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Abstract— An improved Differential Evolution (DE) that 

incorporates wavelet-based mutation and crossover operations is 
proposed.  In the mutation operation, the scaling factor is 
controlled by a wavelet function.  In the crossover operation, the 
trial population vectors are modified by a wavelet function.  The 
wavelet theory applied is to enhance DE in exploring the solution 
space more effectively for a better solution.  A suite of benchmark 
test functions is employed to evaluate the performance of the 
proposed method.  It is shown empirically that the proposed 
method outperforms significantly the conventional methods in 
terms of convergence speed, solution quality and solution stability. 
 

I. INTRODUCTION 

Differential Evolution (DE) has been well accepted as a 
powerful algorithm for handling optimization problems during 
the last decade.  Proposed by Storn and Price [1], DE is a 
population based stochastic optimization algorithm that 
searches the solution space by using the weighted difference 
between two population vectors to determine a third vector.  
No separate probability distribution has to be used so that the 
scheme is completely self-organizing [1] [12].  It is a new 
member to the class of Evolutionary Algorithms (EA) that 
imitate the process of biological evolution.  Owing to the 
population based strategy, EAs are less possibly getting 
trapped in a locally optimal solution.  As a result, many 
researchers view EAs as global optimization algorithms.  
Important examples of EAs include the Genetic Algorithm 
(GA) [5] and Evolutionary Programming (EP) [6].   

Similar to GA, DE uses evolutionary operations to guide the 
population evolving towards the global solution within the 
given solution space.  Comparing with other optimization 
algorithms, DE is easy to implement, requires fewer 
parameters for tuning, and have a relatively fast convergence 
speed.  A simple vector subtraction is able to generate a 
random direction of exploration over the solution space.  DE 
can also offer a high degree of variations for the population to 
search the solution space.  It has been successfully applied in a 

 
 

wide range of optimization problems such as data clustering 
[2], power plant control [3], optimization of non-linear 
functions [4], etc.  However, for maintaining the diversity from 
one generation of the population to the next, mutation takes an 
important role in the evolution process.  The presence of 
mutation can help assuring the reached solution is a global 
optimum; but a too vigorous mutation in every iteration step 
may slow down or even destroy the convergence of the 
algorithm. 

On doing the mutation and crossover operation, we can have 
the solution space to be more widely explored in the early stage 
of the search by setting a larger searching space; and it is more 
likely to obtain a fine-tuned global solution in the later stage of 
the search by setting a smaller searching space, based on the 
properties of wavelet [7].  The wavelet is a tool to model 
seismic signals by combining dilations and translations of a 
simple, oscillatory function (mother wavelet) of a finite 
duration [9].  Its properties enable us to improve the 
performance of DE.  In this paper, mutation and crossover 
operations with a dynamic searching space by incorporating 
some wavelet functions [8] are proposed.  The resulting 
mutation and crossover operations aid the DE to perform more 
efficiently and provide a faster convergence than the standard 
DE [1] in finding the solutions for a suite of benchmark test 
functions.  In addition, it achieves better solution quality and 
higher solution stability. 

This paper is organized as follows.  Section II presents the 
operation of DE with wavelet mutation and wavelet crossover.  
Experimental study and analysis are given in Section III.  
Benchmark test functions are used to evaluate the performance 
of the proposed method.  A conclusion will be drawn in 
Section IV. 

II. DE WITH WAVELET MUTATION AND WAVELET 

CROSSOVER 

To realize DE, a randomly generated population over the 
solution space will first be obtained.  The population of 
solution vectors are then successively updated and swapped; 
until the population converge to the optimum.  The pseudo 
code for the standard DE (SDE) process is shown in Fig. 1.  In 
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this paper, a DE with wavelet mutation and wavelet crossover 
(WMWC-DE) is proposed and the pseudo code for it is shown 
in Fig. 2.  The details of both the SDE and the WMWC-DE are 
discussed as follows.   

