
 

Instructions for use

Title Lifting Based Wavelet Transforms on Graphs

Author(s) Narang, Sunil K.; Ortega, Antonio

Citation Proceedings : APSIPA ASC 2009 : Asia-Pacific Signal and Information Processing Association, 2009 Annual Summit
and Conference, 441-444

Issue Date 2009-10-04

Doc URL http://hdl.handle.net/2115/39737

Type proceedings

Note
APSIPA ASC 2009: Asia-Pacific Signal and Information Processing Association, 2009 Annual Summit and
Conference. 4-7 October 2009. Sapporo, Japan. Poster session: Signal Processing Theory and Methods I (6 October
2009).

File Information TA-P1-10.pdf

Hokkaido University Collection of Scholarly and Academic Papers : HUSCAP

https://eprints.lib.hokudai.ac.jp/dspace/about.en.jsp


Lifting Based Wavelet Transforms on Graphs
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Abstract—We present a novel method to implement lifting
based wavelet transforms on general graphs. The detail and
approximation coefficients computed from this graph transform
can be interpreted similarly to their counterparts in standard
signal processing process. Our approach is based on partitioning
all nodes in the graph into two sets, containing “even” and “odd”
nodes, respectively. Then, as in standard lifting, nodes of one
parity are used to predict/update those of the other. We discuss
the even-odd assignment problem on the graph and provide
a solution that is well suited to construct the transform. As
an example we discuss how our transform could be used in a
denoising application.

I. I NTRODUCTION

In this paper our goal is to analyze graph structured data
using local invertible transforms. Graphs, particularly labeled
graphs arise naturally in data-mining, biology [1], network
analysis [2],[3],[4] and social studies [5]. We are concerned
with graphs ranging from planar acyclic graphs such as trees
to more general multi-dimensional non-acyclic graphs suchas
social networks, Internet etc.

Transform techniques for graph analysis can be broadly be
divided into a) global methods, e.g., those using concepts of
graph spectral theory, and b) local methods, which exploit
correlations in a local neighborhood. Global methods are
often based on the Laplacian matrix, whose eigenvalues and
eigenvectors contain global information about the shape ofthe
graph. Major applications of global methods include, graph
partitioning [5], simplification and graph based feature extrac-
tion [6],[7]. A comprehensive discussion of global methods
can be found in [8] and [9]. While global methods are widely
used, they are highly sensitive to changes in graph structures.
For example the Laplacian matrix may have very different
eigenvalues and eigenvectors, even when the corresponding
graphs have similar structure. In addition to uncovering mostly
global information, global methods do not scale well as the
graph size increases, e.g., the time required to perform the
eigenvalue decomposition can be significant. Therefore there
is a need for practical scalable algorithms that can captureboth
local and global patterns in the graph data and are robust to
small changes in the graph structures. Local methods on the
other hand exploit local similarities in a graph. They are dis-
tributed and locally generated resulting in less computational
complexity. Unlike global methods, changes in a local region
of the graph only affect the coefficients in that region and do
not alter the overall results. In spite of these advantages,very
limited work has been reported in this area.

While wavelet-based techniques would seem well suited
to provide efficient local analysis, a major obstacle to their
application to graphs is that these, unlike images, are not
regularly structured. For example, discrete wavelet transforms
use local filtering operations followed by downsampling. In
a graph, locality can be defined, e.g., by considering the
one-hop neighborhood of a node (the set of nodes directly
connected to it), but there is no obvious way to downsam-
ple in a regular manner, since these neighborhoods vary in
size and orientation. Recently there have been proposals to
create wavelet transforms for data on graphs. Crovella and
Kolaczyk [2] proposed wavelet-like basis functionsψjk for
graphs which are localized w.r.t. a range of location/scale
indices, but their transform is not invertible in general. Wang
and Ramchandran [4] have proposed graph dependent basis
functions for sensor network graphs. These basis functions
are locally supported but their dual basis are not. Hence this
method cannot be called a locally invertible transform. Shen
and Ortega [3] have applied wavelet lifting transforms on
spanning trees for a wireless sensor network application, where
invertibility is guaranteed for any tree, as long as nodes inthe
tree are partitioned into two sets (even and odd nodes) and
the transform is structured by modifying even nodes based
on odd nodes (and vice versa). The starting point for our
work is the observation that the idea in [3] can be extended
to arbitrary graphs, no longer constrained to be planar and
acyclic, as long as suitable even/odd assignment algorithms on
the graph can be identified. In Section II we define these novel
lifting transforms. Our experiments in Section III provide
promising preliminary results using these transforms on a
simple denoising task.

