
 

Instructions for use

Title Development of exploratory research tools based on TANDEM-STRAIGHT

Author(s) Kawahara, Hideki; Takahashi, Toru; Morise, Masanori; Banno, Hideki

Citation Proceedings : APSIPA ASC 2009 : Asia-Pacific Signal and Information Processing Association, 2009 Annual Summit
and Conference, 111-120

Issue Date 2009-10-04

Doc URL http://hdl.handle.net/2115/39651

Type proceedings

Note
APSIPA ASC 2009: Asia-Pacific Signal and Information Processing Association, 2009 Annual Summit and
Conference. 4-7 October 2009. Sapporo, Japan. Oral session: Infrastructure Software for Speech Processing (5 October
2009).

File Information MP-SS1-1.pdf

Hokkaido University Collection of Scholarly and Academic Papers : HUSCAP

https://eprints.lib.hokudai.ac.jp/dspace/about.en.jsp


Development of exploratory research tools
based on TANDEM-STRAIGHT

Hideki Kawahara∗, Toru Takahashi†, Masanori Morise‡ and Hideki Banno§
∗ Faculty of Systems Engineering, Wakayama University, Wakayama 640-8510 Wakayama Japan

E-mail: kawahara@sys.wakayama-u.ac.jp Tel: +81-73-457-8461
† Graduate School of Informatics, Kyoto University, Kyoto 606-8501 Kyoto Japan

E-mail: tall@kuis.kyoto-u.ac.jp Tel: +81-75-753-5992
‡ College of Information Science and Engineering, Ritsumeikan University, Kusatsu 525-8577 Shiga Japan

E-mail: morise@fc.retsumei.ac.jp Tel: +81-77-561-5075
§ Faculty of Science and Technology, Meijo University, Nogoya 468-8502 Aichi Japan

E-mail: banno@ccmfs.meijo-u.ac.jp Tel: +81-52-838-2088

Abstract—This article introduces a new set of tools based
on TANDEM-STRAIGHT, a fundamental reformulation of
STRAIGHT, a speech analysis, modification and resynthesis
system introduced in 1997. STRAIGHT has been used in a
wide range of speech-related research as a flexible tool for
implementing experiments and applications though its scientific
foundation was not well established. TANDEM-STRAIGHT in-
troduced a solid basis to resolve this difficulty while preserving
the underlying concept of STRAIGHT. TANDEM is a procedure
for estimating a temporally static power spectral representation
of periodic signals. Together with this representation, the consis-
tent sampling theory enabled complete reformulation of entire
algorithms of STRAIGHT and led to a new implementation.
This new implementation was applied to develop a set of new
tools: temporally variable multi-aspect speech morphing tools,
a graphical user interface (GUI) for manipulating STRAIGHT
and morphing parameters, and procedures for preparing stimuli
for perceptual experiments.

I. INTRODUCTION

This article introduces a set of new speech research tools
based on a speech analysis, modification and resynthesis
system, TANDEM-STRAIGHT [1], with historical and con-
ceptual background. TANDEM-STRAIGHT is a completely
new formulation of its predecessor STRAIGHT [2], [3], [4]
(legacy-STRAIGHT 1) while preserving its underlying princi-
ples [3], [4].

STRAIGHT is essentially a contemporary version of a
channel VOCODER [5]. It decomposes an input speech signal
into two components, source information and spectral (filter)
information. The source information consists of fundamental
frequency (F0) information and an aperiodicity spectrogram
that represents the ratio between the random and periodic com-
ponents in each frequency band. Virtually complete decompo-
sition attained in STRAIGHT enabled flexible manipulation
of speech parameters without introducing severe degradations,
which were inevitable in previous implementations of a so-
called source-filter model.

Partially supported by Grants-in-Aid for Scientific Research (A) 19200017
by JSPS and the CrestMuse project by JST.

1“STRAIGHT” is used to represent both legacy-STRAIGHT and
TANDEM-STRAIGHT in this article. Only when necessary, prefixes “TAN-
DEM” or “legacy” are used.

Conceptual simplicity and flexibility in manipulations with-
out introducing severe degradations made STRAIGHT a con-
venient substrate for implementing various applications and
tools. Auditory morphing [6] is the most influential tool among
the others. It makes it possible to generate stimulus continuum
based on two speech examples with typical manifestation of
perceptual attributes, for example. Auditory morphing was
extended to a temporally variable multi-aspect procedure [7]
based on new TANDEM-STRAIGHT implementation.

