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Abstract— An improved Differential Evolution (DE) that
incorporates wavelet-based mutation and crossoverperations is
proposed. In the mutation operation, the scaling dctor is
controlled by a wavelet function. In the crossoveoperation, the
trial population vectors are modified by a waveletfunction. The
wavelet theory applied is to enhance DE in explorip the solution
space more effectively for a better solution. A sie of benchmark
test functions is employed to evaluate the perfornmee of the
proposed method. It is shown empirically that theproposed
method outperforms significantly the conventional nethods in
terms of convergence speed, solution quality andlstion stability.

I.  INTRODUCTION

Differential Evolution (DE) has been well acceptad a
powerful algorithm for handling optimization probie during
the last decade. Proposed by Storn and PriceH],is a
population based stochastic optimization algorithtmat
searches the solution space by using the weighféztehce
between two population vectors to determine a thigdtor.
No separate probability distribution has to be usedhat the
scheme is completely self-organizing [1] [12]. idta new
member to the class of Evolutionary Algorithms (Eiat
imitate the process of biological evolution. Owinhg the
population based strategy, EAs are less possiblginge
trapped in a locally optimal solution. As a resuttany
researchers view EAs as global optimization alborg.
Important examples of EAs include the Genetic Ailitpon
(GA) [5] and Evolutionary Programming (EP) [6].

Similar to GA, DE uses evolutionary operations tidg the
population evolving towards the global solution hiit the
given solution space. Comparing with other optatian
algorithms, DE is easy to implement,
parameters for tuning, and have a relatively fastvergence
speed. A simple vector subtraction is able to gmpea
random direction of exploration over the solutiggase. DE
can also offer a high degree of variations for gbpulation to
search the solution space. It has been succesafylilied in a
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wide range of optimization problems such as datstefing
[2], power plant control [3], optimization of noméar
functions [4], etc. However, for maintaining theeatsity from
one generation of the population to the next, nmnatakes an
important role in the evolution process. The pnese of
mutation can help assuring the reached solutioa obal
optimum; but a too vigorous mutation in every itena step
may slow down or even destroy the convergence ef th
algorithm.

On doing the mutation and crossover operation, arehave
the solution space to be more widely explored édhrly stage
of the search by setting a larger searching spawkjt is more
likely to obtain a fine-tuned global solution irethater stage of
the search by setting a smaller searching spasedban the
properties of wavelet [7]. The wavelet is a tool model
seismic signals by combining dilations and transfet of a
simple, oscillatory function (mother wavelet) of fanite
duration [9]. Its properties enable us to improtke
performance of DE. In this paper, mutation andssower
operations with a dynamic searching space by iraratpng
some wavelet functions [8] are proposed. The tiesul
mutation and crossover operations aid the DE téoparmore
efficiently and provide a faster convergence tham standard
DE [1] in finding the solutions for a suite of bémeark test
functions. In addition, it achieves better solatiguality and
higher solution stability.

This paper is organized as follows. Section lisprés the
operation of DE with wavelet mutation and waveletssover.
Experimental study and analysis are given in Sactii.
Benchmark test functions are used to evaluate ¢n®ynance
of the proposed method. A conclusion will be draimn
Section IV.

II. DEWITH WAVELET MUTATION AND WAVELET
CROSSOVER

To realize DE, a randomly generated population daher
solution space will first be obtained. The popolat of
solution vectors are then successively updated savapped;
until the population converge to the optimum. Tpgseudo
code for the standard DE (SDE) process is showkignl. In
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this paper, a DE with wavelet mutation and wavetessover
(WMWC-DE) is proposed and the pseudo code for shigwn
in Fig. 2. The details of both the SDE and the WRRDE are
discussed as follows.

where f()l is the fitness function.

A. Sandard Differential Evolution (SDE)

DE attempts to maintain a populationN vectors for each
generation of evolution, with each vector contdinslements
of parameters. LePyy be the population of the current
generatiorg, and x; , be thei-th vector in this population:

(x4 )i=0L...,Np-Lg=01...,0m

(Xj,i,g),j =04..,D-1 @)

P, =
Xig =
Before the population can be initialized over tlduton
space, the boundary of the searching space shewgédrified.
The population should be uniformly and randomlytribisited
in the searching space. Once initialized, DE e®at mutated
vector, v; 4 for each target vectox;y by using the mutation
operation. In particular, DE adds a scaled, rafg@ampled,
vector difference to form a third vector. The ntiga

operation is realized by the following equation:

Vig=XigtF [@xﬁvg _sz,g)(z)

where F is the scaling factorr; andr, are two different
integers which are randomly generated from {0,.1Np-1}.
The number of mutations taking place in each geiveras
also random. To complement the differential motatsearch
strategy and increase the diversity of the pertlinb@&ameter
vectors, DE employs a method called uniform crossfaer the
mutated vectors. Each vector element pgjr, and vj;gq
generates a new trial vector element,. The crossover
operation is realized by the following equation:

(Uj,i,g)

(v,,,) if rand, @D <Cr

{(

u

ig

X ) otherwise.

ji.g

®3)

u if fujg)<f(Xg)

otherwise.

