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Abstract

An analytic solution of two-dimensional, steady, linear, viscous flow on a polar
cap—polar region of a sphere which lies above (or below) a given plane normal to
the rotation axis—rotating about its center is obtained. Inflow and outflow on the
boundary of the polar cap drive the fluid motion. The solution of stream function is
expressed as the Fourier series in longitudes and the associated Legendre functions of
complex degrees in cosines of colatitudes. The fluid particles move almost along lines
of constant latitudes, some circulate cyclonically and the others anticyclonically, in
the geostrophic balance everywhere except near the north pole where the flow is
relatively slow and the viscous force dominates over the Coriolis force. Our results
support the approximation analysis and laboratory experiment studied by Imawaki
and Takano (Deep-Sea Res. 21, 69–77, 1974).
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1 Introduction

Flow, driven by inflow and outflow, on a circular basin (or polar cap) rotating
about its center is a simple, fundamental model to study deep (not affected

∗ Corresponding author. Tel.: +81-45-778-5630; fax: +81-45-778-5706.
E-mail address: kitauchi@jamstec.go.jp (H. Kitauchi).

Preprint submitted to Elsevier Science 25 January 2009



by surface forcing, ex., wind stress or heating/cooling) circulations in, for
example, the Norwegian Sea (Pratt, 1997) and the Arctic Ocean (Yang, 2005).

Among those studies, Imawaki and Takano (1974) investigated steady, linear,
viscous, incompressible two-dimensional fluid motions, vertically integrated
from the bottom to the surface of the ocean, on a rotating circular basin. The
bottom is horizontal and the surface is free from stress due to wind or sea-ice
drift. The flow is driven by an inflow and an outflow on the basin boundary.
They obtained approximate solutions of the vorticity equation, that is a par-
tial differential equation in longitude and latitude of the spherical coordinates
on a polar cap. The solution of stream function is expressed as Fourier series in
longitude, reducing the vorticity equation to a set of variable-coefficient ordi-
nary differential equations in latitude. Then, they assumed that the solution
is little affected by variations of latitudes appeared in those variable coeffi-
cients and replaced all the latitudes with some constant, the middle latitude
between the basin center and boundary (we may call the middle of the zonal
band), making the variable-coefficient ordinary differential equations those of
constant coefficients. The solution is, therefore, expressed as the linear com-
bination of exponential functions in latitude. They further confirmed their
approximate solutions by the laboratory experiments. Their approach works
fine and easily allows to include other effects (or terms) in their formulation,
such as lateral and bottom frictions, so long as the variations of latitudes are
relatively small, that is, relatively narrow width of the zonal band of a polar
cap (in their case, 20◦).

This paper revisits the problem done by Imawaki and Takano (1974). Instead
of replacing all the latitudes in the coefficients with some constant, we ana-
lytically solve the vorticity equation without the above assumption. Although
we obtain an analytic solution similar to the approximate solution obtained
by Imawaki and Takano (1974), as you see later in this paper, our formula-
tion is more general than theirs and allows the application to a basin having
relatively wide zonal band. We also look into the balance of forces acting on
fluid elements and the dependence of flow field upon non-dimensional physical
parameter the horizontal Ekman number.

2 Formulation

We consider the motion of a fluid of constant density ρ on a polar cap of radius
r rotating about its center with a constant angular velocity Ω (see Fig. 1). We
employ the spherical coordinates (ϑ, ϕ) ∈ [0, ϑb]× [0, 2π) of radius r, where ϑb

is the colatitude of the boundary of the polar cap (or the spherical section).
Although our configuration of the system is assumed to be flow around the
north pole, our formulation is universal in both the poles—just change the sign
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of the angular velocity, −Ω, in case of flow around the south pole. The flow is
assumed to be thin enough to neglect the motion perpendicular to the polar
cap and slow enough to neglect the non-linear effects. Only the steady state is
considered. There are an inflow and an outflow on the spherical section, which
drive the fluid motion. The total inflow and outflow are same and constant in
time. The equation of motion is written, in a frame rotating with the polar
cap, as

