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Abstract— In this paper, a systematic analysis for memory 

usage in H.264/AVC scalable extension (SVC) decoder is 

presented. This paper analyzes the memory requirements with 

three different decoding flows, macroblock, row and frame 

based, to find out a best method which can achieve optimal 

trade-off between internal memory usage and external memory 

access. The analysis shows that the SVC decoding needs 88% to 

110% extra memory bandwidth compared to single layer H.264 

decoding due to inter-layer prediction disregarding of decoding 

flow. However, extra internal memory storage by inter-layer 

prediction varies a lot according to the flow. This analysis could 

provide as a foundation to design a SVC decoder for further step. 

 

Index Terms— scalable video coding (SVC), decoder 

I. INTRODUCTION 

Recently, the advances of network bandwidth and wireless 

access techniques boost the development of multimedia 

services. The state-of-the-art video codec H.264/AVC 

promises the dominant status over multimedia content service. 

It provides high compression and high quality video but with 

only fixed resolution. Due to the heterogeneities on user 

devices and network environments, multimedia stream with 

scalable features is demanded. A single bitstream to satisfy 

various clients becomes more and more desired. Therefore, 

Scalable Video Coding (SVC) [1] is introduced to provide 

this service. 

SVC is a new video codec based on H.264/AVC, currently 

being normalized by the Joint Video Team (JVT). It provides 

multiple display resolution, frame rate, and video quality 

within a single bitstream. SVC allows three scalabilities 

(spatial, temporal, and quality scalability) [1]. Figure 1 shows 

the architecture of SVC encoder with two spatial layers. 

Spatial scalability consists of three new inter-layer prediction 

modes. When these modes are chosen, the corresponding data 

is upsampled from previous layer. 

Due to the spatial scalability, memory requirement of SVC 

decoder is different from previous H.264 decoder [3]. The 

main difference is that the decoded data need to be stored for 

inter-layer prediction. Therefore, the memory requirements 

are different between decoding flows if we taking the inter-

layer prediction into consideration. 

In order to reuse inter-layer data efficiently, this paper 

analyzes the internal memory and external memory 

requirements for three different decoding flows, macroblock-

based, row-based, and frame-based methods. By the assistant  
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Fig. 1   Architecture of SVC encoder with two spatial layers. 

of this analysis results, a better way for SVC decoder 

hardware design can be found. 

The organization of this paper is described as follows. 

Section II shows the overview of H.264 and SVC decoder. 

The memory requirements of H.264 and three different SVC 

decoding flows are described in Section III. Section IV 

exhibits the analysis results among different situations. Then 

we make conclusions in Section V. 

II. OVERVIEW OF H.264/AVC AND SVC DECODER 

For an H.264/AVC decoder, a straightforward decoding 

process is macroblock by macroblock. The decoding flow 

first parses the input bitstream by entropy decoding and 

recovers the residual and related prediction mode data needed 

for the decoding process. Then the residual is added with the 

prediction samples from inter or intra prediction to recover 

the pixel values.  

In addition to the inherent decoding operations of H.264, 

the SVC decoder supports three scalabilities, spatial, temporal, 

and quality. For the purpose of memory analysis, we only 

consider spatial scalability in this paper since temporal 

scalability should be fully supported. For the spatial 

scalability, base layer data needs to be decoded before its 

corresponding macroblock in enhancement layer for the 

purpose of inter-layer data reuse. Enhancement layer reuses 

base layer information such as motion vectors, residuals, or 

reconstructed samples for the reconstruction process. The 

block diagram of SVC decoder is shown in Figure 2. There 

are three new blocks in the figure within dashed line 

compared to H.264. In which motion vector upsampling 

upsamples macroblock partition and motion vectors from 
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reference layer. Residual upsampling is corresponding to 

inter-layer residual prediction and it block-wised upsamples 

residuals. Sample upsampling process is used in inter-layer 

intra texture prediction that upsamples the corresponding 

reconstructed samples. With these inter-layer predictions, 

SVC decoder can decode its data to recover the pixel values. 

