previous position of thp-th particle is recorded and representg
as pbest ; the position of best particle among all the et is
represented agbest w is an inertia weight factorg, and ¢,

are acceleration constantsnd() returns a random number in
the range of [0,1]k is a constriction factor derived from the
stability analysis of equation (2) to ensure thestey

begin
t-0 /l iteration number
InitializeX(t)  // X(t): swarm for iteration
Evaluaté(X(t)) // f(Ot fitness function
while (not termination conditionjo
begin
t-t+1
/I Process of SPSO //
Update velocity(t) and position of each
particlex(t) based on (1) and (2) respectively
if V(0)>Vinax
V(t): Vmax
end
if V(t)<_vma><
V(t): ~ Vimax
end
// End of the process of SPSO //
Reproduce a nex(t)
Evaluatef(X(t))
end
end

convergence but not prematurely [5]. Typicakys a function
of ¢, and ¢, as reflected in the following equation:

®)

2
2-p~\p” - 4p

whereg=¢, +¢@, andg >4.

k=‘

SPSO utilizespbest andgbestto modify the current search

Fig. 1. Pseudo code for SPSO.

B. Recent Hybrid Particle swarm optimization and ts
limitation

From our observation, SPSO [9] works well in thelyea
iteration stage, but it usually presents problemseaching a
near-optimal solution. The behaviour of the SPSéffected by

point to avoid the particles moving in the samedtion, but to SOmMe important aspects related to the velocity tepdaf a

converge gradually towambestandgbest. A suitable selection

particle’s current position coincides with the gibbest position,

of the inertia weightv provides a balance between the global adBe particle will only move away from this pointits inertia
local explorations. Generally can be dynamically set with theWeightand velocity are different from zero. If their velties

731



are very close to zero, all the particles will stogving once they —e X2 cod5 8
catch up with the global best particle, which maad to w(x) © COE( X) ®

premature convergence and no further improvement b ,
obtained. This phenomenon is knowrstgnation{4]. The Morlet wavelet integrates to zeRr@perty ). Over 99% of

Ahmed et al. [1] proposed to integrate GAS’ mutationthe total energy of the function is contained ie thtervallof
operation into PSO, which aids to overcostegnation Here, -25<x< 25 (Property 3. In order to control the magnitude
we call this hybrid PSO as APSO. The mutation afien starts and position ogy(x) , a functiony, ,(x) is defined as follows.
with a randomly chosen particle in the swarm and/asoto

different positions inside the search area. Thkoviing 1 x—b
mutation operation is used in APSO: Wap(X) :ﬁw(Tj (9)
mutlx; )= x, —w (5)

where x; is the randomly chosen particle element from the

swarm, andwis a number randomly generated within the range
[0, 0.1x (paraTLax - para/,, )J representing 10% of the length of v
the search spacepara’ _ and para!, are the upper and lower

bounds of each particle element. The pseudo cbithe dybrid ,
PSO with the mutation operation is shown in Figndyhich the 1 . :
mutation on particles will perform after updatirge tvelocities x
and positions of the particles. It can also be $emn Fig. 1 and
Fig. 4 that the two PSO methods are identical extkp
mutation operation has been integrated in the skcasthod. ) o ) )
However, (5) indicates that the mutating space RSO is where a is the dilation parameter and is the translation

Fig. 2. Morlet wavelet

limited by win which 10% of the range of the parametirused. Parameter. Notice that

It may not be a good approach in fixing the mutapace at all

time of the search. It can be further improvecdebyploying a #10(¥) =‘//(X)’ (10)
dynamic mutation operation in which the size of thetating 1 X

space varies during the search. Pao(¥) = Ew(gj ' (11)

C. Wavelet theory It follows that¢, () is an amplitude-scaled version g(x) .

Certain seismic signals can be modelled by comyinifrig. 3 shows different dilations of the Morlet wiate The
translations and dilations of an oscillatory fuontwith a finite amplitude of ¢,,(x) will be scaled down as the dilation

duration called a “wavelet”. A continuous functign(x) is parameten increases. This property is used to do the nustati

called a “mother wavelet” or “wavelet” if it satief the operation in order to enhance the searching pesoog
following properties:

a=1 a=h5 =10 2=50
Property 1: ! L ! L
+oo 0.5 0.5 0.5 0.5
j w(x)dx=0 6)
—oo i i ] W 0
. . 05 05 05 05
In other words, the total positive momentumyafx) is equal to
. -1 -1 -1 -1
the total negative momentum gf(x) . 2 0 2 0010 0 0 20 00 100
=100 2=500 ==1000 ==10000
1 1 1 1
Property 2:
oo 5 05 05 05 05
[ oofdx<eo 7) NN R S I R
0.5 0.5 0.5 05
which means most of the energydr(x) is confined to a finite 4 p 4 p
200 0 200 -000 O 1000 2000 0O 2000 -1 0 1

duration and bounded. The Morlet wavelet (as shioviig. 2)

. el
[2] is an example mother wavelet: Fig. 3.