II. L IFTING TRANSFORM ONGRAPH

Wavelet transforms have been widely used as a signal
processing tool for a sparse representation of signals. Wavelet
based transforms split the sample space into an approximation
and a detail subspace. The approximation subspace contains
a smoother version of the original signal and the details
of the signal are contained in the detail subspace. Crovella
and Kolacyzk [2], apply a discretized wavelet like transform
on graphs for anomaly detection. Regions around each node
are segmented into disks such that a k-hop disk contains
nodes which are exactly k-hop distant from the root node.
The wavelets centered at each node are assigned positive
weights for even-hop disks and negative weights for odd-hop



disks. This transform can be applied to general graphs, but
is non-invertible in general, making this transform unsuitable
for certain applications such as compression and denoising.
Additionally these wavelet transforms use average data of all
the nodes situated on the same disk around the root node.
For large dataset the k-hop disk size can grow rapidly with
increasing k and resulting in loss of locality of the transform.

Our goal is to achieve invertibility with a local trans-
form. Shen and Ortega [3] design a unidirectional 2D lifting
transform along arbitrary trees in a wireless sensor network
application. Given a tree graph, the authors split the nodes
into even and odd nodes based on their minimum hopping
distance from the root node (see the tree defined by solid
lines in Figure 1 as an example). A lifting transform is then
applied locally on the tree using these assignments. Since
trees are acyclic planar graphs, the even-odd assignment of
nodes is well-defined and no pair of directly connected nodes
is assigned identical (even/odd) parity. To apply this idea
to arbitrary graphs (in general cyclic and non-planar) would
require selecting an even-odd assignment on these graphs.
Referring again to Figure 1 if we now consider a graph that
includes both solid and dashed lines (planar but cyclic) it can
be seen that nodes that are neighbors in the graph are no
longer guaranteed to have opposite parity (e.g., 4 is even and
connected to 3 and 5 which are both even as well).

Since a lifting-based transform uses information from even
(resp. odd) nodes in order to predict (update) an odd (resp.
even) node, having neighboring nodes with same parity means
that some local information cannot be used (e.g., we cannot
use information in all neighbors to predict information in a
given node).

Fig. 1. Even Odd Assignment in routing trees designed in [3].The dashed lines
show the edges not used by the transform though they are within radio-range

Thus in order to apply a lifting-based transform to an
arbitrary graph we would like to split the nodesV in the
graph into even and odd sets. Using the notations of [3],
starting from j = 1, at each scalej of the transform the
set of nodesUj−1 are first split into a set of ’even’ nodes
Uj and ’odd’ nodesPj . The coefficients in odd nodesPj

denoteddj,m(m ∈ Pj) are then predicted from the coefficients
in Uj denotedsj−1,n(n ∈ Uj) by applying prediction step
of lifting. The coefficients in even set of nodesUj are then
updated tosj,n usingdj,m. For next level of transform setUj

is again split into the setsUj+1 andPj+1 and similar steps
of lifting are applied. Thus after any suchk decompositions

the number of coefficients equals number of original samples
s0,n(n ∈ U0 ≡ V) and completely describe them, making the
entire process reversible.