III. MEMORY ANALYSIS 

A. Memory Analysis for H.264/AVC Decoder 

The memory requirements of H.264 decoder are mainly 

dominated by four parts: parsing data, macroblock processing 

data, neighboring data, and decoded picture buffer. In the 

following, a macroblock based decoding flow is assume. The 

parsing data stores the information parsed from the bitstream, 

such as the SPS, PPS, and slice header data. The transform 

coefficients parsed from bitstream are also included in it. The 

parsing data consumes about 4.4 KB memory derived 

statistical results. The macroblock processing data stores the 

information that may be used to reconstruct a macroblock 

such as prediction mode, residuals, and reconstructed samples. 

This part requires 4.8 KB memory spaces. Since the basic 

processing unit is macroblock, above memory usage is 

irrelevant to the frame size actually. The neighboring data 

stores previous decoded neighboring macroblock information, 

i.e. left, up, upper-right, or upper-left macroblock, which 

contains motion vectors, reference picture, prediction mode, 

and neighboring pixels. Pre-deblocking coefficients are also 

included. The neighboring data is stored in a row of 

macroblocks in frame width, for example, a row consists of 

22 macroblocks in CIF size. For neighboring pixels, the size 

is one line of samples of the frame width plus one column 

height of a macroblock. The decoded picture buffer (DPB) 

stores previous decoded frames as reference frame for inter 

prediction. The DPB is refreshed after decoding one GOP. 

However, the data of DPB are stored in external memory 

since such significant memory requirement is unreasonable to 

be stored in internal memory. From the analysis described 

above, the internal memory usage and external memory 

access of H.264 decoder are summarized in Table I and Table 

II, respectively. 

B. Memory Analysis for SVC Decoder 

Memory requirement of SVC inherits the entire 

requirement from H.264 with additional memory from inter-

layer prediction as shown in Figure 3. For the inter-layer 

prediction, it reuses the reference layer data such as motion 

vectors, residuals, and reconstructed samples. These data are 

recognized as inter-layer data. With this inter-layer 

dependency, different decoding flows will cause different 

memory requirements. In this paper, we specify three 

decoding flows, macroblock-based, row-based, and frame-

based, that can be applied to SVC decoding process. 

Furthermore, their corresponding internal memory usage and 

external memory access will be analyzed in the following 

article. 
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Fig. 2   Block diagram of SVC decoder.  
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Fig. 3   SVC decoder memory map 

 

TABLE I.  INTERNAL MEMORY USAGE OF H.264/AVC DECODER 

Name Size (KB) 

*Parsing data ~4.4  

*Macroblock processing data ~4.8  

Neighboring data 0.2 * 1.06PicWidthInMbs   

PicWidthInMbs: number of macroblocks in a row of a frame 

*: fixed data: will not change with the variation of frame resolution 

TABLE II.  EXTERNAL MEMORY ACCESS OF H.264/AVC DECODER 

Name Size (KB) 

Input bitstream *0.0375*PicSizeInMbs 

Reference samples **1.35 *PicSizeInMbs 

Reconstructed samples 0.375*PicSizeInMbs 

PicSizeInMbs: number of macroblocks in a frame 

*: assume the compression rate is 10% of the original data 

**:  assume every macroblock has 16 4x4 subblocks with one direction 

prediction 



1) Macroblock (MB)-based 

The first decoding flow is macroblock-based, which 

decodes one macroblock in base layer and then the 

corresponding four macroblocks in the enhancement layer. In 

this flow, inter-layer data can be reused immediately for 

enhancement layer. Figure 4(a) illustrates the pseudo code of 

this decoding method. In this method, we have to store the 

neighboring data corresponding to its current decoding 

macroblock of each spatial layer separately since multiple 

layers are decoded at the same time. Therefore, the internal 

memory usage, especially the neighboring data, is increased 

with more layers as shown in Table III.Besides, we also have 

to store the base layer decoded information as inter-layer data 

for inter-layer prediction reference. Therefore, Table IV 

shows the composed elements of inter-layer data and its 

corresponding additional memory requirement. The 

NumMBref is set as follows:  

NumMBref = 

2

0

2
2

d

n

n




 .                           (1) 

d: number of spatial layers 
 

In this method, these data can be immediately reused in the 

following enhancement layer decoding. Table V shows the 

corresponding external memory access. 

