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Abstract—The discrete multiwavelet transform (DMWT) 
enables a signal to be analyzed in a multiresolution and 
multidimensional way. While the generated multiwavelet 
coefficients are vectors in nature, it has been generally 
understood that correlation exists between the vector elements. 
This feature has been adopted particularly in image coding 
applications to allow efficient design of VQ codebook. For a 
multiresolution analysis, the multiwavelet coefficients are 
generated from the multiscaling coefficients of the upper level. In 
this paper, we show that many multiwavelet systems cannot give 
correlated multiscaling vector elements, as different from the 
multiwavelet vector elements. But for those that can give 
correlated multiscaling vector elements, they can provide much 
information to assist in identifying the “blank” regions in a noisy 
signal. A new denoising algorithm is then proposed based on this 
feature and is particularly useful for sparse source signals. 
 

Index Terms— Multiwavelet, wavelets, denoising, cross 
correlations. 

 

I. INTRODUCTION 

Multiwavelet, which can be treated as an extension to the 
scalar wavelet, has drawn much attention in recent years [1]-
[5]. Much effort has been made in the studies of its kernel 
design [1][5], prefilter design [4], and applications [2][3]. 
Multiwavelet is different from the traditional scalar wavelet in 
that it consists of a set of scaling functions namely, 
multiscaling functions, which jointly form a Riesz basis for V0. 
It also consists of a set of wavelet functions namely, 
multiwavelet functions, which jointly form an orthonormal 
basis of L2(R). The number of scaling functions used in a 
multiwavelet system is indicated by its multiplicity. Similar to 
wavelet, multiwavelet construction is also associated with a 
multiresolution analysis, but of multiplicity r, where r is the 
number of scaling functions used in the system. The two-scale 
difference equations for multiscaling and multiwavelet 
functions can be derived as follows [1]: 
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Φ(x) and Ψ(x) in (1) represent the multiscaling function Φ = 
(φ1, φ2 …φr)T and the multiwavelet function Ψ = (ψ1, ψ2 …ψr)T 
respectively. Ψ belongs to the spaces Wj with the following 
relationship: 
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Hk and Gk are the so-called multifilters which link up the 
multiscaling and multiwavelet functions of different 
resolutions. As different from the scalar wavelet case, Hk and 
Gk are matrix-based FIR filters. It means that every 
coefficient of the filter is an r x r matrix, where r is the 
multiplicity. Taking the Fourier transform of (1), we have the 
following relationship: 
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increased free parameters allow us to design orthogonal and 
symmetric multiwavelet filter kernels, which can never be 
achieved by the traditional scalar wavelets [1][5]. When the 
multiwavelet is used to process scalar signals, the input 
signals need to be vectorized first before multiresolution 
analysis can be performed. To maintain the desirable 
properties of the multiwavelet, a prefilter is often used to 
serve the purpose [4]. Figure 1 shows the discrete 
multiwavelet transform (DMWT) with prefilter. 
 
 
 

 
 
 
 

 
 
 

Figure 1. DMWT with prefilter 
 
 

Prefilter 



II. CORRELATION PROPERTY OF MULTISCALING 
COEFFICIENTS 

 
Multiwavelet uses multiple scaling functions to jointly 

analyze and synthesize a signal. It is obvious that the 
frequency responses of different scaling functions should 
have some differences. Depending on the type of 
multiwavelet, the amount of differences between the scaling 
functions is also different. For instance, the multiscaling 
functions may not be all low-pass. And in fact most of the 
multiwavelets as reported in the literature have one or more 
band-pass scaling functions. The multiscaling coefficients 
generated by these band-pass scaling functions obviously will 
be much different from the low-pass ones. For example, 
Figure 2 shows the overall transfer functions (the transfer 
function including the prefilter) of the first level low-pass 
branch of the DMWT. In the figure, the overall transfer 
functions when using the DGHM [1] and CL [5] 
multiwavelets of multiplicity 2 with orthogonal second-order 
prefilter are shown. For the CL multiwavelet, one of the 
multiscaling functions is band-pass while the other is low-
pass. Hence the overall transfer function of the two channels 
is quite different as shown in Figure 2. For the DGHM 
multiwavelet, the overall transfer functions are similar. Hence 
we can expect the multiscaling coefficients generated by 
using the DGHM multiwavelet should have a higher 
correlation among the vector elements than the CL 
multiwavelet.  
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Figure 2.  Overall transfer functions of the first level low pass 
branch of DMWT using DGHM (left column) and CL 

Multiwavelets (right column) with prefilter 
 
 
 

