
 

Instructions for use

Title An Algorithm for Bit-Serial Addition of SPT Numbers for Multiplierless Realization of Adaptive Equalizers

Author(s) Choudhary, Sunav; Mukherjee, Pritam; Chakraborty, Mrityunjoy

Citation Proceedings : APSIPA ASC 2009 : Asia-Pacific Signal and Information Processing Association, 2009 Annual Summit
and Conference, 438-440

Issue Date 2009-10-04

Doc URL http://hdl.handle.net/2115/39736

Type proceedings

Note
APSIPA ASC 2009: Asia-Pacific Signal and Information Processing Association, 2009 Annual Summit and
Conference. 4-7 October 2009. Sapporo, Japan. Poster session: Signal Processing Theory and Methods I (6 October
2009).

File Information TA-P1-9.pdf

Hokkaido University Collection of Scholarly and Academic Papers : HUSCAP

https://eprints.lib.hokudai.ac.jp/dspace/about.en.jsp


1

An Algorithm for Bit-Serial Addition of SPT
Numbers for Multiplierless Realization of Adaptive

Equalizers
Sunav Choudhary, Pritam Mukherjee, Mrityunjoy Chakraborty

Department of Electronics and Electrical Communication Engineering
Indian Institute of Technology, Kharagpur, INDIA

email:mrityun@ece.iitkgp.ernet.in

Abstract— The “sum of power of two (SPT)” is an effective
format to represent multipliers in a digital filter which reduces
the complexity of multiplication to a few shift and add operations.
The canonic SPT is a special sparse SPT representation that
guarantees occurrence of at least one zero between every two
nonzero SPT bits. This paper presents a novel algorithm for bit
serial addition of two numbers, each given in canonic SPT form,
to produce a result also in canonic SPT. The proposed algorithm
uses the properties of canonic SPT numbers effectively, resulting
in considerable reduction of the hardware complexity of the bit
serial adder. The algorithm is particularly useful for multiplier
free realization of adaptive filters and equalizers, where the
current weight vector and the update term, both presumed to be
given in canonic SPT, are required to be added in a way that
retains the canonic SPT format for the updated weight vector.

I. I NTRODUCTION

In a digital filter, the complexity of realization both in
terms of silicon area and time is determined primarily by the
multipliers. Consequently, efforts have been made to design
filters that are free of multipliers. Ideally, if a multiplier is
replaced by a single signed power of two term, the complexity
reduces enormously since multiplication by a power of two
amounts to a simple shift operation. However, the coefficient
quantization error in such cases can be substantial affecting
the filter performance considerably. A more effective approach
for this is to approximate each multiplier by a sum of (signed)
power of two (SPT) while keeping the number of power of
two terms as few as possible. A well known sparse SPT
representation in this context is the so-called canonic SPT [1].
Under this, a coefficient, sayw, is represented as,

w =
R∑

r=1

s(r) 2g(r), (1)

wheres(r) ∈ {1, −1, 0} is the r-th SPT coefficient,g(r) is
an increasing sequence of integers andR is the number of
terms specified a priori. In canonic SPT, no two consecutive
terms are nonzero (i.e.,±1) simultaneously, i.e., if for any
r, s(r) = ±1, then boths(r + 1 and s(r − 1) must be
zero (for example,11 = 24 − 22 − 20, 19 = 24 + 22 − 20

etc.). In other words, the canonic SPT guarantees that at least
bR

2 c SPT coefficients in (1) are zero. A circuit to convert 2’s
complement numbers into canonic SPT, both in bit serial and
parallel form, has been presented in [1].

The SPT format has been used widely by researchers
over years for efficient realization of fixed coefficient digital
filters ([3]-[9]). The proposed algorithms are, however, offline
techniques which can not be used for realizing adaptive filters
whose coefficients change with time and thus can not be
represented by a fixed SPT expression. In an adaptive filter
(e.g., the LMS algorithm), the filter weights are updated as,

Future Weight = Current Weight + Update. (2)

Assuming that both theCurrent Weight and theUpdate
terms are available in canonic SPT form (the latter can be
converted to canonic SPT by the circuit of [1]), it is then
important to ensure that the summation in (2) generating
Future Weight produces the result in canonic SPT as well.
Towards this objective, we present a technique in this paper
for bit serial addition of two canonic SPT numbers producing
the result also in canonic SPT.

II. PROPOSEDALGORITHM FOR SPT ADDITION

Let the two numbers which are to be added
be a = aNaN−1 · · · a1a0 (≡ ∑N

i=0 ai 2i) and
b = bNbN−1 · · · b1b0 (≡ ∑N

j=0 bj 2j) represented in
canonic SPT forms, i.e.,ai, bj ∈ {1,−1, 0}, with no
two successiveai’s and bj ’s taking nonzero values. In the
proposed scheme, in thei-th cycle, we addai, bi and the
incoming carry ci generated in the(i − 1)-th cycle, and
produce the new carryci+1 and an intermediate resultspi,
which is to be adjusted to the final valuesi in the (i + 1)
clock cycle. In other words, in the proposed scheme, there is
a latency of one cycle between thei-th cycle input and the
corresponding output. The proposed algorithm is given below
where we use the notation1∗ to denote±1.