2) Row-based 

Row based decoding expands the decoding flow to row by 

rows. After decoding one row of macroblocks in base layer, 

the corresponding two rows in higher enhancement layer will 

be decoded as shown in Figure 4(b). In this flow, inter-layer 

data is reused for enhancement layer after one row processing. 

Row-based decoding flow is similar to macroblock-based 

decoding flow since both methods decoding multiple layers at 

the same time. However, the control of row-based decoding 

method is much easier than macroblock-based method since 

the decoding process change between each layer is more 

regular, i.e. the decoding macroblocks are continuous in each 

layer. The main difference of memory requirement between 

row-based and macroblock-based is that the size of inter-layer 

data. The row-based manner should buffer whole row(s) of 

inter-layer data. The NumMBref in Table IV in this method is 

set as follows:  

NumMBref = 
2

0

PicWidthInMbs
d

n

n





 .            (2) 

d: number of spatial layers 

PicWidthInMbsn: number of macroblocks in a row in spatial layer n 
 

The external memory access is almost the same as 

macroblock-based method.  

3) Frame-based 

Frame-based decoding means that the decoder processes each 

frame layer by layer. In this flow, inter-layer data is reused for 

enhancement layer after one frame processing. The pseudo 

code is shown in Figure 4(c). The frames of enhancement 

layer are decoded after the base layer decoding. This method  

TABLE III.  INTERNAL MEMORY USAGE OF MULTI-LAYER DECODING 

Name Size (KB) 

Parsing data ~4.5  

Macroblock processing data ~5  

Neighboring data 

1

0

0.2 * 1.06( PicWidthInMbs )
d

n

n





  

d: the number of spatial layers 

PicWidthInMbsn: number of macroblocks in a row of spatial layer n 

TABLE IV.  INTER-LAYER DATA  REQUIREMENT OF SVC 

Name Size (KB) 

Reference layer motion vectors 0.125 * NumMBref 

Reference layer residuals 0.75 * NumMBref 

Reference layer samples 0.375*NumMBref 

Reference layer others (mb_type, 

sub_mb_type, ref_idx, …) 
0.013*NumMBre f 

NumMBref: number of macroblocks of reference layer 

TABLE V.  EXTERNAL MEMORY ACCESS OF SVC DECODER 

Name Size (KB) 

Input bitstream 
1

0

0.0375 * PicSizeInMbs
d

n

n





  

Reference samples 
1

0

1.35 * PicSizeInMbs
d

n

n





  

Reconstructed samples 
1

0

0.375 * PicSizeInMbs
d

n

n





  

FGS coefficient 

1

0

0.75 * * PicSizeInMbs
d

n

nq





  

d: number of spatial layers 

PicSizeInMbsn: number of macroblocks in a frame 

q: number of FGS layers 

 

(a) 

spatial_layer_id

while( spatial_layer_id < d ) {

  while( CurrMbAddr < 4  ) {

    decode_one_macroblock();

    CurrMbAddr ++;

  }

  spatial_layer_id ++;

}

 

(c)  
while( spatial_layer_id < d ) {

  while( CurrMbAddr < PicSizeInMbs ) {

    decode_one_macroblock();

    CurrMbAddr ++;

  }

  spatial_layer_id ++;

}

 

(b) spatial_layer_id

while( spatial_layer_id < d ) {

  while( CurrMbAddr < PicWidthInMbs* 2  ) {

    decode_one_macroblock();

    CurrMbAddr ++;

  }

  spatial_layer_id ++;

}

 

spatial_layer_id: the index of current decoding spatial layer 

d: number of spatial layers 

CurrMbAddr: current decoding macroblock address 

PicWidthInMbs: picture width in the unit of MBs 

PicSizeInMbs: picture size in the unit of MBs 

Fig. 4   Pseudo code for three decoding flows: (a) macroblock-

based, (b) row-based, (c) frame-based 



has to store a whole frame of inter-layer data. The 

amount of inter-layer data is to substitute (3) into Table 

IV.  

