

Instructions for use

Title Memory Analysis for H.264/AVC Scalable Extension Decoder

Author(s) Hsu, Po-Yuan; Li, Gwo-Long; Chang, Tian-Sheuan

Citation Proceedings : APSIPA ASC 2009 : Asia-Pacific Signal and Information Processing Association, 2009 Annual Summit
and Conference, 299-302

Issue Date 2009-10-04

Doc URL http://hdl.handle.net/2115/39696

Type proceedings

Note APSIPA ASC 2009: Asia-Pacific Signal and Information Processing Association, 2009 Annual Summit and
Conference. 4-7 October 2009. Sapporo, Japan. Poster session: Advanced Circuits and Systems/VLSI (5 October 2009).

File Information MP-P3-6.pdf

Hokkaido University Collection of Scholarly and Academic Papers : HUSCAP

https://eprints.lib.hokudai.ac.jp/dspace/about.en.jsp

Memory Analysis for H.264/AVC Scalable

Extension Decoder

Po-Yuan Hsu, Gwo-Long Li, and Tian-Sheuan Chang
Institute of Electronics, National Chiao Tung University, Hsinchu, Taiwan

E-mail: pyhsu.ee96g@nctu.edu.tw, glli.ee95g@nctu.edu.tw, tschang@twins.ee.nctu.edu.tw

Abstract— In this paper, a systematic analysis for memory

usage in H.264/AVC scalable extension (SVC) decoder is

presented. This paper analyzes the memory requirements with

three different decoding flows, macroblock, row and frame

based, to find out a best method which can achieve optimal

trade-off between internal memory usage and external memory

access. The analysis shows that the SVC decoding needs 88% to

110% extra memory bandwidth compared to single layer H.264

decoding due to inter-layer prediction disregarding of decoding

flow. However, extra internal memory storage by inter-layer

prediction varies a lot according to the flow. This analysis could

provide as a foundation to design a SVC decoder for further step.

Index Terms— scalable video coding (SVC), decoder

I. INTRODUCTION

Recently, the advances of network bandwidth and wireless

access techniques boost the development of multimedia

services. The state-of-the-art video codec H.264/AVC

promises the dominant status over multimedia content service.

It provides high compression and high quality video but with

only fixed resolution. Due to the heterogeneities on user

devices and network environments, multimedia stream with

scalable features is demanded. A single bitstream to satisfy

various clients becomes more and more desired. Therefore,

Scalable Video Coding (SVC) [1] is introduced to provide

this service.

SVC is a new video codec based on H.264/AVC, currently

being normalized by the Joint Video Team (JVT). It provides

multiple display resolution, frame rate, and video quality

within a single bitstream. SVC allows three scalabilities

(spatial, temporal, and quality scalability) [1]. Figure 1 shows

the architecture of SVC encoder with two spatial layers.

Spatial scalability consists of three new inter-layer prediction

modes. When these modes are chosen, the corresponding data

is upsampled from previous layer.

Due to the spatial scalability, memory requirement of SVC

decoder is different from previous H.264 decoder [3]. The

main difference is that the decoded data need to be stored for

inter-layer prediction. Therefore, the memory requirements

are different between decoding flows if we taking the inter-

layer prediction into consideration.

In order to reuse inter-layer data efficiently, this paper

analyzes the internal memory and external memory

requirements for three different decoding flows, macroblock-

based, row-based, and frame-based methods. By the assistant

Base layer

coding

Multiplex

Motion-compensated

and Intra prediction

Spatial

decimation Progressive SNR

refinement texture

coding

texture

motion

H.264/AVC Compatible encoder

Inter-layer prediction

˙Intra

˙Motion

˙Residual

Base layer

coding

Motion-compensated

and Intra prediction

Progressive SNR

refinement texture

coding

texture

motion

Bitstream

Fig. 1 Architecture of SVC encoder with two spatial layers.

of this analysis results, a better way for SVC decoder

hardware design can be found.

The organization of this paper is described as follows.

Section II shows the overview of H.264 and SVC decoder.

The memory requirements of H.264 and three different SVC

decoding flows are described in Section III. Section IV

exhibits the analysis results among different situations. Then

we make conclusions in Section V.

II. OVERVIEW OF H.264/AVC AND SVC DECODER

For an H.264/AVC decoder, a straightforward decoding

process is macroblock by macroblock. The decoding flow

first parses the input bitstream by entropy decoding and

recovers the residual and related prediction mode data needed

for the decoding process. Then the residual is added with the

prediction samples from inter or intra prediction to recover

the pixel values.