2Ω × u = −1

ρ
∇p + ν∇2u, (1)

and the continuity equation as

∇ · u = 0, (2)

where u(ϑ, ϕ) = [uϑ(ϑ, ϕ), uϕ(ϑ, ϕ)] is the two-dimensional velocity on the
sphere, p(ϑ, ϕ) is the pressure, and ν is the constant kinematic viscosity of
the fluid. The equation of motion (1) shows the balance between the Coriolis
force, the pressure gradient force, and the viscous force. Taking the radial
component of the curl of both the sides of Eq. (1) and using Eq. (2), we
obtain the vorticity equation,

−βuϑ = r̂ ·
[
∇× (ν∇2u)

]
, (3)

where β(ϑ) = 2|Ω| sin ϑ/r is the so-called β-term, and r̂ is the unit radius
vector. Being quite small in polar regions compared to the other regions, the
β-term still plays an important role; for the fluid motion would be the same as
one without the rotation of the polar cap, if the f -plane approximation on the
north pole is applied. The vorticity equation (3) shows that where the viscous
force is negligible, the fluid particles move along lines of constant latitudes
in the geostrophic balance. In other words, the viscous force makes the fluid
particles cross lines of constant latitudes.

To solve Eqs. (2) and (3) we introduce the stream function ψ(ϑ, ϕ) so that the
continuity equation (2) is satisfied,

u = r̂ ×∇ψ, (4a)

or

uϑ = − 1

r sin ϑ

∂ψ

∂ϕ
, uϕ =

1

r

∂ψ

∂ϑ
. (4b)

Then, the vorticity equation (3) is rewritten as(
∆2

H − E−1
H

∂

∂ϕ

)
ψ(ϑ, ϕ) = 0, (5)

where ∆H is the horizontal Laplacian on a sphere,

∆H =
1

sin ϑ

∂

∂ϑ

(
sin ϑ

∂

∂ϑ

)
+

1

sin2 ϑ

∂2

∂ϕ2
, (6)
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and EH is the horizontal Ekman number,

EH =
ν

2|Ω|r2
. (7)

We expand the stream function in terms of a Fourier series in longitudes,

ψ(ϑ, ϕ) =
∞∑

m=−∞
ψ̂m(ϑ)eimϕ, (8)

where ψ̂m(ϑ) are the Fourier coefficients,

ψ̂m(ϑ) =
1

2π

∫ 2π

0
ψ(ϑ, ϕ)e−imϕ dϕ for m = 0,±1,±2, . . . . (9)

Multiplying Eq. (5) by e−imϕ for an arbitrary integer m and integrating over
the longitudes [0, 2π), we obtain a set of equations for the Fourier coefficients
(cf. Courant and Hilbert, 1989, Ch. V §6.2, §9.1),(

D2
m − k4

m

)
ψ̂m(ϑ) = 0 ∀m, (10a)

that is, (
Dm − k2

m

)(
Dm + k2

m

)
ψ̂m(ϑ) = 0 ∀m. (10b)

Here, the Laplacian operator Dm is defined by

Dm =
1

sin ϑ

d

dϑ

(
sin ϑ

d

dϑ

)
− m2

sin2 ϑ
, (11)

and the constant parameter km by k4
m = imE−1

H . The vorticity equation (3)
is reduced to a set of the fourth-order ordinary differential equations (10) for
the Fourier coefficients ψ̂m over the colatitudes (0, ϑb).

Before going further into our analysis, we briefly review that of Imawaki and
Takano (1974), in which Eq. (10) is expanded as[

d4

dϑ4
+ θ1

d3

dϑ3
+ (−m2θ2 + θ3)

d2

dϑ2
+ (−m2θ4 + θ5)

d

dϑ

+ (m4θ6 − m2θ7) − imκ

]
ψ̂m(ϑ) = 0 ∀m, (12)

where the variable coefficients θ1, θ2, . . . , θ7 and constant parameter κ are,
following their notations (cf. equations (6) and (7) in their paper), given by

θ1 =
2 cos ϑ

sin ϑ
, θ2 =

2

sin2 ϑ
, θ3 = −

(
1 +

1

sin2 ϑ

)
,

θ4 = −2 cos ϑ

sin3 ϑ
, θ5 =

cos ϑ

sin3 ϑ
, θ6 =

1

sin4 ϑ
,

θ7 =
2 + 2 cos2 ϑ

sin4 ϑ
, κ = E−1

H =
2|Ω|r2

ν
.