In this latest implementation, a set of GUIs was also
introduced to reduce complexity involved in morphing manip-
ulations. The latest morphing procedure requires each of five
aspects to be specified as a single or a multidimensional time
series. These aspects are temporal axis mapping, frequency
axis mapping, time-frequency indexed spectrographic level
mapping, time-frequency indexed aperiodicity mapping and F0
mapping. Definition of mapping consists of the assignment
of anchoring points on each time-frequency representation.
The total number of anchoring points in the case of two-
mora Japanese words is typically around 30. In addition to
this anchoring information, about 60 or more numbers need
to be specified to define the amount of morphing, multi-aspect
temporally variable morphing rates.

The following sections begin with background motivations
behind STRAIGHT. A brief history of development and an
introduction to technical backgrounds are then followed by
descriptions of GUIs and step-by-step introduction to ma-
nipulations using GUIs.2 Finally, representative examples of
exploratory research and future plans are discussed.

II. BACKGROUND

Development of STRAIGHT has been intended to provide
relevant tools for speech perception research. In other words,
it was motivated by frustrations over conventional represen-
tations of speech sounds. Usual spectrographic representation
suffers from periodicity in speech sounds. However, this runs
counter to our everyday experiences in speech communication.
Periodic sounds such as vowels play important roles in speech

2The body of descriptions is placed in the appendix for readers’ conve-
nience.
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communication. They are perceived as smooth, stable and rich.
These aspects were not well represented by conventional meth-
ods. STRAIGHT was designed to provide a representation that
replicates this naive observation by removing interferences
due to periodicity from spectrographic representation while
preserving spectral details of periodic sounds [1], [3], [4].

The other motivation came from ecological points of view
in auditory perception, represented by a research framework
called “Auditory Scene Analysis”[8]. This ecological view
leads to the guideline that it is crucial to use test signals
that are relevant for a system to be tested when the system
consists of nonlinear components inside. That is the case in
doing research on speech perception. Relevant test signals for
speech perception are consequently natural speech. However,
this strongly restricts research strategies. STRAIGHT was
designed to solve this problem by providing a tool to re-
produce perceptually natural speech signals from decomposed
representations that enable precise quantitative manipulations.
It is important to note that such reproduction must not rely on
waveform reconstruction because completely different wave-
forms can be perceived as identical, for example two sample
fragments of white Gaussian noise.

A. Brief history of revisions
Development of STRAIGHT to date consists of vari-

ous refinements and a few fundamental inventions. Legacy-
STRAIGHT was based on a complementary set of time win-
dows for obtaining temporally stable spectral representations
and F0 adaptive frequency smoothing that is equivalent to
piecewise linear interpolation [2]. In the next refinement, its
F0 adaptive spectral smoothing was updated by introducing
an inverse filtering on the spatial frequency domain based on
a theory on spline functions and, at the same time, an in-
stantaneous frequency-based F0 extraction method was intro-
duced [3]. The subsequent refinement was made based on fixed
points of frequency to instantaneous frequency mapping [9].
It refined F0 extraction and aperiodicity representation. The
latest refinement of the legacy-STRAIGHT algorithm was a
“nearly defect free” (NDF) F0 extractor [10]. It still pro-
vides the best performance among F0 extractors available for
STRAIGHT. The morphing procedure introduced in 2003 was
revised in 2005 based on this refinement. These refinements
were initially implemented using Matlab [11], a high-level
language and interactive environment for scientific research.
Libraries and a real-time application [12] were implemented
using C language, based on these Matlab implementations.
The latest legacy-STRAIGHT implementation in C language
was conducted by the MEXT leading project e-Society [13]
and was made available [14]. Many applications have been
developed based on this legacy-STRAIGHT [15], [16], [17].

The most important revision is TANDEM-STRAIGHT.
TANDEM-STRAIGHT is based on two inventions, TAN-
DEM and a new spectral envelope recovery method. TAN-
DEM [18] is a simple method for yielding a temporally
static power spectral representation of periodic signals by
averaging two power spectra calculated at temporal positions
0.5/F0 apart. The spectral envelope recovery method is based
on a new formulation of sampling theory called “consistent
sampling” [19], which only requires recovery at resampled

Fig. 1. Schematic diagram of TANDEM-STRAIGHT. Manipulation block
modifies source parameters (F0 and aperiodicity) and STRAIGHT spectro-
gram as well as their coordinates (time and frequency axes).

points of D/A results. This revision made the STRAIGHT
procedure compact and transparent and led to an advanced
morphing procedure that enables temporally variable multi-
aspect morphing without introducing objective and perceptual
breakdown. This extension of morphing procedure introduced
excessive complexity in designing morphing materials and led
to the development of GUIs.