 
A.  Standard Differential Evolution (SDE) 

DE attempts to maintain a population of Np vectors for each 
generation of evolution, with each vector contains D elements 
of parameters.  Let Px,g be the population of the current 
generation g, and gi ,x be the i-th vector in this population: 
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Before the population can be initialized over the solution 

space, the boundary of the searching space should be specified.  
The population should be uniformly and randomly distributed 
in the searching space.  Once initialized, DE creates a mutated 
vector, vi,g for each target vector xi,g by using the mutation 
operation.  In particular, DE adds a scaled, randomly sampled, 
vector difference to form a third vector.  The mutation 
operation is realized by the following equation: 
 

( )grgrgigi F ,,,, 21
xxxv −⋅+= (2) 

 
where F is the scaling factor; r1 and r2 are two different 
integers which are randomly generated from {0, 1, ..., Np−1}.  
The number of mutations taking place in each generation is 
also random.  To complement the differential mutation search 
strategy and increase the diversity of the perturbed parameter 
vectors, DE employs a method called uniform crossover for the 
mutated vectors.  Each vector element pair xj,i,g and vj,i,g 
generates a new trial vector element uj,i,g.  The crossover 
operation is realized by the following equation: 
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where ]1,0[∈Cr  is called the crossover rate, which is a user-

defined value that controls the fraction of parameters that are 
copied from the mutant.  randj(0,1) generates a random value 
between 0 and 1 for the j-th parameter.  The algorithm also 
ensures uj,i,g gets at least one parameter value as xj,i,g [1].  Then 
the population is updated.  If the trial vector has the fitness 
function value lower than that of the target vector, replace the 
target vector in the next generation; otherwise the target vector 
retains its place in the population for at least one generation of 
iteration.  The selection operation is therefore realized by the 
following equation: 
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where f(⋅) is the fitness function.  Because of this selection 
operation, DE is expected to have high optimization ability.  
When the condition to stop further evolution is satisfied, for 
example, a preset maximum number of iteration has been 
reached, the algorithm ends with the best solution as the final 
solution (see Fig. 1).   
 

 
 

Fig. 1.  Pseudo code for SDE. 

 
Fig. 2.  Pseudo code for the proposed DE. 

 

 
B.  Differential Evolution with Wavelet Mutation and Wavelet 
Crossover (WMWC-DE) 
 

In the SDE mutation operation, the value of F in (2) is a 
fixed value within the range of [0, 1] determined based on the 
kind of application.  The choice of this value relies very much 
on experience or expert knowledge.  Yet, a fixed value of F 
takes no advantage of the benefit brought by the evolution.  We 
propose the value of F to diminish with the increase of the 
number of iteration.  Moreover, for some complex optimization 
problems like finding the minimum point of a multimodal 
functions with many local minima, a large number of iteration 
for solving the problem is required in SDE.  It reduces the 
efficiency of the SDE.  This leads to the proposed WMWC-DE 
in which the value F is determined by a wavelet mutation 
function.   The degree of freedom of the trial vector will then 
be increased.  More ‘random’ vector directions would be 

begin 
    Initialize the population 

While (not termination condition) do 
         begin 
              Mutation operation by equation (2) 
              Crossover operation by equation (3) 
              Evaluation of the function 

Select the best vector by equation (4) 
          end         
end 

 
begin 
    Initialize the population 

While (not termination condition) do 
         begin 

Update the new value of F by equation (14) 
Mutation operation by equation (2) 
Crossover operation by equation (3) 
Modifying the trial population vectors  by 
equation (14) 
Evaluation of the function 
Select the best vector by equation (4) 

          end         
end 



 
 

 

generated during the mutation operation.  Moreover, in the 
crossover operation, we proposed a second wavelet mutation 
that varies the searching space based on the wavelet theory.  As 
the wavelet function output is inversely proportional to the 
number of iteration; when the searching population is 
approaching the optimal solution, the effect of the wavelet 
mutation and crossover operations will be decreasing until the 
DE ends eventually (see Fig. 2.)  By adopting this method, the 
effort on searching and evaluating those local minima, which 
are far away from the global minimum, in the later iteration is 
reduced.  Therefore the total number of iteration deceases.  The 
result is a wavelet-mutation-wavelet-crossover-based DE 
(WMWC-DE).   
 