(13)
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They assumed that the solution is little affected by variations of colatitudes
ϑ ∈ [0, ϑb] appeared in the coefficients θ1, θ2, . . . , θ7 and replaced all of them
with some constant colatitude ϑc, the middle between the pole and boundary
(we may call the middle of the zonal band), ϑc = ϑb/2, making the variable-
coefficient ordinary differential equations (12) the constant-coefficient ordinary
differential equations. Then, the solution is assumed to be proportional to
the exponential function, ψ̂m(ϑ) ∝ etmϑ, for every order m, the fourth-order
ordinary differential equation (12) determines the four complex numbers tm =
tm1 , tm2 , tm3 , tm4 as roots of the quartic equation,

t4 + θ1t
3 + (−m2θ2 + θ3)t

2 + (−m2θ4 + θ5)t

+ (m4θ6 − m2θ7) − imκ = 0 ∀m. (14)

The solution is therefore, in general, expressed as the linear combination of
the four exponential functions,

ψ̂m(ϑ) = cm
1 etm1 ϑ + cm

2 etm2 ϑ + cm
3 etm3 ϑ + cm

4 etm4 ϑ ∀m, (15)

where the coefficients cm
1 , cm

2 , cm
3 , cm

4 are determined by the boundary condi-
tions. Imawaki and Takano (1974) obtained those numerical solutions (15)
with and without the bottom friction and showed good agreement with their
laboratory experiments. Their approach works fine and easily allows to in-
clude other effects (or terms) in their formulation, such as the aforementioned
bottom friction and the lateral friction other than harmonic (or Laplacian)
viscosity, so long as the variations of colatitudes are relatively small, that is,
relatively narrow width of the zonal band of a polar cap (ϑb = 20◦ in their
application).

Here, we solve the ordinary differential equations (10), without the above
limitation, by making use of the associated Legendre functions of complex
degrees µ and integer orders m for real x ∈ (−1, 1) defined by

Pm
µ (x) =

1

2mm!

Γ (µ + 1 + m)

Γ (µ + 1 − m)

(
1 − x2

)m
2

· F
(
−µ + m,µ + 1 + m, 1 + m;

1 − x

2

)
, (16)

where Γ (z) is the gamma function,

Γ (z) =
∫ ∞

0
tz−1e−t dt for Re[z] > 0, (17)

F (α, β, γ; x) is the Gauss hypergeometric function,

F (α, β, γ; x) =
∞∑

n=0

(α)n(β)n

(γ)n

xn

n!
for x ∈ (−1, 1), (18)
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and (α)n is defined by (α)0 = 1 and (α)n = α(α + 1)(α + 2) · · · (α + n − 1)
for n ≥ 1 (see, for example, Abramowitz and Stegun, 1970). The associated
Legendre functions (16) have the following properties:

DmPm
µ (cos ϑ) = −µ(µ + 1)Pm

µ (cos ϑ), (19)

and
Pm
−µ−1(cos ϑ) = Pm

µ (cos ϑ). (20)

By assuming that the solution is proportional to the associated Legendre func-
tion, ψ̂m(ϑ) ∝ Pm

µ (cos ϑ), and using the property (19), the ordinary differential
equation (10) determines the allowable degrees µ for each given order m,

−µ(µ + 1) − k2
m = 0, or − µ(µ + 1) + k2

m = 0. (21)

The former quadratic equation allows two values of degrees µ = µ−
m,−µ−

m − 1,
where

µ−
m =

−1 +
√

1 − 4k2
m

2
. (22)

By the property (20), however, only the µ = µ−
m gives a linearly independent

solution. Similarly, from the latter equation in Eq. (21) only the µ = µ+
m,

where

µ+
m =

−1 +
√

1 + 4k2
m

2
, (23)

gives another linearly independent solution. The equation (10) is fourth order;
the other two solutions Qm

µ±
m
(cos ϑ) of the associated Legendre functions of the

second kind, which are divergent at the north pole ϑ = 0, are discarded.