III. DMWT OF SIGNAL AND NOISE 

Simulations were performed to study the differences 
between the multiscaling coefficients of signal and white 
Gaussian noise. We are particularly interested in the 
correlation among the vector elements of their multiscaling 
coefficients. The testing signal “bumps” with sample size 
4096 was selected in our experiments. The DGHM 
multiwavelets and orthogonal second-order prefilter were 
adopted for the implementation of the DMWT. Figure 3 show 
some of the simulation results. It is found that, for the signal 

“bumps”, the multiscaling coefficients of the two channels are 
similar up to a scale difference at least for the first few levels 
of DMWT. It is not the case for noise. Its multiscaling 
coefficients have much dissimilarity among the two channels 
starting from the prefilter output.  
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Figure 3. Level 1 multiscaling coefficients of signal (upper) and 
noise (lower). 

 
The result can be explained from a statistical point of view. 

Since the prefilter is an orthogonal filter bank, the statistical 
property of noise will not change after the prefiltering. So if 
we measure the correlation of noise among the two outputs of 
the prefilter, they should be zero in theory. It is not the case 
for signal since it is not a random process. The prefilter 
outputs can still have high correlation depending on the 
prefilter design. The same argument can also be applied to the 
subsequent multiwavelet transform since it is also orthogonal. 
The white Gaussian property of noise will be preserved. In 
addition, we have seen in Figure 2 that the overall transfer 
functions of the DGHM multifilters are similar. It helps to 
maintain the correlation among the vector elements of the 
multiscaling coefficients of signal. It is only when the level is 
high then the correlation of signal coefficients may be 
reduced due to the repeated application of the decimation 
operator. Certainly the above argument does not apply to 
those multiwavelets that have great difference in their 
multiscaling functions, such as the CL multiwavelet. 

 
 

IV. ADAPTIVE MULTIWAVELET DENOISING 

Based on the studies on the dissimilarity between the 
multiscaling coefficients of signal and noise, a new adaptive 
multiwavelet denoising algorithm is proposed. For simplicity, 
DGHM multiwavelet of multiplicity 2 is used in the algorithm. 
It is noted that the algorithm can be extended to other 
multiwavelets and multiplicities only if their low-pass 
multifilters have similar overall transfer functions at least for 
the first few levels.  

 
The algorithm starts with the estimation of the local cross 

correlation among the vector elements of each multiscaling 
coefficient as follows: 
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where N is the number of adjacent samples that will be 
taken account for the local cross correlation computation, M is 
an empirical constant which is related to the variance of noise 
and cj,k,l represents the multiscaling coefficient of sample 
number k channel l at level j. Using the above equation, the 
estimated local cross correlation at the first level low pass 
branch of the DMWT of the signal “bumps” and noise are 
shown in Figure 4. Note that whenever there are signal 
coefficients, the local cross correlation Rxorr will have a very 
high value. In contrary, Rxorr becomes small for the regions 
containing only noise coefficients. 
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Figure 4. Cross correlation of the first level multiscaling 

coefficients of signal and noise 
 
 
Hence for a noisy signal that contains both signal and noise, 

we expect its multiscaling coefficients will exhibit a similar 
behavior as above at least for the first few levels. The noise 
multiscaling coefficients are then suppressed by using the 
following equation:  
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In (5), cj,i is the iih multiscaling coefficient at level j. As 
discussed above, Rxorrj(i)  will be small if the coefficient i at 
level j contains only noise energy. In this case, a factor tends 
to 0 will be multiplied to cj,i to suppress its magnitude as 
indicated in (5). On the other hand, Rxorrj(i) will be large if 
the coefficient i at level j contains signal energy. A factor 
tends to 1 will be multiplied to cj,i and hence the signal energy 
will be retained. The processed multiscaling coefficients will 
be used for generating the next level of multiscaling and 
multiwavelet coefficients. The above procedure will be 
repeatedly applied to the next level of multiscaling 
coefficients if the signal coefficients still exhibit a high 
correlation among the vector elements.  
 

Note that (5) can only suppress the noise in the regions 
where signal is not found. Hence it is particularly useful to 
those signals that are extremely sparse. Many practical signals 
have such characteristic. Examples include the 
electrocardiogram (ECG) signals and the activation patterns 
in functional magnetic resonance imaging (fMRI) [6]. For 
those regions which are mixed with signal and noise, the 

multivariate shrinkage [2][3] can be applied to the 
multiwavelet coefficients to reduce the noise energy. The 
proposed adaptive multiwavelet denoising algorithm is 
summarized as follows 

 
1. Perform the first level of DMWT with prefilter.  
2. Compute the cross correlation function (4) for each 

multiscaling coefficient and apply (5) to suppress the noise 
coefficients. 