In addition to the inherent decoding operations of H.264,

the SVC decoder supports three scalabilities, spatial, temporal,

and quality. For the purpose of memory analysis, we only

consider spatial scalability in this paper since temporal

scalability should be fully supported. For the spatial

scalability, base layer data needs to be decoded before its

corresponding macroblock in enhancement layer for the

purpose of inter-layer data reuse. Enhancement layer reuses

base layer information such as motion vectors, residuals, or

reconstructed samples for the reconstruction process. The

block diagram of SVC decoder is shown in Figure 2. There

are three new blocks in the figure within dashed line

compared to H.264. In which motion vector upsampling

upsamples macroblock partition and motion vectors from

The work is supported by National Science Council of Taiwan, under

Grant NSC 97-2220-E-009-018.

reference layer. Residual upsampling is corresponding to

inter-layer residual prediction and it block-wised upsamples

residuals. Sample upsampling process is used in inter-layer

intra texture prediction that upsamples the corresponding

reconstructed samples. With these inter-layer predictions,

SVC decoder can decode its data to recover the pixel values.

III. MEMORY ANALYSIS

A. Memory Analysis for H.264/AVC Decoder

The memory requirements of H.264 decoder are mainly

dominated by four parts: parsing data, macroblock processing

data, neighboring data, and decoded picture buffer. In the

following, a macroblock based decoding flow is assume. The

parsing data stores the information parsed from the bitstream,

such as the SPS, PPS, and slice header data. The transform

coefficients parsed from bitstream are also included in it. The

parsing data consumes about 4.4 KB memory derived

statistical results. The macroblock processing data stores the

information that may be used to reconstruct a macroblock

such as prediction mode, residuals, and reconstructed samples.

This part requires 4.8 KB memory spaces. Since the basic

processing unit is macroblock, above memory usage is

irrelevant to the frame size actually. The neighboring data

stores previous decoded neighboring macroblock information,

i.e. left, up, upper-right, or upper-left macroblock, which

contains motion vectors, reference picture, prediction mode,

and neighboring pixels. Pre-deblocking coefficients are also

included. The neighboring data is stored in a row of

macroblocks in frame width, for example, a row consists of

22 macroblocks in CIF size. For neighboring pixels, the size

is one line of samples of the frame width plus one column

height of a macroblock. The decoded picture buffer (DPB)

stores previous decoded frames as reference frame for inter

prediction. The DPB is refreshed after decoding one GOP.

However, the data of DPB are stored in external memory

since such significant memory requirement is unreasonable to

be stored in internal memory. From the analysis described

above, the internal memory usage and external memory

access of H.264 decoder are summarized in Table I and Table

II, respectively.

B. Memory Analysis for SVC Decoder

Memory requirement of SVC inherits the entire

requirement from H.264 with additional memory from inter-

layer prediction as shown in Figure 3. For the inter-layer

prediction, it reuses the reference layer data such as motion

vectors, residuals, and reconstructed samples. These data are

recognized as inter-layer data. With this inter-layer

dependency, different decoding flows will cause different

memory requirements. In this paper, we specify three

decoding flows, macroblock-based, row-based, and frame-

based, that can be applied to SVC decoding process.

Furthermore, their corresponding internal memory usage and

external memory access will be analyzed in the following

article.

Residual

decoding

Deblocking Filter

Input

Bitstream

Reconstructed frame

Sample

Reconstruction

Residual

Upsampling

Sample Upsampling

Inter-layer prediction

Intra Prediction

Neighboring data

(neighboring pixels)

Inter Prediction

Entropy Decoding

Parsing data

Motion Vector

Reconstruction
Neighboring data

(motion vectors)

Inter-layer data

(reconstructed

samples)

Inter-layer data

(residuals)

Motion Vector

Upsampling

Inter-layer data

(motion vectors)

Decoded picture

buffer

Fig. 2 Block diagram of SVC decoder.

NALU

Reader

SPS PPS Slice

header

SEI

Parsing data

Neighboring

data
Decoded

picture

buffer

Input bitstream

Decoded frame

NALU type

Decode MB

Macroblock

processing data

Inter-layer data (base layer

pixels, motion vector, residuals)

Fig. 3 SVC decoder memory map

TABLE I. INTERNAL MEMORY USAGE OF H.264/AVC DECODER

Name Size (KB)

*Parsing data ~4.4

*Macroblock processing data ~4.8

Neighboring data 0.2 * 1.06PicWidthInMbs 

PicWidthInMbs: number of macroblocks in a row of a frame

*: fixed data: will not change with the variation of frame resolution

TABLE II. EXTERNAL MEMORY ACCESS OF H.264/AVC DECODER

Name Size (KB)