- 4)

X

Xi,g+1 :{

ig

Because of this setecti
operation, DE is expected to have high optimizatidnility.

When the condition to stop further evolution isisfad, for

example, a preset maximum number of iteration hasnb
reached, the algorithm ends with the best solui®rthe final
solution (see Fig. 1).

begin
Initialize the population
While (not termination condition) do
begin
Mutation operation by equation (2)
Crossover operation by equation (3)
Evaluation of the function
Select the best vector by equation (4)
end
end

Fig. 1. Pseudo code for SDE.

begin
Initialize the population
While (not termination condition) do
begin
Update the new value of by equation (14)
Mutation operation by equation (2)
Crossover operation by equation (3)
Modifying the trial population vectors by
equation (14)
Evaluation of the function
Select the best vector by equation (4)
end
end

Fig. 2. Pseudo code for the proposed DE.

B. Differential Evolution with Wavelet Mutation and Wavel et
Crossover (WMWC-DE)

where Cr [0, 1] is called the crossover rate, which is a user-

defined value that controls the fraction of pararethat are

In the SDE mutation operation, the valueFoin (2) is a

copied from the mutantrand;(0,1) generates a random valudixed value within the range of [0, 1] determineasbd on the

between 0 and 1 for theth parameter.
ensuresy;; 4 gets at least one parameter valus gg[1]. Then

the population is updated. If the trial vector s fithess
function value lower than that of the target vecteplace the
target vector in the next generation; otherwisetsinget vector
retains its place in the population for at least generation of
iteration. The selection operation is thereforalized by the
following equation:
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The algorithm alsdokind of application. The choice of this value eslivery much

on experience or expert knowledge. Yet, a fixethevaof F
takes no advantage of the benefit brought by tleduen. We
propose the value df to diminish with the increase of the
number of iteration. Moreover, for some compleXmijzation
problems like finding the minimum point of a multichal
functions with many local minima, a large numbeiitefation
for solving the problem is required in SDE. It ueds the
efficiency of the SDE. This leads to the propo$&dWC-DE

in which the valueF is determined by a wavelet mutation
function. The degree of freedom of the trial eeawill then
be increased. More ‘random’ vector directions wolle



generated during the mutation operation. Moreouerthe The Morlet wavelet integrates to zefr@perty 1). Over 99%
crossover operation, we proposed a second wavel#tion of the total energy of the function is containedtia interval of
that varies the searching space based on the walvetey. As -25<x< 25 (Property 2). In order to control the magnitude
the wavelet function output is inversely proportibrto the and the position of(X), a function Wap(x) is defined as
number of iteration; when the searching populatin
approaching the optimal solution, the effect of thavelet
mutation and crossover operations will be decreasimtil the 1 b
DE ends eventually (see Fig. 2.) By adopting théthod, the ¢, (x) :_w(x_) (8)
effort on searching and evaluating those local ma&iwhich ' Ja a

are far away from the global minimum, in the ldteration is

reduced. Therefore the total number of iteratiecedises. The where a is the dilation parameter and is the translation
result is a wavelet-mutation-wavelet-crossover-daseE parameter. Notice that

(WMWC-DE).

follows.

Yi0(X) =g (X) 9)
C. Wavelet Mutation and Wavelet Crossover
X

1. Wavelet theory Wap(X) = %w(g) . (20)

Certain seismic signals can be modelled by combinin
translations and dilations of an oscillatory funatwith a finite
duration called a “wavelet”. A continuous functigf(X) is

called a “mother wavelet” or “wavelet” if it satisf the

It follows that ¢, ,(x) is an amplitude-scaled version of
Y(X). Fig. 4 shows different dilations of the Morleavelet.