While any split will guarantee invertibility, we seek tech-
niques to split (i.e., to label or color) the graph that minimize
the number of conflicts (i.e., the percentage of direct neighbors
in the graph that have same parity). This is then a bipartite
subgraph problem, where the goal is to split a graph into
two clusters (even/odd) so as to minimize the number of
removed edges (only edges connecting nodes within a cluster
are removed). The problem is NP-hard in general and for
a completely random even-odd assignment of nodes, the
probability of an edge having same parity on both its ends is
roughly 50%. Hence with a random assignment almost50%
edges are not utilized in the transform. In the next section we
describe a greedy method to approximate good even-odd split.

A. Even-Odd splitting of Graph

Assume an algorithm assigns a label (even/odd) to each
vertex of a graphG = (V,E) of sizeN with adjacency matrix
Adj such that there arem odd labels andN −m = l even
labels. If we rearrange the vectorv of vertices to gather even
and odd vertices at one place and rearrange the adjacency
matrix accordingly, we have

ṽ =

(
vodd

veven

)
Ãdj =

(
Fm×m Jm×l

Kl×m Ll×l

)
(1)

where vodd is a m × 1 array andveven is a l × 1 array.
The submatrixF of Ãdj is adjacency matrix of a subgraph
containing odd nodes only. SimilarlyL is a submatrix of
a subgraph having even nodes only. These matrices contain
edges which have conflicts since they connect nodes of same
parity. The block matricesJ and K contain edges which do
not have conflicts. A lifting transform based on this even-odd
assignment utilizes only theJ and K matrices of adjacency
matrix. F andL matrices are considered non-existent. So any
quality criteria for the even-odd assignment should be based
on minimizing edge information present in matricesF andL.
We propose one such criterion of minimizing the row sum of
adjacency matricesF andL.

For this purpose we use an algorithm called conservative
fixed probability colorer (CFP) given in [10]. The CFP colorer
algorithm solves the corresponding problem of 2 colors graph
coloring problem (2-GCP) so as to minimize the conflicts.
This algorithm is based on a simple greedy local heuristics
and gives competitive results as compared to other k-GCP
algorithms [10]. The algorithm is iterative and at each iteration
few randomly chosen nodes are activated. Each activated node
counts the number of conflicting edges with its neighbors and
changes its parity based on the conflict. In a more conservative
approach, the parity change happens sequentially in each
iteration. Formally the algorithm is presented in algorithm 1.
Figure 2(a) shows a sample even-odd assignment of Karate
Data [11] and Figure 2(b) shows the reduction of conflicts
with each iteration. The x-axis in Figure 2(b) is number of
iterations. The value on y-axis is the fraction of conflicting



edges. The convergence of solution has been discussed in

Algorithm 1 Even-Odd Assignment Algorithm
1: Randomly assign initial label to each node
2: for k = (1:1:max iter) do
3: Activate each node randomly with a fixed uniform

probability.
4: For each activated node choose a parity that minimizes

its conflict with neighboring nodes
5: Inform the neighboring nodes, if the parity is changed.
6: end for

(a) Even-Odd assignment on Graph(b) convergence of CFP algorithm

Fig. 2. Even-Odd assignment on Zachary Karate Data [11] usingeven-odd
algorithm 1.

[10]. If the solution converges, it ensures in probability that
there are no nodes having more than50% neighbors of same
parity. The algorithm can also be extended to weighted edge
graphs.

B. Graph Transform design

Once we have a disjoint set of even-odd assignment of nodes
in the graph, we can perform a lifting wavelet transform, as
given in Equation (2).

D1
1
= Xodd−JP×Xeven

S1
1
= Xeven+KU×D1

1

(2)

where matrixJp is prediction matrix computed from matrix
J of Equation 1 by multiplying each row with prediction
weights. SimilarlyKu is update matrix, computed from matrix
K by multiplying each row with update weights. This trans-
form is invertible and the original values can be recovered by
following inverse lifting steps given in Equation (3)

Xeven= S1

1
−KU×D1

1

Xodd= D1

1
+JP×Xeven

(3)