III. BASIC ALGORITHMS

This section introduces basic algorithms used in TANDEM-
STRAIGHT and the extended morphing procedures. Please
refer to original articles [1], [7], [18] for details.

A. TANDEM-STRAIGHT
Figure 1 shows a schematic diagram of TANDEM-

STRAIGHT. TANDEM-STRAIGHT consists of two essential
algorithms: the power spectral calculation algorithm TAN-
DEM and the spectral envelope calculation algorithm. They
are represented in the bottom left box of the diagram.

TANDEM is a procedure for extracting temporally static
power spectra, represented by the following equations [18],
[1]:

S(ω, t) =

∫
x(τ)w(τ − t)e−jωτdτ

PT (ω, t) =
|S(ω, t − T0/4)|2 + |S(ω, t + T0/4)|2

2
, (1)

where PT (ω, t) represents the TANDEM spectrogram. In these
equations, x(t) and w(t) represent the waveform under study
and the time windowing function. The interval T0 represents
the reciprocal of fundamental frequency f0. Temporally vary-
ing components in |S(ω, t)|2 are virtually cancelled by (1).

Spectral envelope estimation consists of two stages [1]:
spectral smoothing and compensation for consistent sampling:

C(ω, t) =

∫ ω

ωL

PT (λ, t)dλ

L(ω, t) = ln (C(ω + ω0/2, t) − C(ω − ω0/2, t))

PST (ω, t) = exp (q̃1(L(ω + ω0, t) + L(ω − ω0, t))

+ q̃0L(ω, t)) , (2)

where PST (ω, t) represents the STRAIGHT spectrogram and
ω0 = 2πF0 represents fundamental angular frequency. The
initial two lines are an implementation of spectral smoothing



3

using a rectangular smoothing kernel of width f0. The last
equation approximately applies the consistent sampling con-
cept by introducing compensation constants q̃0 and q̃1, which
are calculated from autocorrelation of the Fourier transform
of the time windowing function. This implementation assures
positivity of the resultant STRAIGHT spectrogram.

1) F0 extraction: These procedures rely on F0 estimation.
Several F0 extractors are implemented in the current release,
and it provides optional use of other publicly available extrac-
tors such as YIN [20], SWIPE [21], and others [22], [23].

The default F0 extractor [1] of TANDEM-STRAIGHT is
based on spectral division using two power spectral represen-
tations. Dividing a power spectrum consisting of periodicity
information by its envelope leaves a power spectrum with
periodicity information only and yields a periodicity detector
specialized to its assumed F0. The default F0 extractor consists
of a set of these specialized detectors setting assumed F0
candidates equidistant on the log-frequency axis covering
normal F0 range.

2) Aperiodicity extraction: Aperiodicity is represented as a
set of power ratios between periodic component and random
component in each frequency band. It provides information to
design a mixed-mode excitation source signal for resynthesis.
It is estimated band-wise linear prediction using forward and
backward segments one pitch period apart. Detailed descrip-
tions of aperiodicity estimation will be submitted elsewhere.

B. Temporally variable multi-aspect morphing
Extending the morphing rate to vary temporally requires a

reference time axis on which temporally variable morphing
rates are defined. Let subscripts A and B represent two exam-
ples to be morphed and m represent the reference. Using this
notation, let TAm(xA) represent a morphing transformation
of a parameter xA of example A to parameter xm on the
morphing axis m. A temporally variable morphing rate for
the parameter rAB(t) is defined to have the value 0 when the
morphed result is equivalent to example A and to have the
value 1 when the morphed result is equivalent to example B.
A new morphing definition is introduced and described using
this notation.

To alleviate breakdown in explorative morphing, morphing
is redefined based on a logarithm of the derivative of mapping
functions. This new definition of morphing also makes the
morphing procedure simpler as follows:

TAm(xA) =
∫ xA

0

exp
(

log
(

dTAm(λ)
dλ

))
dλ

=
∫ xA

0

exp
(

(1 − rAB(λ)) log
(

dTAA(λ)
dλ

)
+ rAB(λ) log

(
dTAB(λ)

dλ

))
dλ

=
∫ xA

0

(
dTAB(λ)

dλ

)rAB(λ)

dλ , (3)

because logarithmic conversion of the identity mapping van-
ishes. This formulation assures monotonicity of TAm if the
coordinate conversion TAB from speaker A to B is monotonic.