following properties: The amplitude ofiy , 4 (x) will be scaled down as the dilation
Property 1: parameten increases. This property is used to do the nartati
operation in order to enhance the searching peenoe
+00
J‘—oo l/’(x)dx =0 (5) a=1 a=h a=10 a=50
1 1 1 1
In other words, the total positive momentum€x) is equal ns ns ns ns
to the total negative momentum #fx) . . D‘W’ ”V\A/\f 0~
Property 2: 05 05 -0.5 05
-1 Sl -1 -1
oo 5 -2 0 2 -0 0 10 20 020 -100 0 100
I |¢/(X)| dx <eco (6) a=100 a=500 a=1000 a=10000
—00 1 1 1 1
. ] ) o 04 05 05 04
Hence, most of the energy i@(X) is confined to a finite
. . 0w~ O O 10
duration and bounded. The Morlet wavelet [2], Bsve in
Fig. 3, is an example mother wavelet: 05 0s s 0s
, 20 0 0 o o o o 0 200 6
w(x)=e* "2 cod5x) @ 10°

Fig. 4. Morlet wavelet dilated by different valuefsthe parametea (x-axis:a,
y-axist g, () )

2. Operation of wavelet mutation

The mutation operation is used to mutate the vedtoithe
population. The proposed wavelet mutation (WM) ragien
exhibits a fine-tuning ability. Consider (2), thrautation
operation is modified as follows.

' Vig = Xig T F [qxrlvg ~Xr,. )’ (11)
] where
Fig. 3. Morlet wavelet.
F=¢.(#) (12)
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1 (¢ approaching-1, the mutation will tend to a minimum. A larger
F=—uyl =~ (13) : . .
Ja la value of |01 gives a larger searching space for the solution.

10*

By using the Morlet wavelet in (7) as the motherealat,
P 2 Cwm =5
F :ie_(;j /2 co 5(¢j 10°F \
\/a a ' © 2\
(14)
where g 10 N, E
Jwm 2
—In(g)X(l—ij +In(g) B \05
a=e T (15) . '
10| 4
\
T is the total number of iteration artd is the current number 02
of iteration; ¢, is the shape parameter of the monoton .

1 —
increasing functiong is the upper limit of the parametar If 0 01 02 03 04 05 06 07 08 09 1f
F is positive approaching 1 d¥ is negative approachingl, _ _
the mutation will tend to a maximum. Converselyhen F Fig. 5. Effect of the shape paramefg, toa with respect tdt/T .

approaches 0, the mutation will tend to a minimu#larger
value of \F\ gives a larger searching space for the solutiowhen |a1 is small, it gives a smaller searching space ifte-f

When |F| is small, it gives a smaller searching space ifee-f tuning. —Referring toProperty 1 of the wavelet, the total
positive energy of the mother wavelet is equal lie total

negative energy of the mother wavelet. Then, tima sf the
positive ¢ is equal to the sum of the negative when the
number of samples is large agdis randomly generated, i.e.

tuning.

3. Operation of wavelet crossover

The crossover operation is done with respect tetbments
of the trial vector (after mutation) in DE. In g&al, various q
methods like uniform crossover or non-uniform cogs [8, NZUZO for N - o, (20)
10] can be employed to realize the crossover ope@ratThe N
proposed wavelet crossover (WC) operation, whidhikéts a
fine-tuning ability, is realized by adding a secondvelet
mutation following the original crossover operationThe

whereN is the number of samples. Hence, the overalltpesi
mutation and the overall negative mutation throughthe

details are as follows. The crossover after th&t finutation evolution are nearly the same in a statistical sensThis
: property gives better solution stability (smalletarslard

takes ple_lce according to (3). _ Let, :(uov"g’ul_"g""’uD‘lv"g) deviation of the solution values upon many trial)s over
(whereg is the current generation number dnds the number ggo, of the total energy of the mother wavelet fiorctis
of elements in the vector) be théh vector after crossover for .qntained in the intervabR.5, 2.5], ¢ can be generated from

the second wavelet mutation. Its element valug, is inside [-2.5, 2.5] randomly. The value of the dilation paegera is
The set to vary with the value of/T in order to meet the fine-

tuning purpose, wher€ is the total number of iteration artd
is the current number of iteration. In order tafpen a local

the vector element's boundaryp@ra,i“n,parar{]ax].

resulting vector is given bui g :@o,i,g,uli,g,...,uD-Li,g), and

T Ujig +Ux(PararJﬁax _uj,i,g) if 7>0 (16) search whert is large, the value o& should increase agT
e g +a'x(ujig - paquin) if <0’ increases so as to reduce the significance of theatmn.
B 5 B Hence, a monotonic increasing function governingnd t/T
O=Wao(P) an .
is proposed as follows.
g = iw(ﬂj (18)
\/g a —In(g)X(l—ljimen(g)