Superposing the two linearly independent solutions Pm
µ±

m
(cos ϑ) multiplied by

eimϕ and summing over all orders m in Eq. (8), we obtain the analytic solution
of the stream function as

ψ(ϑ, ϕ) =
∞∑

m=−∞

[
C−

mPm
µ−

m
(cos ϑ) + C+

mPm
µ+

m
(cos ϑ)

]
eimϕ. (24)

Here, the coefficients C±
m are determined by the boundary conditions. We

impose the no-slip condition at the spherical section of a fixed solid boundary
except an inlet and an outlet,

ψ(ϑb, ϕ) = ψb(ϕ),
∂ψ

∂ϑ
(ϑb, ϕ) = 0, (25)

where ψb(ϕ) is a stream function prescribed at the boundary. Then, the coef-
ficients are determined by

C−
0 + C+

0 = ψ̂b
0 , (26a)

C±
m = ∓ 1

Wm

[
d

dx
Pm

µ∓
m
(x)

]
x=cos ϑb

ψ̂b
m = ∓ 1

Wm

Pm
µ∓

m

′
(cos ϑb) ψ̂b

m ∀m 6= 0, (26b)
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where ψ̂b
m are the Fourier coefficients of the ψb(ϕ) computed by using Eq. (9),

and Wm is defined by

Wm = Pm
µ−

m
(cos ϑb)P

m
µ+

m

′
(cos ϑb) − Pm

µ+
m
(cos ϑb)P

m
µ−

m

′
(cos ϑb). (27)

We employ the parameters same as those in Imawaki and Takano (1974) to
mimic circulations in the Arctic Ocean:

ϑb = 20◦, r = 6371 km, |Ω| = 7.292 × 10−5 s−1, ν = 1.0 × 104 m2s−1.
(28)

The horizontal Ekman number (7) is given by

EH = 1.689 × 10−6. (29)

3 Results

3.1 Eigenfunctions

The solution (24) is considered as superposition of the trigonometric eigen-
functions for the associated eigenvalues k4

m over all integers m,

ψ(ϑ, ϕ) = ψ̂b
0 +

∞∑
m=1

(
2 Re

[
ψ̂m(ϑ)

]
cos mϕ − 2 Im

[
ψ̂m(ϑ)

]
sin mϕ

)
, (30)

where the Fourier coefficients ψ̂m(ϑ) are given by

ψ̂m(ϑ) = C−
mPm

µ−
m
(cos ϑ) + C+

mPm
µ+

m
(cos ϑ). (31)

Fig. 2 shows contours (or streamlines) of the lowest four sinusoidal eigenfunc-
tions,

ψ(ϑ, ϕ) = −2 Im
[
ψ̂m(ϑ)

]
sin mϕ for 1 ≤ m ≤ 4, (32)

the solutions (24) with the prescribed stream functions (25) at the boundary,

ψb(ϕ) = sin mϕ for 1 ≤ m ≤ 4, (33)

indicated in the upper plot of each figure (a)–(d). The contour interval is 0.2
between −0.8 and 0.8, and the polar cap is viewed from the north pole.

The first sinusoidal eigenfunction shows that the flow comes into the polar
cap from the right half of the boundary and goes away from the other half in
Fig. 2(a). The inflow turns westward immediately after entering the polar cap
and separates into two branches: one is cyclonic and the other is anticyclonic
flows along the boundary. These two branches merge again and turn eastward
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before exiting the polar cap. The streamline at the center of the inflow passes
through the north pole and the center of the outflow; this line divides the
inflow into the above two branches. As described below Eq. (3), the fluid par-
ticles move nearly along lines of constant latitudes in the geostrophic balance
everywhere except near the north pole and very close to the boundary where
the flow is relatively slow and the viscous force dominates over the Coriolis
force.