Two morphing algorithms are formulated based on this
new definition of morphing: real-time morphing and off-line

Fig. 2. Morphing procedure with a “reference” time axis for defining tem-
porally variable morphing rates. ΘA and ΘB represent grouped STRAIGHT
parameters of examples A and B respectively. rAB represents multi-aspect
morphing rates. ωs(t) represents morphed F0 represented by angular instan-
taneous frequency.

morphing. In the case of real-time morphing, the morphing
rates are incrementally supplied and used to update morphed
parameters incrementally. This formulation is useful for in-
teractive applications such as v.morish, a real-time singing
manipulation interface [24]. In the case of off-line morphing,
the morphed time axis, which is also the time axis for the
morphed signal, is calculated for the first time. Then, other
morphed parameters are calculated using the morphing rate
on this new reference axis. This formulation is necessary for
implementing an editing system for post production. Figure 2
illustrates the synthesis procedure using these parameters and
transformations.

IV. DESIGN CONSIDERATIONS

When using morphing in exploratory research, design of
transformation functions and assignment of multi-aspect tem-
porally variable morphing rates themselves are crucial steps
of the research. Researchers have to have full control of
design and awareness of what is assigned. These requirements
exclude use of automatic procedures. However, these prepa-
rations are time-consuming and prone to error. A set of tools
and GUIs is developed to solve these problems and to provide
means to interactively explore physical correlates of perceptual
attributes of speech. GUIs are also prepared for STRAIGHT
parameter manipulations.

In designing GUIs and tools, the following difficulties found
in using legacy-STRAIGHT with scripting and developing test
programs were taken into account.

• Parameter conditions used to synthesize a stimulus and
the generated sound file were usually separately handled
and resulted in confusion and loss of records.

• Scripts and programs were sometimes updated without
keeping records of older versions.

• Scripting and programming usually take so long that
researchers forget their original insights.
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• It is not always easy to find a relevant algorithm for the
desired tests. It is also not always easy to implement the
algorithm using Matlab and APIs of legacy-STRAIGHT.

Tools and GUIs were designed to remove these difficulties
because scripting and programming themselves are not users’
research targets.

V. EXAMPLES OF OPERATIONS

Step-by-step examples for using GUIs are given in the ap-
pendix to illustrate how these considerations are implemented
in GUIs and tools. There are two sets of GUIs. The first set
is for STRAIGHT analysis, modification and resynthesis. The
second set is for morphing and refers to the first set as sub-
functions.

VI. APPLICATIONS AND OTHER TOOLS

Interactive tools introduced in this article were found very
useful for quickly grasping perceptual phenomena qualita-
tively. However, those observations have to be tested using a
systematic experimental procedure. Combining GUI tools and
Matlab programming is a useful strategy for preparing stimuli
for such experiments.

Using a file consisting of a variable “STRAIGHTobject”
and manipulation data file saved using the GUI for
STRAIGHT parameter manipulation, a loop that incrementally
changes interpolation rates generates a stimulus continuum
connecting simple resynthesis to manipulated speech. This
strategy is applicable to investigating the contribution of each
STRAIGHT parameter on perceptual attributes.

Two morphing rate definition files are prepared by
the GUI for morphing rate manipulation using the same
“mSubstrates” data, and a similar incremental loop gen-
erates a stimulus continuum connecting those two morphed
sounds. This is a useful GUI application because defining
two set of relevant morphing rate for a specific test requires
much trial-and-error that involves a large number of parame-
ters. Morphing-based strategies using legacy-STRAIGHT were
already applied by other researchers and reported [25], [26].

This strategy is generalized to parameterized mapping.
Figure 3 illustrates schematic diagrams of such generalization.
The upper panel of Fig. 3 shows how to generalize linear in-
terpolation to nonlinear interpolation by using a parameterized
mapping function. The lower panel also shows generalization
to multi-dimensional nonlinear mapping using constraints of
a set of attributes. A linearized version using constraints of
a set of attributes was applied to develop user interfaces for
singing manipulations [27], [28].

TANDEM-STRAIGHT and temporally variable multi-
aspect morphing procedures, as well as their GUI tools, are im-
plemented using Matlab. In writing Matlab code, variables and
fields of structured variables are named to be understandable
by using long and meaningful words. First priority in writing
codes is placed on readability and is not on sophisticated tricks
for speed and memory efficiency. GUI codes are also designed
to provide programming examples to illustrate how to use APIs
for basic constituent functions of TANDEM-STRAIGHT.