Algorithm : Given ai, bi, ci and spi−1, carry out the
following steps at thei-th cycle :
Step 1 (Addition) : Addai, bi and ci to produceci+1 and
spi.
Step 2 (Adjustment) : For adjustment, we utilize the following
identities :2i + 2i−1 = 2i+1 − 2i−1 and 2i − 2i−1 = 2i−1.
• If spi = 1∗ and spi−1 = −1∗, then adjustspi to 0 and
takesi−1 = 1∗ as the output (of the previous cycle).
• If spi = spi−1 = 1∗, then takesi−1 = −1∗, adjust spi



2

to 0 and propagate1∗ to the (i + 1)-th step asci+1 [Note
that for this case,ci+1 from Step 1 can not be1∗, since this
would imply that all the three bits,ai, bi and ci are1∗ each
simultaneously, which is, however, not possible, as shown in
Lemma 1 below].
• No adjustment needed otherwise, meaningspi−1 → si−1.

As seen above, the four bits,ai, bi, ci and spi−1 are
used to generatesi−1 and ci+1. Theoretically, these four bits
can have a total of34 = 81 combinations. However, as shown
by Lemmas 1-3 below, only a fraction of these combinations
are feasible while the remaining ones can not come up. This
results in considerable savings in hardware as one can use
the so-called “don’t care” states for the invalid combinations.

Lemma 1 : The three bits,ai, bi and ci can not be
non-zero simultaneously.
Proof : Suppose that the three bits,ai, bi andci are non-zero
simultaneously. From the characteristics of the canonic SPT
format, this implies thatai−1 = 0 and bi−1 = 0. The only
possible way to maintainci non-zero in this case is to have
ci−1 = 1∗ and spi−2 = 1∗ (in the (i − 1)-th cycle), which
would lead to the following adjustments/assignments, as per
the algorithm above :spi−1 → 0, spi−2 → si−2 = −1∗

and ci = 1∗. The combination,ci−1 = 1∗ and spi−2 = 1∗

can, however, occur only whenai−2 = 1∗, bi−2 = 1∗ and
ci−2 = 1∗, i.e., all the three bits,ai−2, bi−2 and ci−2 are
nonzero. Proceeding recursively, fori even, this would then
mean that the bits,a0, b0 andc0 are nonzero simultaneously,
which is, however, not possible, since, in the proposed
scheme, we always havec0 = 0. Again, for i odd, the above
meansa1, b1 andc1 are nonzero simultaneously. However,c1

can not be non-zero, since, from the canonic SPT property,
we have, in this case,a0 = 0, b0 = 0 and separately,c0 = 0.
Hence proved.

Lemma 2 : If exactly one of the four bits,ai, bi, ci

and spi−1 is zero, then it has to beci.
Proof : Suppose,ai = 0 and bi 6= 0, ci 6= 0 and spi−1 6= 0.
From the canonic SPT property, it then follows thatbi = 0.
To have spi−1 6= 0, one of the two bits,ai−1 and ci−1

must be nonzero, which, however, impliesci = 0 and thus a
contradiction. Same logic applies to the case wherebi = 0
and the remaining three bits are nonzero. Again, ifspi−1 = 0,
we have,ai, bi and ci nonzero simultaneously, which is not
permitted as per Lemma 1. Hence, the only possibility is
ci = 0.

Lemma 3 : If exactly two of the four bits,ai, bi, ci

and spi−1 are zero, then at least one of them has to beci or
spi−1.
Proof : Supposeai = bi = 0 and ci 6= 0, spi−1 6= 0. In this
case, to maintainci 6= 0, spi−1 6= 0, all the three bits,ai−1,
bi−1 and ci−1 have to be nonzero simultaneously which is,
however, not permissible as per Lemma 1. Hence proved.

III. C IRCUIT IMPLEMENTATION

As seen above, the algorithm is simply a rule to transform
the pair(ci+ai+bi, spi−1) to the triplet(ci+1, spi, si−1). De-
fine three functions,fc(ai, bi, ci, spi−1), fsp(ai, bi, ci, spi−1)
and fs(ai, bi, ci, spi−1) which generate the quantities
ci+1, spi and si−1 respectively at thei-th cycle following
the above algorithm. The truth table for each function is
displayed in Table I, where we have used Lemmas 1-3 to
reduce the number of combinations to just 37 from34 = 81.
The corresponding block diagram for hardware realization

fs fsp fc

D D

?? ?? ??