By using the Morlet wavelet in (8) as the mothewvelat, a=e T (21)

L ATk (e | e
o= Te a CO{S[_D (19) where ¢, is the shape parameter of the monotonic increasing

a a

function,g is the upper limit of the parameter The effects of
the various values of the shape paramefgp, to a with

If o is positive (7 > 0) approaching 1, the mutation will tendrespect tot/T are shown in Fig. 5. In this figure is set as

to a maximum. Conversely, it is negative ¢ <0)
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10000. Thus, the value o#

is between 1 and 10000.Table 2. Number of iteration and the valud=dor SDE.

Referring to (14), the maximum value ef is 1 when the

random number ofp=0 anda=1(t/T = 0). Then referring to

(16), the vectorl_.li,g has a large degree of mutation. It ensu

that a large search space for the mutated vecwgivén at the

early stage of evolution. When the valty& is near to 1, the
value of a is so large that the maximum value of will

become very small. For example,tdT =0.9 and{,,, =1, a

= 400; if the random value af is zero, the value of will be

equal to 0.0158. A smaller searching space forntlwated

vector is given for fine-tuning.

After the operation of wavelet mutation and cresspa

new population is generated. This new populatidhrepeat
the same process. Such an iterative process sviétminated

when a defined number of iteration is met.

I1l. BENCHMARK TESTFUNCTIONS ANDRESULTS
A. Benchmark test functions

A suite of eight benchmark test functions [11] ased to test
the performance of the proposed WMWC-DE. Manyed#ht
kinds of optimization problems are covered by thesetions,

which can be divided into three categories. That fiategory
covers the unimodal functiorfg f, and f; that are symmetrig
with a single minimum. The second one covers th&éimodal

functionsf, andfs with only a few local minima. The last o

covers the multimodal functiorfg, f; andfg with many local
minima. The details of these functions are shawhable 1.

B. Experimental Setup

The performance of SDE [1], DE with wavelet mutatiand
the proposed WMWC-DE are evaluated by finding
minimum values of the benchmark test functions. e
following simulation conditions are used:

* The shape parameter of the wavelet mutatidg,(): It is

chosen by trial and error through experiments foody
performance for all functions. {,,,=1 is used for all

functions.

« Initial population: It is generated uniformly andom.
« Crossover probability constar@r = 0.5

The number of iteration for all algorithms and tfeues ofF
for SDE are given in Table 2.

C. Resultsand Analysis

In this section, the simulation results for theeghchmark test
functions are given to show the merits of the WM\DE- All

results shown are averaged data out of 50 trials.

Test function No. of iteratior Fixed F Weight
Rosenbrock’s function 25 0.85
ré&xyartic function 60 0.5
Easom'’s function 200 0.5
Maxican hat function 20 0.5
Six-hump camel back function 20 0.5
Generalized Griewank’s function 100 0.5
Generalized Ackley’s function 500 0.5
Schwefel’s function 500 0.5
Table 1. Benchmark Test Functions.
Test function Domain range Optimal point
Rosenbrock’s function —-2048 x <2048| Min(fy)=
30 > 2 fl([l, vy l])=0
h(0 = ;bOO(x.ﬂ —xf + (6 -]
Quartic function -128<x < 256 Min(f)=
07, (1, ..., 1])=0
£,00 =i
i=l
Easom'’s function -300 < x,, X, <300 | Min(f3)=
f,(x) = - cos(x,) [kos(x,) 0 fsln,nl)=-1
exp(=((x, = )% + (x, + m)?))
e
Maxican hat function -5<x,%, <15 Min(fs)=
) ) lim (x) =-1
f,(x) =_SIn(X1)S|n(X2) x-[0,0]
XX,
Six-hump camel back function | -5< x,,x, <5 Min(fs)=
, L1, f5([~0.08983,
hé’”(x) =4x = 21x +§X1 XX, + 0.7126]=
i f5([0.08983,
) -0.7126])
4 +4%; =-1.0316
Generalized Griewank’s function -1200< x, <600 Min(fe)=
1T &, ® X fs(0)=0
f = - RN )
(0= oSt - [Jeod % |+
Generalized Ackley's function -64<x <32 Min(f7)=
12 ) f7(0):0
f,(x) = —20exr{— 0.2\/52 X ]
1 30
—exp — > co27x, |+20+e
307
Schwefel's function -500< % <500 | Min(fe)=
0 f5([420.9687, ...,
f,() =" (% sing/x|)) 420.9687])=
= -12569.5
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fitness

Rosenbrack function

25

0ar

Standard DE
— — — DE with wavelet mutation and crossover
DE with wavelet mutation

800

Bo0

700

fitness

fitness

iteration

6. The fitness of the Rosenbrock function.

Fig.