In addition to Matlab-based implementation, there are sev-
eral projects and a product for implementing TANDEM-
STRAIGHT algorithms in C-language [29], [30]. Also, stan-

(a) Generalized parameterized path

(b) Generalized manipulation surface

Fig. 3. Schematic illustration of extended stimuli preparation using a pa-
rameterized connecting path between examples and manipulation surface for
composite control parameters.

dalone applications of these GUI-based tools are prepared
using Matlab Compiler.

VII. CONCLUSIONS

This article introduced GUI-based tools for TANDEM-
STRAIGHT parameter manipulations and temporally variable
multi-aspect morphing. They are designed to promote ex-
ploratory interactive research in speech perception. Availabil-
ity and conditions of the tools introduced in this article can
be found at the following web address.
http://www.wakayama-u.ac.jp/˜kawahara/STRAIGHTadv/
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APPENDIX

This appendix introduces GUIs and their operations us-
ing examples. They are implemented only using Matlab m-
language for avoiding platform dependency. They were tested
on Windows, Linux and Mac OS X and were found func-
tional. The following examples were prepared using Mac OS
X, which is the primary environment for development of
TANDEM-STRAIGHT and related tools.

A. First set: TANDEM-STRAIGHT
Typing “TandemSTRAIGHThandler” in the Matlab

command window invokes a menu interface for TANDEM-
STRAIGHT. At the very beginning, it opens a dialogue for
speech file selection. Once selection is made an interface
shown in the left panel of Fig. 4 appears. Only relevant buttons
are made accessible depending on the state of processing.

1) F0 extraction and editing: By clicking “F0/F0
structure extraction” the F0 extraction GUI appears.
Figure 5 shows its appearance just after the completion of
F0 extraction. Several F0 extractors can be selected by using
a pull-down menu user interface (UI) element on the top
right of the GUI. The pull-down menu consists of the de-
fault TANDEM-STRAIGHT F0 extractor (called XSX, which
stands for “eXcitation Structure eXtractor”), zero-frequency-
filtering-based F0 extractor, legacy-STRAIGHT’s NDF and the
default F0 extractor. YIN and SWIPE may also appear on the
pop-up item, if they are installed in the system and accessible
from Matlab. The GUI searches for them in the initialization
phase of the GUI and adds them to the menu item list. The
Matlab code also consists of a prototype interface code for
user-defined F0 extractors.
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Fig. 4. Left: Initial state of the STRAIGHT handling menu. Right: State
after F0 extraction. Note that only buttons that invoke relevant functions are
highlighted and the sound file name under analysis is displayed just under the
title.

Fig. 5. F0 extraction GUI after initial F0 extraction. F0 extractor is default
TANDEM-STRAIGHT F0 extractor.

The results shown in Fig. 5 were obtained using the default
TANDEM-STRAIGHT F0 extractor, XSX. The material is a
Japanese vowel sequence /aiueo/ spoken by a male speaker
at a relatively fast speaking rate. The middle panel shows the
extracted F0 trajectory (represented with a thick cyan-colored
line). Other F0 candidates that represent local periodicity are
plotted using colored dots. The color of the dots represents the
order of the periodicity level of each candidate. The periodicity
levels and the color ordering are shown in the top panel. One

Fig. 6. F0 extraction results by NDF. Note that no defect is found in the
extracted trajectory.

(a) (b)

(c) (d)
Fig. 7. F0 trajectory editing tools. Pointer shapes are dependent on graphical
objects under pointer and modifier keys.

important feature of XSX is this periodicity level. If a signal
is purely periodic in the observation window, its periodicity
level goes to 1. The other candidates also represent actually
existing local periodicity.

Figure 6 shows the results by NDF. The resulting F0
trajectory does not have any defects. However, the other can-
didates shown in the plots do not have physically meaningful
information. It also consists of spurious candidates caused by
nonlinear interactions between two internal procedures using
different periodicity clues. The other problem is that NDF is
slower than the other F0 extractors and cannot handle long
sound files due to memory demands.
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Figure 7 shows available edit functions represented by
shapes of pointers. They obey common GUI practice. The
time axis can be magnified by (mouse or any other positioning
device) clicking when the pointer shape is shown like (a) in
Fig. 7. The sign inside of the pointer changes to the minus
sign while the “shift” key is hold down. With the minus sign,
clicking makes the time axis shrink. Positioning the pointer
inside of the waveform plot turns it into a “hand” shape. The
magnified time axis can be dragged while the pointer exhibits
the hand shape.