NumMBref = 
2

0

PicSizeInMbs
d

n

n





 .            (3) 

d: number of spatial layers 

PicSizeInMbsn: number of macroblocks in spatial layer n 

 

However, these huge inter-layer data are unreasonable to be 

stored in internal memory. Furthermore, due to different 

layers are decoded at different time, neighboring data can be 

stored in only one set of highest spatial layer without overlap. 

Therefore, the internal memory size is reduced to by setting   

d = 1 in Table III when compared to macroblock-based and 

row-based decoding manners. The total external memory 

access is same as Table V plus inter-layer data mentioned 

above. 

IV. RESULTS AND DISCUSSIONS 

For a clearer picture of the memory usage, we show some 

quantitative results in this Section. To calculate the memory 

usage, we make several assumptions in our analysis: 95% of 

macroblocks are coded in inter prediction, 90% of 

macroblocks in enhancement layers are coded in Intra_BL 

mode if the corresponding block in base layer is encoded as 

Intra mode, and 10% macroblocks in enhancement layers use 

residual prediction in average. This assumption is a general 

statistic according to our experiment. The encoding settings 

are listed in Table VI. Table VII shows the analysis results, in 

which type I stores all inter-layer prediction data in the 

internal storage while type 2 stores all inter-layer prediction 

data in the external memory.  

The result shows that inter-layer prediction data has great 

impact to both internal memory storage as well as the external 

memory access. For type I, internal memory size will be 

increased by 81% to 8965% when compared to single layer 

H.264 decoding, especially for frame-based decoding that 

needs to store 1980 MBs of residuals, prediction modes and 

motion vectors for inter-layer prediction. For row-based 

decoding method, 110 MBs of inter-layer prediction data need 

to be stored in internal memory. For MB-based decoding, 

only 5 MBs data are needed. This is the reason why the 

macroblock-based decoding method results in lower internal 

memory usage. For external memory access, all these flows 

are the same due to the same reference data. Thus, the MB-

based decoding is the best choice due to its smallest internal 

memory usage and the same external memory access when 

compared to frame-based and row-based decoding methods, if 

an efficient internal memory design can be supported by the 

technology provider.  

Beyond type I, another design possibility is to store the 

inter-layer prediction data into external memory to reduce the 

chip cost, just as type II. From the table, it is interesting to 

find that the extra external memory bandwidth due to inter-

layer prediction data is insignificant compared to the large 

reference data. Thus, the bandwidth increasing in type II is 

just 12% more when compared to that in type I. However, the 

internal memory usage varies a lot for different coding flow. 

MB-based decoding has the least reduction due to each layer 

has its own neighboring data to be stored in internal memory 

for each layer decoding. Same situation also occurs in row-

based decoding method as well. For frame-based decoding, 

the internal memory storage is just 1% more than the single 

layer H.264 decoding since all the extra storage is within the 

external memory now. Therefore, the frame-based decoding is 

the best choice for smallest internal memory size with the 

acceptable memory bandwidth. 

TABLE VI  SIMULATION SETTINGS 

GOP 8 

QP 32, 26, 20 

Intra period -1 

Frame resolution QCIF, CIF, 4CIF 

TABLE VI.  TABLE VII  COMPARISON OF MEMORY REQUIREMENTS 

Decoding Flow 

Internal Memory 

(KB) 

External Memory 

Access (MB) 

size ratio size ratio 

Original H.264 27.9 100% 11.5 100% 

Type I 

MB 50.6  181% 21.7 189% 

Row 126.6  454% 21.5 187% 

Frame 2529  9065% 21.4 186% 

Type II 

MB 44.3 159% 24.2 210% 

Row 43.5 156% 24 209% 

Frame 28.2 101% 23.9 208% 

V. CONCLUSIONS 

In this paper, the memory requirement of SVC decoder is 

analyzed for three SVC decoding flows. Analysis results 

show that MB-based or row-based decoding can reuse the 

inter-layer data but needs extra storage. These two can be a 

design choice if efficient on-chip memory technology can 

support. For lower internal memory size and low external 

memory access, frame-based decoding with external storage 

of inter-layer data can be a better choice for SVC decoder 

design. 
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