The prediction and update weights depend on the type of
application we choose. For the denoising example in the result
section, we use prediction and update weights similar to the
ones designed in lifting transform given in [3]. The prediction

weight for rowi of matrixJ is pi = (
m∑

j=1

J(i, j)+1)−1 and the

update weight for rowi of matrix K is ui = (2(
l∑

j=1

K(i, j)+

1))−1. Thus, in our implementation of lifting, first the data on
odd nodes are subtracted from a weighted sum of even parity

neighboring nodes to obtain detail coefficients.The even nodes
then update their data by adding a weighted sum of detail
values obtained in the previous step from their odd parity
neighboring nodes. This gives us a critically sampled invertible
transform. In some application when we want over-sampled
transforms on the graph, we swap the parity of even and odd
nodes. In this case, each node has one detail coefficient and
one update coefficient value. Original data values do not have
to be stored. The block diagram of an oversampled lifting
transform is given in Figure 3.

Fig. 3. Block diagram for an oversampled lifting transform and lifting
transform equations.

III. E XPERIMENTS AND RESULTS

We address a simple graph denoising application to demon-
strate the advantages of our invertible graph transform. Graph
denoising mayb be applied as a preprocessing tool in analyzing
real world graphs, e.g., protein interaction networks [12].
The toy graphs of our experiment are similarity graphs (see
[9], Section 2.2) withN uniformly sampled nodes from two
partially overlapping Gaussian distributions. An edge{i, j}
between two vertices in the graph exists if the difference in
the corresponding sample values is less than some threshold.
An example graph withN = 200 sample values is shown
in Figure 4(a). Figures 4(b)-(f) show Voronoi tessellations
of the distribution field withN = 1500 sampled points
as Voronoi sites. For Figure 4(b) the value of each sample
is the mean of the distribution from which it is drawn. In
Figure 4(c) sample values are the actual noisy values. The
intensity of each cell reflects the value of corresponding
sample in the cell rescaled to the range between[0, 1]. Figure
4 (d),(e),(f) are the Voronoi tessellations of denoised samples.
This problem can be seen as a 2D version of denoising
of a general M-dimensional discrete data. While our results
are preliminary they demonstrate promising performance as
compared to simple, single-step methods operating on the
Laplacian matrix that have been proposed in the literature.
Wavelet denoising is done by transforming noisy data into the
wavelet domain, applying thresholding in the wavelet domain,
and inverse transforming the denoised wavelet coefficients. In
this work, the wavelet coefficients are prediction coefficients
obtained by applying the proposed lifting based transform



on the graph. For thresholding we apply universal threshold
given by Donoho [13]thr =

√
2 log2(N) on the wavelet

coefficients normalized to the noise level [14]. We compare
our results to both short time and long time solutions of
the diffusion heat equation ([8], [15]) on the graphs . The
Voronoi tessellations of the field constructed from denoised
values of the samples are drawn in Figure 4(c)-(f). The plots
show that lifting transform based denoising results are closer
to original distribution in Figure 4(b) than diffusion based
methods. To quantitatively assess these results we use two

Fig. 4. (a)Similarity graph with 200 sampled points from the underlying
distribution.The nodes in shaded region areN (µ1, σ

2) and the nodes in white
region areN (µ2, σ

2) (b)-(f) Voronoi Plots

quality metrics: peak signal to noise ratio (PSNR) and standard
deviation(STD) of samples. Results are in Figure 6 and 5. As
can be seen in Figure 6, PSNR achieved in lifting is higher than
for diffusion based methods, with better results achieved with
the oversampled approach. Note that gains from oversampling
are only significant for relatively sparse graphs. In Figure5 we
can observe reduction STD with respect to the original signal
and, here too, we observe STD of oversampled transform to
be lower than STD in critically sampled case.

IV. CONCLUSIONS ANDFUTURE WORK

We propose a lifting based wavelet transform which can
be applied to arbitrary graphs. We define a very new way of
applying signal processing tools on graph based data with this
transform. In future, we would want to improve our even-odd
assignment algorithms, and extend the idea to a multi-level
lifting transform.
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