The extracted F0 trajectory can be edited in two ways. By
using rubber band region selector, the search range for F0
candidates can be explicitly defined. If no candidates are found
for a specific frame inside the region, the originally selected
candidate at the frame is not replaced. This is the default
behavior and is shown in (c) of Fig. 7. By holding down the
“alt” key while the pointer is inside the F0 candidate plot, the
pointer shape changes to “pen.” Drawing a line using the pen
provides a hint for candidate search. The closest candidate at
each frame is selected when the minimum distance from the
line to the candidate is less than the predetermined threshold
(one half octave, this time). When no candidate is found within
the threshold, the value on the drawn line is substituted to F0
of the frame and this substitution is recorded.

When this F0 extraction and editing stage is completed,
clicking “Finish/upload” brings the interface menu to the front
of all windows. The menu at this phase is shown in the right
plot of Fig. 4.

2) Aperiodicity and STRAIGHT spectrum extraction: Two
analysis buttons on the menu are active, as shown in the right
plot of Fig. 4. The first one is for aperiodicity extraction
and the second is for STRAIGHT spectrum extraction. These
buttons can be clicked in any sequence. The “clear” button
removes all analysis results and enables the button for F0
extraction again.

3) Resynthesis and saving results: The left panel of Fig. 8
shows how the menu looks after aperiodicity and STRAIGHT-
spectral analyses. At this point, all the necessary information
for resynthesizing speech is ready. The analysis results can be
saved to a file by clicking the “Save STRAIGHT object”
button. It is also possible to click the “Synthesis” button to
resynthesize speech. The right panel of Fig. 8 shows the state
after resynthesis. The synthesized speech also can be saved to a
file by clicking the “Save synthesized sound” button.

4) Access to internal variables: The input data and analysis
results with other housekeeping information are stored in a
userdata field of a graphic object, this time the menu.
By using a handle of the object, it is easy to access to this
information. The following sequence provides an example:

>> Thandle = TandemSTRAIGHThandler;
>> userData = get(Thandle,’userdata’);

where “>>” is the prompt of the Matlab system. After
executing these lines, the variable “userData” has the fields
shown in Fig. 9. Field name was made readable, meaning self-
explanatory. Fields consisting of analysis and synthesis data
are themselves structured variables with detailed information
inside. Users can modify the content of these fields and use
them to resynthesize their own manipulated sounds.

Fig. 8. Left: State of STRAIGHT handling menu after aperiodicity and spectral
analysis. Right: State after resynthesis.

creationDate: ’20090430T110057’
dataDirectory: [1x59 char]
dataFileName: ’aiueoF1.wav’

samplingFrequency: 44100
waveform: [25600x1 double]

standAlone: 1
currentHandles: [1x1 struct]

F0extractionDate: ’20090430T110107’
HandleOfCallingRoutine: 158.0012

originalF0Structure: [1x1 struct]
refinedF0Structure: [1x1 struct]

AperiodicityExtractionDate: ’20090430T110138’
AperiodicityStructure: [1x1 struct]
SpectrumExtractionDate: ’20090430T110135’

SpectrumStructure: [1x1 struct]
SynthesisStructure: [1x1 struct]

Fig. 9. Fields of structure variable userData after synthesis is completed.

This structure variable is also the information stored us-
ing the “Save STRAIGHT object” button. A structured
variable named “STRAIGHTobject” is used to save the
information using the “save” command of Matlab.

5) GUI for STRAIGHT parameter manipulation: A special-
ized GUI for STRAIGHT parameter manipulation is invoked
by clicking the “Open manipulation GUI” button or
typing the “STRAIGHTmanipulatorGUI” command in the
Matlab command window.

Figure 10 shows the initial state of the GUI. The ex-
ample uses the same speech material used in the previous
sections. The top panel shows the STRAIGHT spectrogram.
Similar to the waveform window in the F0 extraction GUI,
this spectrographic display can be expanded and dragged
horizontally. The following five plots are used for parameter
manipulations. Horizontal axes of these plots are zoomed and
move in synchrony with the spectrogram plot. They provide
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Fig. 10. GUI for STRAIGHT parameter manipulation.

manipulation of power, F0, size (reciprocal of frequency axis
stretch), duration and aperiodicity, from top to bottom. Only
the focused parameter is displayed using vertically wide space
and the other parameter plots are shrunken. The shrunken plot
expands when it is clicked. Power and F0 have their values
plotted in their panels and the others have plots of amount
of modifications. The vertical axis of each manipulation plot
can also be zoomed and dragged to precisely manipulate
parameters.