C.  Wavelet Mutation and Wavelet Crossover 

1.  Wavelet theory 

Certain seismic signals can be modelled by combining 
translations and dilations of an oscillatory function with a finite 
duration called a “wavelet”.  A continuous function )(xψ  is 

called a “mother wavelet” or “wavelet” if it satisfies the 
following properties: 
Property 1: 
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In other words, the total positive momentum of )(xψ is equal 

to the total negative momentum of )(xψ . 

Property 2: 
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Hence, most of the energy in )(xψ  is confined to a finite 

duration and bounded.  The Morlet wavelet [2], as shown in 
Fig. 3, is an example mother wavelet: 
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Fig. 3.  Morlet wavelet. 

 
 

The Morlet wavelet integrates to zero (Property 1).  Over 99% 
of the total energy of the function is contained in the interval of 

5.25.2 ≤≤− x  (Property 2).  In order to control the magnitude 
and the position of )(xψ , a function )(, xbaψ  is defined as 

follows. 
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where a is the dilation parameter and b is the translation 
parameter.  Notice that 
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It follows that )(0, xaψ  is an amplitude-scaled version of 

)(xψ .  Fig. 4 shows different dilations of the Morlet wavelet.  

The amplitude of )(0, xaψ  will be scaled down as the dilation 

parameter a increases.  This property is used to do the mutation 
operation in order to enhance the searching performance. 
 

 
Fig. 4.  Morlet wavelet dilated by different values of the parameter a (x-axis: a, 

y-axis: )(0, xaψ .) 

 
2.  Operation of wavelet mutation 

The mutation operation is used to mutate the vectors in the 
population.  The proposed wavelet mutation (WM) operation 
exhibits a fine-tuning ability.  Consider (2), the mutation 
operation is modified as follows. 
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where 
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By using the Morlet wavelet in (7) as the mother wavelet, 
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T is the total number of iteration and t  is the current number 
of iteration; wmζ  is the shape parameter of the monotonic 

increasing function, g is the upper limit of the parameter a.  If  
F  is positive approaching 1 or F  is negative approaching −1, 
the mutation will tend to a maximum.  Conversely, when F 
approaches 0, the mutation will tend to a minimum.  A larger 
value of F  gives a larger searching space for the solution.  

When F  is small, it gives a smaller searching space for fine-

tuning. 
 
3.  Operation of wavelet crossover 

The crossover operation is done with respect to the elements 
of the trial vector (after mutation) in DE.  In general, various 
methods like uniform crossover or non-uniform crossover [8, 
10] can be employed to realize the crossover operation.  The 
proposed wavelet crossover (WC) operation, which exhibits a 
fine-tuning ability, is realized by adding a second wavelet 
mutation following the original crossover operation.  The 
details are as follows.  The crossover after the first mutation 
takes place according to (3).  Let ( )giDgigigi uuu ,,1,,1,,0, ,,, −= …u  

(where g is the current generation number and D is the number 
of elements in the vector) be the i-th vector after crossover for 
the second wavelet mutation.  Its element value giju ,,  is inside 

the vector element’s boundary [ jj parapara maxmin , ].  The 

resulting vector is given by ( )giDgigigi uuu ,,1,,1,,0, ,,, −= …u , and  
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By using the Morlet wavelet in (8) as the mother wavelet, 
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If σ  is positive ( 0>σ ) approaching 1, the mutation will tend 
to a maximum.  Conversely, if σ  is negative ( 0≤σ ) 

approaching −1, the mutation will tend to a minimum.  A larger 
value of σ  gives a larger searching space for the solution.  
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Fig. 5.  Effect of the shape parameterwmζ  to a with respect to Tt . 