The second sinusoidal eigenfunction shows that the flow comes into the po-
lar cap from the right and left quarters centered at the longitudes 0, π of the
boundary and goes away from the other two quarters in Fig. 2(b). The flow
field has twofold symmetry about the rotation axis. The inflow turns westward
immediately after entering the polar cap and separates into cyclonic and anti-
cyclonic flows along the boundary. The cyclonic/anticyclonic flow merges with
the anticyclonic/cyclonic branch of the other inflow and turns eastward before
exiting the polar cap. The streamlines at the centers of the inflows spirally go
into and out of the north pole, and pass through the centers of the outflows;
these lines divide the inflows into the above a couple of two branches. The
north pole is a stagnation point in the flow field. The fluid particles move
nearly along lines of constant latitudes in the geostrophic balance everywhere
except near the north pole and very close to the boundary.

The flow fields of the third and fourth sinusoidal eigenfunctions in Fig. 2(c,d)
are similar to that of the second eigenfunction but have threefold and fourfold
symmetries about the rotation axis, respectively.

3.2 Analytic Solution

We prescribe the stream function ψb(ϕ) in Eq. (25) on the boundary as

ψb(ϕ) = A ×



ϕ

ϕ1

for 0 ≤ ϕ < ϕ1,

1 for ϕ1 ≤ ϕ < ϕ2,

1 − ϕ − ϕ2

ϕ3 − ϕ2

for ϕ2 ≤ ϕ < ϕ3,

− ϕ − ϕ3

ϕ4 − ϕ3

for ϕ3 ≤ ϕ < ϕ4,

−1 for ϕ4 ≤ ϕ < ϕ5,

−1 +
ϕ − ϕ5

2π − ϕ5

for ϕ5 ≤ ϕ < 2π,

(34)
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where A is a constant amplitude and ϕi (i = 1, 2, 3, 4, 5) are constant longi-
tudes. There are an inlet between ϕ5 and ϕ1, and an outlet between ϕ2 and
ϕ4 (see Fig. 3). The Fourier coefficients ψ̂b

m are computed by utilizing Eq. (9)
if m = 0,

ψ̂b
0 =

A

2π

[
ϕ1

2
+(ϕ2−ϕ1)+

ϕ3 − ϕ2

2
− ϕ4 − ϕ3

2
− (ϕ5−ϕ4)−

2π − ϕ5

2

]
, (35a)

otherwise,

ψ̂b
m =

A

2π m2

[
e−imϕ1 − 1

ϕ1

− e−imϕ3 − e−imϕ2

ϕ3 − ϕ2

− e−imϕ4 − e−imϕ3

ϕ4 − ϕ3

+
1 − e−imϕ5

2π − ϕ5

]
.

(35b)
We assume uniform flow within the inlet and outlet, that is, ϕ1 = 2π−ϕ5(= ϕi)
and ϕ3 − ϕ2 = ϕ4 − ϕ3(= ϕo), where ϕi, ϕo are half of the central angles (i.e.,
the inscribed angles) of the inlet and outlet, respectively,

ψ̂b
m = A ×


(ϕ2 − ϕ1) − (ϕ5 − ϕ4)

2π
=

ϕ3 − π

π
if m = 0,

−i

π m2

[
sin mϕi

ϕi
− e−imϕ3

sin mϕo

ϕo

]
otherwise.

(36)

Eq. (36) describes the mean zonal flow vanishes if the centers of the inlet and
outlet make the straight angle. For simplicity’s sake, we consider this case,
that is, the centers of the inlet and outlet are oppositely placed exactly, i.e.,
ϕ3 = π, then Eq. (36) is simplified as

ψ̂b
m =


0 if m = 0,

−iA

π m2

[
sin mϕi

ϕi
− (−1)m sin mϕo

ϕo

]
otherwise.

(37)

Moreover, we assume that the widths of the inlet and outlet are equal, i.e.,
ϕi = ϕo, then

ψ̂b
m =


0 for m = 0,±2,±4, . . . ,

−2iA sin mϕi

π m2ϕi
for m = 1,±3,±5, . . . .

(38)

Substituting Eq. (38) into Eq. (26) and then Eq. (24), we obtain the analytic
solution of steady Stokes flow on a rotating polar cap for the prescribed stream
function Eq. (34) at the boundary.