Quartic function

T T T
i : Standard DE
B! BRcGhEaanoaaa -1 — — — DE with wavelet mutation and crossover H
4 : DE with wavelet mutation

iteration

Fig. 7. The fitness of the Quartic function.

Easom function

Standard DE
— — — DE with wavelet mutation and crossover
DE with wavelet mutation

-

- i 1 1 i 4 i L i i
0 20 40 60 a0 100 120 140 160 180 200
iteration

Fig. 8. The fithess of the Easom’s function.
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fitness

65 T T T
Standard DE
— — — DE with wavelet mutation and crossover
DTt DE with wavelet mutation

fitness

fitness

Maxican function

e

A i 1 e e SO 0
] 2 4 B8 g 10 12 14 16 13 20
iteration
Fig. 9. The fitness of the Maxican hat function.
Six-Hurmp Carnel Back function
0.1 T T T

Standard DE
— — — DE with wavelet mutation and crossover
DE with wavelet mutation

aql i iy
2 4 B 8 10 12 14 16 18 20
iteration
Fig. 10. The fitness of the Six-hump camel bacicfion.
Griewank function
1600 T T T
4 : : Standard DE
| — — — DE with wavelet mutation and crossover
1400 b

1200

1000

DE with wavelat mutation

e e e

il i 1 i i
0 W 0 30 40 s 60 YO0 80 80 100
iteration
Fig. 11. The fitness of the Generalized Griewanicfion



Ackley function
25

Standard DE
— — — DE with wavelet mutation and crossover
DE with wavelet mutation

TR e E L a s CEL Ll L L ECE L] CECEEEC e CEEECELE: FEE CEE CEECEEE L] CEEEEE L. I

fitness

(N WY S S DR Gy —
150 200 250 300 350 400 450 500
iteration

Fig. 12. The fitness of the Ackley function.

1
a0 100

Schwefel function
-2000

Standard DE

— — — DE with wavelet mutation and crossover
DE with wavelet mutation

-4000 -

-6000

-8000

fitness

-10000 ¥

-12000 -

-14000 i

1 L i | i 1 i i
100 150 200 250 300 350 400 450 500
iteration

Fig. 13. The fitness of the Schwefel’'s function.

1. Unimodal functions

was inverted for minimization. The result is shoinrFig. 8.
For this function, the convergence rate of the pseg
WMWC-DE is much higher than that of SDE. While the
performance of WMMC-DE is nearly the same as DEhwit
wavelet mutation only, this experiment shows that wavelet
crossover does not take any advantage on reachiag
minimum. But the wavelet crossover does not woren
performance of DE. The solution quality is neahg same for
all algorithms when the number of iteration incessas Taking
advantage of the properties of the wavelet functamcontrol
the scaling factor in the wavelet mutation, the yafion can
be kept in the small area near the minimum point.

For unimodal functions, the proposed WDE can offer
higher rate of convergence as compared with SDEy B
adopting the Morlet wavelet on controlling the soglfactorF,
the degree of freedom of the trial vector can bereiased.
More vector directions would be generated durirggrttutation
operation. Moreover, based on the fine-tuningitgbdf the
wavelet crossover operation, the population caiyegst into
the small region around the global minimum.

2. Multimodal functions with a few local minima

Two multimodal functions with a few local minimaear
evaluated with the three algorithms. Functipis the Maxican
hat function and functiorfs is the six-hump camel back
function. All of them contain some local minimathin the
searching space. The results are shown in Fignd9F&g. 10.
For functionf, andfs, it is found that all the searching methods
perform similarly in reaching the optimal point. hé the
functions contain a few local minima, all the sbang
methods do not get trapped in some local minimédyea3he
advantage brought by the wavelet mutation and weavel
crossover to the searching is not obvious for ttfesetions.
Although the wavelet mutation and wavelet crossal@mot
bring significant improvement to reach the minimofthese
functionsthe convergence rate of the proposed WMWC-DE is

Functionf, is the Rosenbrock function, which is also callegj 5 pit higher than that of the SDE.