Input bitstream *0.0375*PicSizeInMbs

Reference samples **1.35 *PicSizeInMbs

Reconstructed samples 0.375*PicSizeInMbs

PicSizeInMbs: number of macroblocks in a frame

*: assume the compression rate is 10% of the original data

**: assume every macroblock has 16 4x4 subblocks with one direction

prediction

1) Macroblock (MB)-based

The first decoding flow is macroblock-based, which

decodes one macroblock in base layer and then the

corresponding four macroblocks in the enhancement layer. In

this flow, inter-layer data can be reused immediately for

enhancement layer. Figure 4(a) illustrates the pseudo code of

this decoding method. In this method, we have to store the

neighboring data corresponding to its current decoding

macroblock of each spatial layer separately since multiple

layers are decoded at the same time. Therefore, the internal

memory usage, especially the neighboring data, is increased

with more layers as shown in Table III.Besides, we also have

to store the base layer decoded information as inter-layer data

for inter-layer prediction reference. Therefore, Table IV

shows the composed elements of inter-layer data and its

corresponding additional memory requirement. The

NumMBref is set as follows:

NumMBref =

2

0

2
2

d

n

n




 . (1)

d: number of spatial layers

In this method, these data can be immediately reused in the

following enhancement layer decoding. Table V shows the

corresponding external memory access.

2) Row-based

Row based decoding expands the decoding flow to row by

rows. After decoding one row of macroblocks in base layer,

the corresponding two rows in higher enhancement layer will

be decoded as shown in Figure 4(b). In this flow, inter-layer

data is reused for enhancement layer after one row processing.

Row-based decoding flow is similar to macroblock-based

decoding flow since both methods decoding multiple layers at

the same time. However, the control of row-based decoding

method is much easier than macroblock-based method since

the decoding process change between each layer is more

regular, i.e. the decoding macroblocks are continuous in each

layer. The main difference of memory requirement between

row-based and macroblock-based is that the size of inter-layer

data. The row-based manner should buffer whole row(s) of

inter-layer data. The NumMBref in Table IV in this method is

set as follows:

NumMBref =
2

0

PicWidthInMbs
d

n

n





 . (2)

d: number of spatial layers

PicWidthInMbsn: number of macroblocks in a row in spatial layer n

The external memory access is almost the same as

macroblock-based method.

3) Frame-based

Frame-based decoding means that the decoder processes each

frame layer by layer. In this flow, inter-layer data is reused for

enhancement layer after one frame processing. The pseudo

code is shown in Figure 4(c). The frames of enhancement

layer are decoded after the base layer decoding. This method

TABLE III. INTERNAL MEMORY USAGE OF MULTI-LAYER DECODING

Name Size (KB)

Parsing data ~4.5

Macroblock processing data ~5

Neighboring data

1

0

0.2 * 1.06(PicWidthInMbs)
d

n

n







d: the number of spatial layers

PicWidthInMbsn: number of macroblocks in a row of spatial layer n

TABLE IV. INTER-LAYER DATA REQUIREMENT OF SVC

Name Size (KB)

Reference layer motion vectors 0.125 * NumMBref

Reference layer residuals 0.75 * NumMBref

Reference layer samples 0.375*NumMBref

Reference layer others (mb_type,

sub_mb_type, ref_idx, …)
0.013*NumMBre f

NumMBref: number of macroblocks of reference layer

TABLE V. EXTERNAL MEMORY ACCESS OF SVC DECODER

Name Size (KB)

Input bitstream
1

0

0.0375 * PicSizeInMbs
d

n

n







Reference samples
1

0

1.35 * PicSizeInMbs
d

n

n







Reconstructed samples
1

0

0.375 * PicSizeInMbs
d

n

n







FGS coefficient

1

0

0.75 * * PicSizeInMbs
d

n

nq







d: number of spatial layers

PicSizeInMbsn: number of macroblocks in a frame

q: number of FGS layers

(a)

spatial_layer_id

while(spatial_layer_id < d) {

 while(CurrMbAddr < 4) {

 decode_one_macroblock();

 CurrMbAddr ++;

 }

 spatial_layer_id ++;

}

(c)
while(spatial_layer_id < d) {

 while(CurrMbAddr < PicSizeInMbs) {

 decode_one_macroblock();

 CurrMbAddr ++;

 }

 spatial_layer_id ++;

}

(b) spatial_layer_id

while(spatial_layer_id < d) {

 while(CurrMbAddr < PicWidthInMbs* 2) {

 decode_one_macroblock();

 CurrMbAddr ++;

 }

 spatial_layer_id ++;

}

spatial_layer_id: the index of current decoding spatial layer

d: number of spatial layers

CurrMbAddr: current decoding macroblock address

PicWidthInMbs: picture width in the unit of MBs

PicSizeInMbs: picture size in the unit of MBs

Fig. 4 Pseudo code for three decoding flows: (a) macroblock-

based, (b) row-based, (c) frame-based

has to store a whole frame of inter-layer data. The

amount of inter-layer data is to substitute (3) into Table

IV.