Fig. 4 shows contours (or streamlines) of the stream function together with
the prescribed stream function on the boundary (upper plot). The contour in-
terval is 0.2 between −0.8 and 0.8, and the polar cap is viewed from the north
pole. The inscribed angles ϕi, ϕo of the inlet and outlet are both set to 10◦,
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and the amplitude A is set to 1. The infinite series in Eq. (24) is truncated at
the wave number M = ±60. The flow field is quite similar to that of the first
sinusoidal eigenfunction in Fig. 2(a) except near the boundary. The flow comes
into the polar cap from the inlet and goes away from the outlet in Fig. 4. The
inflow turns westward immediately after entering the polar cap and separates
into cyclonic and anticyclonic flows along the boundary. These two branches
merge again and turn eastward before exiting the polar cap. The streamline
at the center of the inflow passes through the north pole and the center of
the outflow; this line divides the inflow into the above two branches. The fluid
particles move nearly along lines of constant latitudes in the geostrophic bal-
ance everywhere except near the north pole. Those westward/eastward flow
near the inlet/outlet as well as concentrated flow near the boundary can be
interpreted in terms of the dissipating planetary waves (Sakai and Imawaki,
1981)—the Rossby-Haurwitz waves (Rossby, 1939; Haurwitz, 1940) with dis-
sipation.

To see the balance of the forces in Eq. (1), we draw the Coriolis force (arrows)
and fluid speed (red color) in Fig. 5(a), and the pressure gradient force (arrows)
and relative vorticity (red denotes cyclonic vorticity, while blue anticyclonic)
in Fig. 5(b). The length of each arrow represents the magnitude of each vec-
tor. The Coriolis force is directed to the right of the motion, that is, away
from/towards the north pole on the cyclonic/anticyclonic flow. On the other
hand, the pressure gradient force is directed towards/away from the north pole
on the cyclonic/anticyclonic flow, for the cyclonic/anticyclonic (or relatively
low/high pressure) branch along the boundary generates anticyclonic/cyclonic
(or relatively high/low pressure) vorticity very close to the boundary. These
two forces are in geostrophic balance on the above two branches, where the
flow is relatively rapid and the Coriolis force dominates over the viscous force.

Finally, we look into dependence of flow field upon the horizontal Ekman
number EH in Eq. (7). Fig. 6 shows streamlines for EH = (a) 1.0, (b) 1.0×10−4,
(c) 1.0× 10−5, (d) 5.0× 10−6, (e) 1.689× 10−6, (f) 5.0× 10−7. Fig. 6(e) is the
analytic solution in Fig. 4(b). In the largest horizontal Ekman number (a), the
viscous force dominates over the Coriolis force. The flow field is quite similar
to one without the rotation of the polar cap in Fig. 6(a). The fluid particles
cross lines of constant latitudes everywhere. On the other limit, in the smallest
horizontal Ekman number (f), the Coriolis force dominates over the viscous
force. The flow field is quite similar to that of the analytic solution in Fig. 6(e),
but more strongly constrained by the geostrophic balance in Fig. 6(f). The
fluid particles move nearly along lines of constant latitudes everywhere except
near the north pole. In the moderate horizontal Ekman number (b)–(e), the
viscous and Coriolis forces compete with each other to make the flow field a
mixture of those in the extreme cases (a) and (f) in Fig. 6(b)–(e), respectively.

Direct comparison of our results with circulation in the Arctic Ocean is difficult
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since other factors—such as non-linearity, wind stress, density stratification,
bottom topography, and sea ice—significantly affect the real ocean circulation.
Our results may be considered as one of the underlying building blocks for the
circulation in the Arctic. Here, we note a crude application of our solution to
the Arctic Ocean. The volume transport—total inflow per unit time—through
the Bering Strait into the Arctic Ocean is estimated about 0.8 Sv (Sverdrup,
1 Sv = 106 m3/s) by Woodgate and Aagaard (2005). On the other hand, the
volume transport—total outflow per unit time—through the Fram Strait from
the Arctic Ocean is estimated about 4.2 Sv by Fahrbach et al. (2001). Suppose
that the Bering Strait is 100 km width and 50 m depth, the Fram Strait is 300
km width and 2000 m depth, and the inflow and outflow are uniform. Then,
the fluid speeds through the Bering and Fram Straits are estimated about
16 cm/s and 0.7 cm/s, respectively. Using these fluid speeds as the boundary
conditions, recently, Taniguchi and Yamada (private communication) study
an unsteady, non-linear regime of our analytic solution by a direct numerical
simulation. Their result suggests that our steady, linear solution is stable due
to relatively slow inflow and outflow.