Three types of interaction methods are prepared: (a) drawing
a line using a pen tool, (b) vertically displacing the selected
region by dragging and (c) dragging the whole trajectory.
Transitional regions are prepared for both sides of the region
in the manipulation types (a) and (b) to connect to the the
manipulated region and the other parts.

By clicking the “Synthesis” button, synthetic speech
is generated and reproduced using the manipulated values.
The synthesized sound and the manipulations defined by the
GUI are stored using “.wav” format and “.mat” format
respectively. The waveform information and the manipulation
information files are assigned the same name except for the
extensions.

B. Second set: Extended morphing

Four types of GUIs are prepared for assisting morphing
preparation: main menu, temporal anchoring GUI, frequency
anchoring GUI and morphing parameter manipulation GUI.

1) Main menu for morphing: Figure 12 shows the main
menu of the morphing procedure. This menu is invoked by
typing “MorphingMenu” in the Matlab command window.
Similar to the STRAIGHT parameter handling menu, user
data of the menu consists of housekeeping information and
STRAIGHT parameters.

In Fig. 12, the left panel shows the initial status. There are
two options: start from sound files or import prepared data.
When starting from sound files, “Analyze A” or “Analyze
B” invokes the STRAIGHT handling menu that was described

(a) pen (b) region selection

(c) dragging using a whole trajectory

Fig. 11. Three types of F0 manipulation. Top left: drawing a line using a
pen. Top right: selecting a region and dragging. Bottom: selecting a whole
trajectory and dragging.

in the previous sections. The analysis result is returned to the
user data of the morphing menu.

When starting from data import, necessary data for morph-
ing is ready just after importing. The right panel of Fig. 12
shows the state of the menu after data importing.

2) Assigning temporal anchors: The next step is to assign
temporal anchoring points for defining the mapping function of
the time axis. Clicking “Open anchoring interface”
on the menu invokes the GUI for temporal anchor assignment
shown in Fig. 13. The top figure of Fig. 13 shows the state
after distance calculation.

The two left plots represent STRAIGHT spectrograms of
example A and example B with power plot and waveform
plot attached. Vertical white lines represent assigned temporal
anchors. The diamond-shaped plots show the distance matrix
between two examples and its shrunken copy. They are rotated
45 degrees. The distance is calculated using MFCC. Other



9

Fig. 12. Left: Initial state of morphing handling menu. Right: State after
importing a morphing substrate.

(a) Initial state after distance calculation

(b) Inspection using zooming

Fig. 13. GUI for temporal anchor assignment.

Fig. 14. Pointer shapes used in GUI for temporal anchoring.

Fig. 15. GUI for frequency anchor assignment. Blue and red lines represent
STRAIGHT spectrum slice at anchoring points on example A and example B
respectively.

distance measures can also be used. A white trajectory with
open circles represents the assigned mapping path and tempo-
ral anchors.

The bottom panel shows the zoomed distance matrix. Spec-
trograms on the left are also zoomed. This magnification
is used to edit anchoring points. Figure 14 shows pointer
shapes used in this edit mode. The shapes represent their
assigned functions; from top left to bottom right: distance
matrix dragging, anchor position modification, addition of new
anchor point, deletion of existing anchor point, expansion of
zoomed region, dragging inspection region, relocation to the
pointer position and inspection of spectral slices for frequency
anchoring. These functions are dependent on graphic objects
under pointer and depression of modifier keys. The assigned
temporal anchor points are returned to the morphing menu by
clicking the “set up anchors” button.

3) Assigning frequency anchors: Holding down the “alt”
modifier key and clicking one of the anchor points on the
mapping trajectory invokes the GUI for frequency anchoring.
Figure 15 shows the GUI for frequency anchoring. Similar
to temporal anchoring, anchor points can be added, moved
and removed by using modifier keys and pointer operation.
This plot can also be zoomed and dragged horizontally. In
this implementation, frequency anchoring points are set to
minimize discrepancy of representative spectral features, such
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(a) Initial status

(b) Morphing rate assignment example

Fig. 16. GUI for morphing rate assignment.

as formant frequencies. The assigned frequency anchor points
are returned to the morphing menu by clicking the “update
frequency anchors” button.