the Banana function. The global minimum of thasecfions
is inside a long, narrow, parabolic shaped flateyal Owing to
the smooth and symmetric characteristic fgf the main
purpose of testing is to measure the convergerteeafathe

3. Multimodal functions with many local minima

Functionsfs is the Generalized Griewank’s function which is

searching algorithms. It is probably the most Widesed test & multimodal function with many local minima. Gsiank's
function. The result is shown in Fig. 6. The cergence rate function is a widely employed test function for kg
of the proposed WMWC-DE is a bit higher than thhB®E. optimization. This function has an exponentialhgreasing
When using the proposed WMWC-DE, the solution duaf number of local minima as its dimension increased the
increased when the number of iteration increages there is locations of the minima are regularly distributedn the
only one minimum within the solution space, nealythe experiment, the dimension of the Generalized Grigvea

population will move towards that minimum.

function is 30. In consequence, the testing famctontains

Functionf; is the Quartic function. Since it is a polynomiapjenty of local minima. The tested result is shawFig. 11.

of even degree, it approaches the same limit when
argument goes to positive or negative infinity. u¥hthe
function has a global minimum. The result is showiig. 7.
We can see that the convergence rate of the prdp/84wWcC-
DE is much greater than that of SDE. After aro@fdimes of
iteration, the proposed method is able to reachrtimmum.
Functionf; is the Easom function where the global minimu

is near a small area relative to the search spabe. function

it can be seen from this figure that if the wavetettation is
used, the rate of convergence is much higher thandf the
SDE. It shows that by adding the wavelet mutatand
wavelet crossover to the DE, we can reduce thecghtirat the
searching process is trapped in some local miniMareover,
rjﬂy introducing the wavelet crossover to DE, thercdag
process of WMWC-DE is capable of moving closelythe
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global minimum in the early iteration stage, as pared with benchmark test functions, and offers better resalterms of

the other two algorithms. Thanks to the propertytlee

convergence rate, solution quality and stabilitanthSDE.

wavelet crossover, the effort on searching anduawimlg those Thanks to the properties of the wavelet, the perforce and

local minima that are far away from the global miom is
reduced.
Functionsf; is the Generalized Ackley’s function which is a

robustness of DE are improved.
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amplitude. Its topology is characterized by anadnflat outer
region and a central hole or peak where the modukbf the
cosine wave become more and more influential. rElselt is
shown in Fig. 12. The experiment shows that if Wavelet
mutation is used with DE, the fitness of the fumetdropped [1]
rapidly. After 200 times of iteration, the fitnesslue is
already close to the global minimum. But both 82E and
DE with wavelet mutation cannot reach the globahimum.
By applying both the wavelet mutation and wavelessover,
the DE can reach the global minimum point at al2&@ times
of iteration. It shows that WMWC-DE provides a teet [3]
solution quality. Furthermore, it can be seen fiéign 12 that

if the wavelet mutation and wavelet crossover ssedu the
convergence rate is much higher than that of th&.SO*he
WMWC-DE is capable of moving closely to the globaw
minimum at the early iteration stage. This shovwe t
advantage of incorporating wavelet mutation and eketv
crossover on reducing the effort on searching araduating [5]
those local minima that are far away from the glab@imum.

Functionsfg is the Schwefel’s function which is deceptive ir[|6]
that the global minimum is geometrically distantep the
parameter space, from the next best local miniffiaerefore, [7]
the search algorithms are potentially prone to eogence in
the wrong direction. The result is shown in Fig. Similar to [8]
functions fs and f;, if the wavelet mutation and wavelet
crossover are used, the convergence rate is mgtterhthan g
that of the SDE. Moreover, the WMWC-DE can mowesely ]
to the global minimum at the early iteration stage.

For multimodal functions with many local minima,eth
proposed WMWC-DE can significantly improve the
convergence rate and the chance of reaching thealglo10]
optimum as compared to SDE.

(2]

IV. CONCLUSION

In this paper, we proposed a new hybrid differéreialution

with wavelet theory based mutation and crossoveraion.

In the mutation operation, we proposed an adagiiveme on [12]
tuning the scaling factd¥ of the DE algorithm by applying the
wavelet theory. In the crossover operation of BE,proposed

an adaptive scheme on modifying the trial popufatiectors

by applying the wavelet theory. The resulting WMWE
takes advantage of the beneficial properties of lavelet
function to improve the solution quality and stahil The
proposed method can explore the solution space more
effectively in reaching the global solution. Simitibn results
have shown that the proposed wavelet mutation asdelet
crossover based DE is a useful algorithm to sohsuite of

[11]
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