Morlet wavelet dilated by different valugfsthe parametea (x-axis:X,
y-axis: ¢, 0(x) )
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D. WPSO and the Proposed MWPSO equal to the total negative energy of the mothereled. Then,
the sum of the positiver is equal to the sum of the negatige
We propose a multi-wavelet mutation that variesntiwating when the number of samples is large apdis randomly
space based on the wavelet theory. The MWPSigiahl to generated. Thatis,
WPSO except the number of elements that undergmtitation
process in each particle can been controlled. B#B#SO and 1
MWPSO will be discussed in the following sub-sestio WZU =0 for N - o, (16)
N

1. WPSO and its Operation

. L whereN is the number of samples.
The mutation operation is used to mutate the elésneh

particles. In general, various methods like umifonutation or
non-uniform mutation [8, 10] can be employed tolireathe

begin

mutation operation. The proposed wavelet mutaf}dfiM) t.0 J/ iteration number
operation exhibits a fine-tuning ability. The ditaof the InitializeX(t) ~ // X(t): Swarm for iteration
operation are as follows. Every particle of thaswwill have a Evaluaté(X(t)) // f(Ok fitness function
chance to mutate governed by a probability of nomat while (not termination conditionjo

U D[O 1], which is defined by the user. For each partiale, begin

t-t+1
Perform the process of PSO (shown in Fig. 1)
Perform mutation operation with p,,

If perform multi-mutation

random number between 0 and 1 will be generatecdtctrols
which element in the particle will be mutated, thetation will
take place on that element of particle. For instanif

. Select the elements with
P(t) = |xP p p R m
X (t)—[x1 (t) X (t) U o4 (t)] is the selected p-th Reproduce a new(t)
particle and the element of partiodﬁ(t) is randomly selected enlEvaluatd(x(t))

for mutation (the value ok-p(t) is inside the element’s bounds _ _ _ o
J Fig. 4 Pseudo code for hybrid PSO with mutationragpen.

[ pard,,para . 1), the resulting particle is given

4

— _ 10
by x*()=pe) @), . %) el
wherej 0 1, 2, ... k; k denotes the dimension of particle anc 7 =s
10°} >
j i fom = 2
i."(t) _ xjp(t)+(7><(para,'mx —xjp(t)) if >0 (12) c W
: xjp(t)+a><(xjp(t)— parg),, ) if <0 E
g 10°F J
A |
T=Yan(@) (13) 4 :
Zwm =05
10} i
1 ]
g= ﬁl/’[gj (14) (Wm‘\— 0.2
By using the Morlet wavelet in (8) as the mothevelat, 0 01 0z 03 04 05 06 07 08 08 1
qujz/ Fig. 5 Effect of the shape parametgr  toa with respect ta/T.
- /2
a=ie &)/ co {zj (15) » _ _
a a Hence, the overall positive mutation and the overagative

mutation throughout the evolution are nearly theesa This
If o is positive ¢ >0) approaching 1, the mutated elemerfifoperty gives better solution stability (smalletarglard

. . deviation of the solution values upon many trialak over 99%
will tend to the maximum value oxf(t) Conversely, whemw : : X
of the total energy of the mother wavelet funci®noontained in

is negative ¢ < 0) approaching-1, the mutated element will the interval £2.5, 2.5],¢ can be generated fromZ.5, 2.5]
tend to the minimum value olf(t) A larger value ofo| gives randomly. The value of the dilation paramedes set to vary
with the value oft/T in order to meet the fine-tuning purpose,
whereT is the total number of iteration arndis the current
number of iteration. In order to perform a locgdhuisch whert is

a larger searching space f(fr(t) When|U| is small, it gives a

smaller searching space for fine-tuning. Refertangroperty 1
of the wavelet, the total positive energy of thettmo wavelet is
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large, the value o should increase agT increases so as to

reduce the significance of the mutation.
increasing function governingg and t/T is proposed as

follows.

I1l.  BENCHMARK TESTFUNCTIONS ANDRESULTS

Hencenamotonic A. Benchmark test function

A suite of eight benchmark test functions [13] ased to test

the performance of the MWPSO. Many different kinufs

optimization problems are covered by these bendhrnest

Jwm

+in(g)

e e-ln(g)X(l—%J an

functions. They can be divided into three categgoriThe first
type is the unimodal function, which is a symmetniadel with a

single minimumf; tof; are unimodal functions. The second type

where ¢, is the shape parameter of the monotonic increasitsgthe multimodal function with a few local minim@;andfs
function, g is the upper limit of the parametr The effects of belong to this type. The last one is the multinidglaction with

the various values of the shape paraméigy; to a with respect
to 7/T are shown in Fig. 5. In this figure, is set as 10000.

many local minimafg to fg belong to this type. The details of
these functions are shown in Table I.