4 Concluding Remarks

We obtained an analytic solution of steady Stokes flow, that is, two-dimensional,
steady, linear, viscous flow on a rotating polar cap. The solution of the stream
function is expressed as the Fourier series in longitudes and the associated
Legendre functions of complex degrees in cosines of colatitudes. In a relatively
small horizontal Ekman number EH ¿ 1, the fluid particles move nearly along
lines of constant latitudes in the geostrophic balance everywhere except near
the north pole. On the other hand, in a relatively large horizontal Ekman num-
ber EH ∼ 1, the fluid particles cross lines of constant latitudes everywhere.
These results support the approximation analysis and laboratory experiment
studied by Imawaki and Takano (1974).

Our formulation includes full sphericity; therefore, we may extend the domain
of a polar cap by increasing the boundary colatitude ϑb, which is invalid in
the approximation made by Imawaki and Takano (1974). Fig. 7, for example,
shows streamlines for ϑb = 45◦ and EH = 5.0 × 10−6. Our formulation suc-
cessfully computes the stream function even for the larger colatitude of the
boundary. Our analytic solution is also applicable to steady Stokes flow on
a rotating spherical segment—region of a sphere which lies between a pair of
given parallel planes—by introducing the associated Legendre functions of the
second kind as described below Eq. (23) in Section 2.

In this paper we studied an analytic solution on a rotating polar cap. We
are now curious about stability of our steady, linear solution with respect to
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the inflow and outflow as well as the flow patterns in an unsteady, non-linear
regime for a better understanding of the system. Our preliminary results show
that a stationary solution is stable up to the relatively large inflow and outflow
in the real Arctic Ocean. If the inflow and outflow are further increased, a
steady, non-linear solution becomes unstable with a Hopf bifurcation to an
oscillatory solution. These results will be reported in near future.
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Figure Captions

Fig. 1: Configuration of a polar cap.

Fig. 2: Streamlines of the (a) first, (b) second, (c) third, and (d) fourth si-
nusoidal eigenfunctions. The upper plot in each figure shows the prescribed
stream function at the boundary.

Fig. 3: Stream function prescribed on the boundary.

Fig. 4: (a) Prescribed stream function at the boundary. (b) Streamlines of
the steady Stokes flow on a rotating polar cap.

Fig. 5: (a) Coriolis force (arrows) and fluid speed. The denser the red is, the
faster the flow is. (b) Pressure gradient force (arrows) and relative vorticity.
Red denotes cyclonic vorticity, while blue anticyclonic vorticity. The length
of each arrow represents the magnitude of each vector.

Fig. 6: Streamlines for the horizontal Ekman number EH = (a) 1.0, (b)
1.0 × 10−4, (c) 1.0 × 10−5, (d) 5.0 × 10−6, (e) 1.689 × 10−6, (f) 5.0 × 10−7.

Fig. 7: Streamlines for the boundary colatitude ϑb = 45◦ and the horizontal
Ekman number EH = 5.0 × 10−6.

14



Ω

O

ϕ

ϑ
r

ϑb

north
pole

equ
ator

spherical section

Fig. 1: H. Kitauchi and M. Ikeda.

15



(a)

(b) (d)

(c)

π−1

1

0 ϕ

ψb

2ππ

−1

1

0 ϕ

ψb

2ππ −1

1

0 ϕ

ψb

2ππ

−1

1

0 ϕ

ψb

2π

Fig. 2: H. Kitauchi and M. Ikeda.

16



ϕ3
ϕ

ψb

A

−A

0
ϕ1 ϕ2

π ϕ4 ϕ5 2π

Fig. 3: H. Kitauchi and M. Ikeda.

17



(a)

(b)

ϕ0

1

−1

ψb

π
18 π

2π

π− π
18

2π− π
18π+ π

18

Fig. 4: H. Kitauchi and M. Ikeda.

18



(a)

(b)
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Fig. 7: H. Kitauchi and M. Ikeda.
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