 
When σ  is small, it gives a smaller searching space for fine-

tuning.  Referring to Property 1 of the wavelet, the total 
positive energy of the mother wavelet is equal to the total 
negative energy of the mother wavelet.  Then, the sum of the 
positive σ  is equal to the sum of the negative σ  when the 
number of samples is large and ϕ  is randomly generated, i.e.   

 

0
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NN
σ  for ∞→N ,  (20) 

 
where N is the number of samples.  Hence, the overall positive 
mutation and the overall negative mutation throughout the 
evolution are nearly the same in a statistical sense.  This 
property gives better solution stability (smaller standard 
deviation of the solution values upon many trials).  As over 
99% of the total energy of the mother wavelet function is 
contained in the interval [−2.5, 2.5], ϕ  can be generated from 

[−2.5, 2.5] randomly.  The value of the dilation parameter a is 
set to vary with the value of Tt  in order to meet the fine-

tuning purpose, where T is the total number of iteration and t  
is the current number of iteration.  In order to perform a local 
search when t is large, the value of a  should increase as Tt  

increases so as to reduce the significance of the mutation.  
Hence, a monotonic increasing function governing a  and Tt  

is proposed as follows. 
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where wmζ  is the shape parameter of the monotonic increasing 

function, g is the upper limit of the parameter a.  The effects of 
the various values of the shape parameter wmζ  to a with 

respect to Tt  are shown in Fig. 5.  In this figure, g  is set as 

=wmζ

T
t



 
 

 

10000.  Thus, the value of a  is between 1 and 10000.  
Referring to (14), the maximum value of σ  is 1 when the 
random number of ϕ =0 and 1=a ( Tt = 0).  Then referring to 

(16), the vector gi,u  has a large degree of mutation.  It ensures 
that a large search space for the mutated vector is given at the 
early stage of evolution.  When the value Tt  is near to 1, the 

value of a  is so large that the maximum value of σ  will 
become very small.  For example, at Tt =0.9 and 1=wmζ , a 

= 400; if the random value of ϕ  is zero, the value of σ  will be 

equal to 0.0158.  A smaller searching space for the mutated 
vector is given for fine-tuning. 
 After the operation of wavelet mutation and crossover, a 
new population is generated.  This new population will repeat 
the same process.  Such an iterative process will be terminated 
when a defined number of iteration is met. 

III.  BENCHMARK TEST FUNCTIONS AND RESULTS 

A.  Benchmark test functions 

A suite of eight benchmark test functions [11] are used to test 
the performance of the proposed WMWC-DE.  Many different 
kinds of optimization problems are covered by these functions, 
which can be divided into three categories.  The first category 
covers the unimodal functions f1, f2 and f3 that are symmetric 
with a single minimum.  The second one covers the multimodal 
functions f4 and f5 with only a few local minima.  The last one 
covers the multimodal functions f6, f7 and f8 with many local 
minima.  The details of these functions are shown in Table 1. 
 
B.  Experimental Setup 

The performance of SDE [1], DE with wavelet mutation, and 
the proposed WMWC-DE are evaluated by finding the 
minimum values of the benchmark test functions.  The 
following simulation conditions are used: 

• The shape parameter of the wavelet mutation (wmζ ): It is 

chosen by trial and error through experiments for good 
performance for all functions.  wmζ =1 is used for all 

functions. 
• Initial population: It is generated uniformly at random. 
• Crossover probability constant: Cr = 0.5 

The number of iteration for all algorithms and the values of F 
for SDE are given in Table 2. 
 
C.  Results and Analysis 

In this section, the simulation results for the 8 benchmark test 
functions are given to show the merits of the WMWC-DE.  All 
results shown are averaged data out of 50 trials. 
 