? ??

ai ai aibi bi bi

¾ - -
¾ ¾ -

r
r

r
r

spi ci+1

cispi−1

si−1

Fig. 1. Block Diagram of Bit-Serial Adder for numbers in Cannonical SPT
form

of the bit serial adder is shown in Fig. 1. Herefc, fsp and
fs are combinatorial blocks which implement the respective
truth tables given in Table 1. Note that since the SPT
representation uses altogether three bits, namely,1, −1, 0,
in a digital implementation, each SPT bit is represented by
two binary bits, as per the following :(1)SPT = (01)2,
(0)SPT = (00)2 and (1̄)SPT = (11)2, which is consistent
with 2’s complement representation of signed binary numbers.

REFERENCES

[1] Y.C. Lim, J.B. Evans and B. Liu, “Decomposition of Binary Integers
into Signed Power-of-Two Terms”,IEEE Trans. Circuits and Systems,
vol.38, no.6, pp. 667-672, June, 1991.

[2] Y.C. Lim, R. Yang, D. Li and J. Song, “Signed power-of-two term
allocation scheme for the design of digital filters”,IEEE Trans. Circuits
and Systems, part II, vol.46, no.5, pp. 577-584, May, 1999.

[3] H.H. Dam, A. Cantoni, K.L. Teo and S. Nordholm, “FIR Variable Digital
Filter With Signed Power-of-Two Coefficients”,IEEE Trans. Circuits and
Systems, Part I, vol.54, no.6, pp. 1348-1357, June 2007.

[4] S.Y. Park, N.I. Cho, “Design of Multiplierless Lattice QMF: Structure
and Algorithm Development”, IEEE Trans. Circuits and Systems, part
II, vol.55, no.2, pp. 173-177, Feb. 2008.

[5] Z.G. Feng, K.L. Teo, “A Discrete Filled Function Method for the Design
of FIR Filters With Signed-Powers-of-Two Coefficients”,IEEE Trans.
Signal Processing, vol.56, no.1, pp. 134-139, Jan. 2008.

[6] M. Aktan, A. Yurdakul and G. Dundar, “An Algorithm for the Design
of Low-Power Hardware-Efficient FIR Filters”,IEEE Trans. Circuits and
Systems part I, vol.55, no.6, pp. 1536-1545, July 2008.

[7] Y.J. Yu and Y.C. Lim, “Design of Linear Phase FIR Filters in Subex-
pression Space Using Mixed Integer Linear Programming”,IEEE Trans.
Circuits and Systems part I, vol.54, no.10, pp. 2330-2338, Oct. 2007.

[8] F. Xu, C.H. Chang and C.C. Jong, “Design of Low-Complexity FIR
Filters Based on Signed-Powers-of-Two Coefficients With Reusable
Common Subexpressions”,IEEE Trans. Computer-Aided Design of In-
tegrated Circuits and Systems, vol.26, no.10, pp. 1898-1907, Oct. 2007.

[9] S.Y. Park and N.I. Cho, “Design of signed powers-of-two coefficient
perfect reconstruction QMF Bank using CORDIC algorithms”,IEEE
Trans. Circuits and Systems part I, vol.53, no.6, pp. 1254-1264, June,
2007.



3

TABLE I

TRUTH TABLE FOR BIT-SERIAL ADDED OUTPUT

External Inputs Internal Inputs Internal Outputs External Output

ai bi ci spi−1 ci+1 = fc(ai, bi, ci, spi−1) spi = fsp(ai, bi, ci, spi−1) si−1 = fs(ai, bi, ci, spi−1)

0 0 0 0 0 0 0

0 0 1 0 0 1 0

0 1 0 0 0 1 0

1 0 0 0 0 1 0

0 0 1̄ 0 0 1̄ 0

0 1̄ 0 0 0 1̄ 0

1̄ 0 0 0 0 1̄ 0

0 1 1 0 1 0 0

1 0 1 0 1 0 0

1 1 0 0 1 0 0

0 1̄ 1̄ 0 1̄ 0 0

1̄ 0 1̄ 0 1̄ 0 0

1̄ 1̄ 0 0 1̄ 0 0

1̄ 1 0 0 0 0 0

1 1̄ 0 0 0 0 0

0 1̄ 1 0 0 0 0

1̄ 0 1 0 0 0 0

0 1 1̄ 0 0 0 0

1 0 1̄ 0 0 0 0

0 0 0 1 0 0 1

0 1 0 1 1 0 1̄

1 0 0 1 1 0 1̄

0 1̄ 0 1 0 0 1̄

1̄ 0 0 1 0 0 1̄

1 1 0 1 1 0 1

1̄ 1̄ 0 1 1̄ 0 1

1̄ 1 0 1 0 0 1

1 1̄ 0 1 0 0 1

0 0 0 1̄ 0 0 1̄

0 1 0 1̄ 0 0 1

1 0 0 1̄ 0 0 1

0 1̄ 0 1̄ 1̄ 0 1

1̄ 0 0 1̄ 1̄ 0 1

1 1 0 1̄ 1 0 1̄

1̄ 1̄ 0 1̄ 1̄ 0 1̄

1̄ 1 0 1̄ 0 0 1̄

1 1̄ 0 1̄ 0 0 1̄


	pg438: 438
	pg439: 439
	pg440: 440