3. Apply multivariate shrinkage to the multiwavelet 
coefficients to further reduce the noise energy. 

4. By using the denoised multiscaling coefficients, generate 
the next level of multiscaling and multiwavelet 
coefficients. 

5. Repeat step 2 for the new level if the multiscaling 
coefficients exhibit a high correlation among the vector 
elements.  

6. Repeat step 3 for the new level of multiwavelet 
coefficients to reduce the noise energy.  

7. Repeat step 4 – 6 until all levels of multiscaling and 
multiwavelet coefficients are denoised. 

8. Reconstruct the signal by using the inverse DMWT. 
 
 

V. SIMULATION AND RESULTS 

The performance of the proposed adaptive multiwavelet 
denoising algorithm is demonstrated in this section. The 
testing signal “bumps” with sample size 4096 was selected in 
the simulation. The signal is contaminated with zero mean 
white Gaussian noise at different SNR 5, 10, and 15dB. The 
noisy signal is then transformed by the DMWT using the 
DGHM multiwavelet of multiplicity 2 and the orthogonal 
second-order prefilter. Seven levels of multiscaling and 
multiwavelet coefficients are generated. While all levels of 
multiwavelet coefficients are denoised using the multivariate 
shrinkage, only the first 4 levels of multiscaling coefficients 
are denoised using the proposed algorithm. The parameter N 
of (4) is set to 5 and M is set to 0.05, 0.125 and 0.5 for the 
noisy signal with SNR 5, 10 and 15dB, respectively. The 
performance of the proposed algorithm is compared with four 
other wavelet-based denoising methods, namely multivariate 
shrinkage [2][3], wavelet SureShrink (hybrid and rigorous) 
[7], and spatially adaptive shrinkage [8]. 50 Monte Carlo 
simulations were performed for the noisy signals of different 
SNR in order to obtain accurate results. 

 
As it is shown in Table 1, the proposed adaptive 

multiwavelet denoising algorithm outperforms the other 4 
consistently. The testing system “bumps” is the kind of signal 
that is sparse in nature. The SureShrink (or the rigorous mode 
SureShrink, the name used in Matlab) cannot perform well 
due to the insufficient signal data to construct the SURE 
profile. The hybrid mode SureShrink works better as it allows 
switching back to using universal threshold when signal data 
are not enough. However, the universal threshold cannot 
adapt to the varying characteristic of the signal hence the 



performance can only be average. The worse performance of 
the spatially adaptive shrinkage is expected. “Bumps” is a 
kind of sparse signal that its wavelet coefficients can hardly 
be described by GGD with β between 0.5 to 1, which is the 
criterion for the spatially adaptive shrinkage algorithm to be 
optimal [8]. The proposed algorithm in fact is the combination 
of the multivariate shrinkage and the denoising of the 
multiscaling coefficients. Hence the performance should be 
better than using the multivariate shrinkage alone. The 
amount of improvement depends on the sparsity of the signal. 
Figure 5 further shows the denoised signals using different 
algorithms. As seen in the figure, the proposed algorithm 
gives a visually more pleasant denoised signal. 

 
 

SNR 

(dB) 

Multi-
variate 
Shrink  

Proposed SureShrink 
(Hybrid/ 

Rigorous)  

Spatially 
Adaptive 
Shrinkage 

5 18.267 18.843 18.086 /  
17.755 

9.970 

10 22.541 23.906 22.464 / 
22.112 

21.132 

15 26.643 27.627 26.061 / 
25.940 

27.081 

Table 1. Signal to error ratio (dB) of the enhanced signal using 
different denoising algorithms  
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Figure 5(a). Noisy “bumps” signal with SNR = 10dB 
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Figure 5(b). Denoised signal using multivariate shrinkage 
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Figure 5(c). Denoised signal using SureShrink (hybrid) 
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Figure 5(d). Denoised signal using the proposed approach 
 

 
 
 

VI. CONCLUSION 

An adaptive denoising algorithm based on the local cross 
correlation between the vector elements of the multiscaling 
coefficients is proposed. It suppresses the noise in the 
multiscaling coefficients before they are further decomposed 
to generate the next level of multiscaling and multiwavelet 
coefficients. Multivariate shrinkage is also applied to all 
multiwavelet coefficients to further reduce the noise energy. 
Simulation shows that the proposed algorithm gives good 
result as compared with the traditional multiwavelet-based or 
wavelet-based denoising methods particularly when the signal 
is sparse. 
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