 
 
 
 
 

Table 2.  Number of iteration and the value of F for SDE. 
Test function No.  of iteration Fixed F Weight 

Rosenbrock’s function 25 0.85 

Quartic function 60 0.5 

Easom’s function 200 0.5 

Maxican hat function 20 0.5 

Six-hump camel back function 20 0.5 

Generalized Griewank’s function 100 0.5 

Generalized Ackley’s function 500 0.5 

Schwefel’s function 500 0.5 

 
Table 1.  Benchmark Test Functions. 
Test function Domain range Optimal point 
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Fig. 6.  The fitness of the Rosenbrock function. 

 

 
Fig. 7.  The fitness of the Quartic function. 

 

 
Fig. 8.  The fitness of the Easom’s function. 

 

 
Fig. 9.  The fitness of the Maxican hat function. 

 

 
Fig. 10.  The fitness of the Six-hump camel back function. 

 

 
Fig. 11.  The fitness of the Generalized Griewank function 

 



 
 

 

 
Fig. 12.  The fitness of the Ackley function. 

 

 
Fig. 13.  The fitness of the Schwefel’s function. 

 
1.  Unimodal functions 

Function f1 is the Rosenbrock function, which is also called 
the Banana function.  The global minimum of these functions 
is inside a long, narrow, parabolic shaped flat valley.  Owing to 
the smooth and symmetric characteristic of f1, the main 
purpose of testing is to measure the convergence rate of the 
searching algorithms.  It is probably the most widely used test 
function.  The result is shown in Fig. 6.  The convergence rate 
of the proposed WMWC-DE is a bit higher than that of SDE.    
When using the proposed WMWC-DE, the solution quality is 
increased when the number of iteration increases.  As there is 
only one minimum within the solution space, nearly all the 
population will move towards that minimum.   

Function f2 is the Quartic function.  Since it is a polynomial 
of even degree, it approaches the same limit when the 
argument goes to positive or negative infinity.  Thus the 
function has a global minimum.  The result is shown in Fig. 7.  
We can see that the convergence rate of the proposed WMWC-
DE is much greater than that of SDE.  After around 20 times of 
iteration, the proposed method is able to reach the minimum. 

Function f3 is the Easom function where the global minimum 
is near a small area relative to the search space.  The function 

was inverted for minimization.  The result is shown in Fig. 8.  
For this function, the convergence rate of the proposed 
WMWC-DE is much higher than that of SDE.  While the 
performance of WMMC-DE is nearly the same as DE with 
wavelet mutation only, this experiment shows that the wavelet 
crossover does not take any advantage on reaching the 
minimum.  But the wavelet crossover does not worsen the 
performance of DE.  The solution quality is nearly the same for 
all algorithms when the number of iteration increases.  Taking 
advantage of the properties of the wavelet function to control 
the scaling factor in the wavelet mutation, the population can 
be kept in the small area near the minimum point.   

For unimodal functions, the proposed WDE can offer a 
higher rate of convergence as compared with SDE.  By 
adopting the Morlet wavelet on controlling the scaling factor F, 
the degree of freedom of the trial vector can be increased.  
More vector directions would be generated during the mutation 
operation.  Moreover, based on the fine-tuning ability of the 
wavelet crossover operation, the population can easily get into 
the small region around the global minimum.   
 
2.  Multimodal functions with a few local minima 
 

Two multimodal functions with a few local minima are 
evaluated with the three algorithms.  Function f4 is the Maxican 
hat function and function f5 is the six-hump camel back 
function.  All of them contain some local minima within the 
searching space.  The results are shown in Fig. 9 and Fig. 10.  
For function f4 and f5, it is found that all the searching methods 
perform similarly in reaching the optimal point.  While the 
functions contain a few local minima, all the searching 
methods do not get trapped in some local minima easily.  The 
advantage brought by the wavelet mutation and wavelet 
crossover to the searching is not obvious for these functions.  
Although the wavelet mutation and wavelet crossover do not 
bring significant improvement to reach the minimum of these 
functions, the convergence rate of the proposed WMWC-DE is 
still a bit higher than that of the SDE. 
 