Thus, the value o& is between 1 and 10000. Referring to (15Yable I. Benchmark Test Functions.

the maximum value o& is 1 when the random number ¢=0

anda=1 (t/T = 0). Then referring to (12), the offspring geng Sphere function

xP(t)= xj"(t)+1><(para,{qax—xjp(t)) = para},,. It ensures
that a large search space for the mutated elenfigrartcle is

given. When the valug/T is near to 1, the value @f is so

large that the maximum value of will become very small. For
example, at/T =0.9 and{,,, =1, the dilation parametea =

400; if the random value g is zero, the value ofr will be

equal to 0.0158. A smaller searching space forntigated
element of particles is then given for fine-tuning.

After the operation of wavelet mutation, a new swas
generated. This new swarm will repeat the samegso Such
an iterative process will be terminated when argefinumber of
iteration is met.

2. The proposed MWPSO

For the proposed MWPSO, one more parambl,gﬂ[o 1]

is defined. The value &, is randomly set at each iteration step.

This parameter control the number of elements engtarticle
that mutate, such that more than one element im gaticle can
vary its value and more freedom will be given te farticle to
explore the searching space. For instance,

,xp(t)] is the selected p-th

K

P =[ P P
xP(t)=|xP(t) xP(t)
particle, the number of elements that undergoesatiout is

controlled by:

Numberof mutatecelements= N, x « (18)

The elements for doing mutation are randomly setectThe
resulting particle is denoted by

Test function Domain range Optimal point
-50<x <150 Min(f1)=
® f1(0)=0
f,(x) =%
i=1
Step function -5<x <10 Min(fz)=
30, 2 f2(0)=0
1,69= x +0)
i=1
Schwefel's Problem 2.21 -150< x, <50 | Min(fs)=
o) = max{lx | 1< i < 30} f(0)=-1
Kowalik’s function -5<x <5 Min(fs)=
2 f4([0.1928
L00=34- x(b? +bx) 0.1908 0.1231
N ~ 7 bP+bx+x, 0.1358])=
3.075x10"
Hartman’s Family | 0<x <1 Min(fs)=
B 3 f5([0.114 0.556
00 =-2ceq-Yal-p )2} 0.853)=
= = -3.8628
Griewank Function -120G x <60C| Min(fe)=
1y, @ X fs(0)=0
fo(X) = 20002 X D CO{ﬁJ +1
if
Generalized Ackley’s function -64<x <32 Min(f7)=
12 f7(0)=0
f,(x) = —20e><;{— 02 %Z xzj
1 30
-ex %Ecogm)
+2C+e
Schwefel’s function -500< x <500 | Min(fg)=
0 f5([420.9687, ...,
o0 =Y (% sing/[x|) 420.9687])=
= -12569.5

%) =[xt +1), xP(t+1), XP(t+1)], wherej 0 1, 2, ... &

B. Experimental Setup

The performance of SPSO [9], APSO [1], WPSO and the
proposed MWPSO on solving the benchmark test fanstis
evaluated. The following simulation conditions ased:
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The shape parameter of wavelet mutatigp,(): 0.2
The acceleration constawi : 2.05

The acceleration constat, : 2.05

Maximum velocityv,.,: 0.2

Swarm size: 40
Number of runs: 50
Probability of mutation f): 0.1

Mutation parameterl,,): 0.3
Initial population: generated uniformly at random

C. Results and Analysis

In this section, the simulation result for the &i&f@mark test
functions are given to show the merits of the MWPSThe
experimental result in terms of the mean cost vabast cost
value, standard deviation and convergence ratswamenarized
in Table Il and Fig. 6.

1. Unimodal function

Functionf; is a sphere model. In view of the characteristic
f;, which is smooth and symmetric, the main purpasdoi
measure the convergence rate of the searchifgprbbably the
most widely used test function. For this functithe result in
terms of the mean cost value, the best cost valod, the
standard deviation of MWPSO and WPSO are muchribtie
those of the other methods. As shown in Fig. 6¢hg
convergence rate of MWPSO is higher than that ofS®P
APSO and SPSO.

Functionf, is a step function, which is a representativdaif f
surfaces. Flat surfaces are obstacles for opttmoizalgorithms
because they do not give any information about gbarch
direction, unless the algorithm has a variable siegp. From
Fig. 6(b), it is clearly shown that MWPSO has thestb

convergence rate as compared with SPSO, WPSO aB®APoptimization problems.

We see that by increasing the number of elementsfation,
we can enhance the searching space.

convergence are quite similar, and they all canhreat get near
to the global optimum. However, MWPSO still prozsdthe
best standard deviation value.