NumMBref =
2

0

PicSizeInMbs
d

n

n





 . (3)

d: number of spatial layers

PicSizeInMbsn: number of macroblocks in spatial layer n

However, these huge inter-layer data are unreasonable to be

stored in internal memory. Furthermore, due to different

layers are decoded at different time, neighboring data can be

stored in only one set of highest spatial layer without overlap.

Therefore, the internal memory size is reduced to by setting

d = 1 in Table III when compared to macroblock-based and

row-based decoding manners. The total external memory

access is same as Table V plus inter-layer data mentioned

above.

IV. RESULTS AND DISCUSSIONS

For a clearer picture of the memory usage, we show some

quantitative results in this Section. To calculate the memory

usage, we make several assumptions in our analysis: 95% of

macroblocks are coded in inter prediction, 90% of

macroblocks in enhancement layers are coded in Intra_BL

mode if the corresponding block in base layer is encoded as

Intra mode, and 10% macroblocks in enhancement layers use

residual prediction in average. This assumption is a general

statistic according to our experiment. The encoding settings

are listed in Table VI. Table VII shows the analysis results, in

which type I stores all inter-layer prediction data in the

internal storage while type 2 stores all inter-layer prediction

data in the external memory.

The result shows that inter-layer prediction data has great

impact to both internal memory storage as well as the external

memory access. For type I, internal memory size will be

increased by 81% to 8965% when compared to single layer

H.264 decoding, especially for frame-based decoding that

needs to store 1980 MBs of residuals, prediction modes and

motion vectors for inter-layer prediction. For row-based

decoding method, 110 MBs of inter-layer prediction data need

to be stored in internal memory. For MB-based decoding,

only 5 MBs data are needed. This is the reason why the

macroblock-based decoding method results in lower internal

memory usage. For external memory access, all these flows

are the same due to the same reference data. Thus, the MB-

based decoding is the best choice due to its smallest internal

memory usage and the same external memory access when

compared to frame-based and row-based decoding methods, if

an efficient internal memory design can be supported by the

technology provider.

Beyond type I, another design possibility is to store the

inter-layer prediction data into external memory to reduce the

chip cost, just as type II. From the table, it is interesting to

find that the extra external memory bandwidth due to inter-

layer prediction data is insignificant compared to the large

reference data. Thus, the bandwidth increasing in type II is

just 12% more when compared to that in type I. However, the

internal memory usage varies a lot for different coding flow.

MB-based decoding has the least reduction due to each layer

has its own neighboring data to be stored in internal memory

for each layer decoding. Same situation also occurs in row-

based decoding method as well. For frame-based decoding,

the internal memory storage is just 1% more than the single

layer H.264 decoding since all the extra storage is within the

external memory now. Therefore, the frame-based decoding is

the best choice for smallest internal memory size with the

acceptable memory bandwidth.

TABLE VI SIMULATION SETTINGS

GOP 8

QP 32, 26, 20

Intra period -1

Frame resolution QCIF, CIF, 4CIF

TABLE VI. TABLE VII COMPARISON OF MEMORY REQUIREMENTS

Decoding Flow

Internal Memory

(KB)

External Memory

Access (MB)

size ratio size ratio

Original H.264 27.9 100% 11.5 100%

Type I

MB 50.6 181% 21.7 189%

Row 126.6 454% 21.5 187%

Frame 2529 9065% 21.4 186%

Type II

MB 44.3 159% 24.2 210%

Row 43.5 156% 24 209%

Frame 28.2 101% 23.9 208%

V. CONCLUSIONS

In this paper, the memory requirement of SVC decoder is

analyzed for three SVC decoding flows. Analysis results

show that MB-based or row-based decoding can reuse the

inter-layer data but needs extra storage. These two can be a

design choice if efficient on-chip memory technology can

support. For lower internal memory size and low external

memory access, frame-based decoding with external storage

of inter-layer data can be a better choice for SVC decoder

design.

REFERENCES

[1] H. Schwarz, D. Marpe, and T. Wiegand, “Overview of the

scalable video coding extension of the H.264/AVC standard,”

IEEE Tran. CSVT, vol. 17, no. 9, pp.1103-1120, Sep. 2006.

[2] H. Schwarz, D. Marpe, and T. Wiegand, “Hierarchical B

Pictures,” Joint Video Team, Doc. JVT-P014, Jul. 2005.

[3] M. Pelcat, M. Blestel, M. Raulet, “From AVC decoder to SVC:

minor impact on a dataflow graph description,” in Proc. IEEE

PCS, Lisboa, Portugal, Nov. 2007.

	pg299: 299
	pg300: 300
	pg301: 301
	pg302: 302