3.  Multimodal functions with many local minima 

Functions f6 is the Generalized Griewank’s function which is 
a multimodal function with many local minima.  Griewank’s 
function is a widely employed test function for global 
optimization.  This function has an exponentially increasing 
number of local minima as its dimension increases and the 
locations of the minima are regularly distributed.  In the 
experiment, the dimension of the Generalized Griewank’s 
function is 30.  In consequence, the testing function contains 
plenty of local minima.  The tested result is shown in Fig. 11.  
It can be seen from this figure that if the wavelet mutation is 
used, the rate of convergence is much higher than that of the 
SDE.  It shows that by adding the wavelet mutation and 
wavelet crossover to the DE, we can reduce the chance that the 
searching process is trapped in some local minima.  Moreover, 
by introducing the wavelet crossover to DE, the searching 
process of WMWC-DE is capable of moving closely to the 



 
 

 

global minimum in the early iteration stage, as compared with 
the other two algorithms.  Thanks to the property of the 
wavelet crossover, the effort on searching and evaluating those 
local minima that are far away from the global minimum is 
reduced.   

Functions f7 is the Generalized Ackley’s function which is a 
continuous, multimodal function obtained by modulating an 
exponential function with a cosine wave of moderate 
amplitude.  Its topology is characterized by an almost flat outer 
region and a central hole or peak where the modulations of the 
cosine wave become more and more influential.  The result is 
shown in Fig. 12.  The experiment shows that if the wavelet 
mutation is used with DE, the fitness of the function dropped 
rapidly.  After 200 times of iteration, the fitness value is 
already close to the global minimum.  But both the SDE and 
DE with wavelet mutation cannot reach the global minimum.  
By applying both the wavelet mutation and wavelet crossover, 
the DE can reach the global minimum point at about 250 times 
of iteration.  It shows that WMWC-DE provides a better 
solution quality.  Furthermore, it can be seen from Fig. 12 that 
if the wavelet mutation and wavelet crossover are used, the 
convergence rate is much higher than that of the SDE.  The 
WMWC-DE is capable of moving closely to the global 
minimum at the early iteration stage.  This shows the 
advantage of incorporating wavelet mutation and wavelet 
crossover on reducing the effort on searching and evaluating 
those local minima that are far away from the global minimum.   

Functions f8 is the Schwefel’s function which is deceptive in 
that the global minimum is geometrically distant, over the 
parameter space, from the next best local minima.  Therefore, 
the search algorithms are potentially prone to convergence in 
the wrong direction.  The result is shown in Fig. 13.  Similar to 
functions f6 and f7, if the wavelet mutation and wavelet 
crossover are used, the convergence rate is much higher than 
that of the SDE.  Moreover, the WMWC-DE can move closely 
to the global minimum at the early iteration stage. 

For multimodal functions with many local minima, the 
proposed WMWC-DE can significantly improve the 
convergence rate and the chance of reaching the global 
optimum as compared to SDE.   

IV.  CONCLUSION 

In this paper, we proposed a new hybrid differential evolution 
with wavelet theory based mutation and crossover operation.  
In the mutation operation, we proposed an adaptive scheme on 
tuning the scaling factor F of the DE algorithm by applying the 
wavelet theory.  In the crossover operation of DE, we proposed 
an adaptive scheme on modifying the trial population vectors 
by applying the wavelet theory.  The resulting WMWC-DE 
takes advantage of the beneficial properties of the wavelet 
function to improve the solution quality and stability.  The 
proposed method can explore the solution space more 
effectively in reaching the global solution.  Simulation results 
have shown that the proposed wavelet mutation and wavelet 
crossover based DE is a useful algorithm to solve a suite of 

benchmark test functions, and offers better results in terms of 
convergence rate, solution quality and stability than SDE.  
Thanks to the properties of the wavelet, the performance and 
robustness of DE are improved.    
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