3. Multimodal function with many local minima

Functionsfs to fg are multimodal functions with many local
minima. For functiori, it can be seen clearly from Fig. 6(f) that
MWPSO is the fastest to reach the optimal poimbnithe result
obtained, MWPSO, WPSO and APSO return the samecbstt
value, but the standard deviation of MWPSO is th&t.bHence,
MWPSO can provide more stable and high-qualityltesu

For functionf;, as seen from Fig 6(g), the proposed method
has already reached the optimal point after a fexation steps,
while other methods almost use 200 iteration stepsach the
optimal point. It shows that the MWPSO offers agisearching
ability thanks to the multi-wavelet mutation in tR&0O. Also,
the mean and the standard deviation offered by M@/R&
much better than those of others.

For functionfg, it is shown that the searching ability of the
proposed method is quite different from the othethads. All
the algorithms except MWPSO have similar behavituthe
first 400 iteration steps, and are trapped in stooal minima.
On the other hand, the cost value offered by MWRSO
decreasing gradually, and it can provide the bestlt as
compared with others.

IV. CONCLUSION

In this paper, we proposed a new hybrid PSO with
multi-wavelet mutation. Our objective is to incseathe
searching area by increasing the number of eleneatparticle
that undergo mutation so as to further improveptagormance
of WPSO. The solution space can be explored niteetirely
on reaching the optimal solution. Simulation reshhve shown
that the proposed method is a useful technique diees
On solving a suite of benahk
functions, MWPSO offers better results in termssofution
quality and stability than WPSO, APSO and SPSGoAlfaster

Functionf; is a Schwefel's problem 2.21. According to Figconvergence speed can be achieved by MWPSO.

6(c), the performance does not show significarfedéhce at the
first 400 iteration steps. From Table II, althoupk best cost
value of the MWPSO is a little bit larger than tbathe APSO,
the mean cost value and the standard derivatioimeoWPSO
are the best. Thus, MWPSO can offer better salimlity and
stability.

2. Mulitmodal function with a few local minima

1
For functionf,, which is a multimodal function with only a few[ ]

local minima, different results from the proposedtinods are
obtained. As shown in Fig. 6(d), SPSO, APSO andS@Rre
trapped in different local minima, and the convexgerate of
the MWPSO is faster than that of others. MoveoMdNPSO
can provide the best result in terms of cost valoe standard
deviation.

From the result obtained from functiGpwe see that there is
no significant difference for all the PSO methatth& curves of
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TABLE Il: COMPARISON BETWEEN DIFFERENP SOMETHODS FOR

SELECTED FUNCTIONS ALL RESULTS ARE AVERAGED ONES OVERORUNS

f1 (x10"), number of iteration: 500
MWPSO WPSO APSO SPSO
Mean 0 0 0.0004 32857.946f
Best 0 0 0.0001 12500.498p
Std Dev 0 0 0.0003 8626.6124
f, (x10"), number of iteration: 500
MWPSO WPSO APSO SPSO
Mean 0 0.62 0.9 39.58
Best 0 0 0 0
Std Dev 0 1.4553 3.37 34.5154
f3 (x10°), number of iteration: 1000
MWPSO WPSO APSO SPSO
Mean 0.7374 1.3189 8.4366 14.61
Best 0.2894 0.1854 0.0743 1.8902
Std Dev 0.255 7.0255 18.421 19.2
f4 (x10°), number of iteration: 1000
MWPSO WPSO APSO SPSO
Mean 1.4 4.2 6.3 8.5
Best 0.3 0.4 0.5 0.3
Std Dev 3.9 7.7 8.9 9.3
f5 (x1&P), number of iteration: 500
MWPSO WPSO APSO SPSO
Mean -3.8628 -3.8628 -3.8628 -3.8625
Best -3.8628 -3.8628 -3.8628 -3.8628
Std Dev 2.7683e-15| 3.5092e-11| 2.7849%e-14 0.0016
fs (x1&P), number of iteration: 500
MWPSO WPSO APSO SPSO
Mean 0 0.1925 0 138.1759
Best 0 0 0 0.0709
Std Dev 0 0.2864 0 128.0549
f7 (x10"), number of iteration :500
MWPSO WPSO APSO SPSO
Mean 0.0044 509.6625 0.0179 3278.013p
Best 0 0 0 3.8481
Std Dev 0.0069 1744.8548 0.112 3581.228b
fg (x10%), number of iteration :1000
MWPSO WPSO APSO SPSO
Mean -11210.965¢ -7441.1954| -7180.360P-6951.7609
Best -12352.3469 -8161.4782] -8159.961pP-8278.3995
Std Dev 578.664 438.2333 | 450.2045 656.8472
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