4) Morphing rate manipulation: When all anchoring in-
formation is ready, the “Synthesize morphed speech”
button is enabled. Also, with the same preparation, the “Edit
morphing rate” button is enabled. By clicking the latter
button, the GUI for the morphing rate controller appears.

Figure 16 shows the GUI. The upper plot shows the initial
state. The lower plot shows an example of completed editing.
The GUI consists of six plots; from top to bottom: STRAIGHT
spectrogram, spectrum level morphing rate, frequency axis
morphing rate, aperiodicity morphing rate, F0 morphing rate
and temporal axis morphing rate. Similar to the STRAIGHT
parameter manipulation GUI, the spectrographic display is
used as a handle for zooming and dragging on the horizontal
axis. The other four plots are used to assign morphing rates.
The vertical lines in those five plots represent temporal an-
choring points. Morphing rates are represented by a piecewise

creator: ’morphingSubstrate’
creationDate: ’20081103T073341’

dataDirectoryForSpeakerA: [1x57 char]
dataDirectoryForSpeakerB: [1x57 char]

fileNameForSpeakerA: ’aiueoL.wav’
fileNameForSpeakerB: ’aiueoF2.wav’

samplintFrequency: 44100
temporaAnchorOfSpeakerA: [18x1 double]
temporaAnchorOfSpeakerB: [18x1 double]

frequencyAnchorOfSpeakerA: [1x1 struct]
frequencyAnchorOfSpeakerB: [1x1 struct]

f0OfSpeakerA: [370x1 double]
f0TimeBaseOfSpeakerA: [1x370 double]

f0OfSpeakerB: [105x1 double]
f0TimeBaseOfSpeakerB: [1x105 double]

STRAIGHTspectrogramOfSpeakerA: [1025x370 double]
spectrogramTimeBaseOfSpeakerA: [1x370 double]
STRAIGHTspectrogramOfSpeakerB: [1025x105 double]
spectrogramTimeBaseOfSpeakerB: [1x105 double]

aperiodicityOfSpeakerA: [1x1 struct]
aperiodicityTimeBaseOfSpeakerA: [1x370 double]

aperiodicityOfSpeakerB: [1x1 struct]
aperiodicityTimeBaseOfSpeakerB: [1x105 double]

temporalMorphingRate: [1x1 struct]
anchorOnMorphingTime: [18x1 double]

morphingTimeAxis: [190x1 double]
realTimeBase: [1x1 struct]

morphedDisplayF0: [193x1 double]
morphedDisplayRealTime: [193x1 double]
morphedDisplayspectrum: [1025x193 double]

lastUpdate: ’30-April-2009 04:44:19’
waveformForSpeakerA: [81408x1 double]
waveformForSpeakerB: [23040x1 double]

originalSubstratePath: [1x59 char]
originalSubstrateFile: (intentionally removed)

currentHandleToMenu: 158.0031
menuHandle: 158.0031

interfaceGHIhandle: 182.0032

Fig. 17. Fields and contents of “mSubstrate” in this example. Words
Speaker A and Speaker B are used instead of Example A and
Example B in this implementation.

linear function using temporal anchoring points as nodes of
the function.

Two types of anchoring point allocation are prepared: draw-
ing a line with a pen and dragging a node group selected
by region selection. In the case of line drawing, the crossing
point at each temporal anchor is copied to the morphing rate
value of the node point. The green thick line in the lower
plot of Fig. 16 shows the resulting anchor group made by pen
drawing. The multi-aspect and temporally variable morphing
rates are sometimes too flexible. This GUI provides a way
to introduce constraints using radio buttons: attribute binding
and temporal binding. When both constraints are effective, this
morphing is equivalent to morphing using a scalar morphing
rate.

5) Saving morphing information and synthesis: By us-
ing the “Save morphing substrate” button, all in-
formation necessary to redo morphing can be saved to a
“.mat” file that can be imported using the main morphing
menu. The stored data is represented by a Matlab variable
“mSubstrate” that is one field of the user data of the menu.
It is accessible by using the following commands:

>> Mhandle = MorphingMenu
>> userData = get(Mhandle,’userdata’);
>> userData.mSubstrate

Figure 17 shows fields of “mSubstrate” in this example.
Based on this information, a morphed sound is generated by
clicking the “Synthesis morphed speech” button. The
morphed speech can be saved as a “.wav” file by clicking the
“Save morphed speech” button.
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