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Survival of short-range order in the Ising model on negatively curved surfaces
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We examine the ordering behavior of the ferromagnetic Ising lattice model defined on a surface with a
constant negative curvature. Small-sized ferromagnetic domains are observed to exist at temperatures far
greater than the critical temperature, at which the inner-core region of the lattice undergoes a mean-field phase
transition. The survival of short-range order at such high temperatures can be attributed to strong boundary-
spin contributions to the ordering mechanism as a result of which boundary effects remain active even within
the thermodynamic limit. Our results are consistent with the previous finding of disorder-free Griffiths phase
that is stable at temperatures lower than the mean-field critical temperature.
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I. INTRODUCTION

The two-dimensional Ising lattice model is one of the
simplest models of second-order phase transitions �1,2�. This
model has long played a fundamental role in statistical phys-
ics due its broad applicability and the availability of analytic
solutions. Previous studies have proven that the critical be-
havior of this model is universal to a large extent, depending
on the essential symmetries inherent to the system �3�.

The two-dimensional Ising lattice model is usually as-
signed to a flat plane. In the last two decades, however, there
has been a growing interest in the nature of the Ising model
assigned to curved surfaces �4–12�. This interest is because
of its relevance to quantum gravity theory �13–15� and the
successful fabrication of magnetic nanostructures with
curved geometries �16–21�. In general, the finite curvature of
the underlying geometry may alter the geometric symmetries
of the Hamiltonian describing the system; this alteration re-
sults in a qualitative change in the critical properties of the
system. In fact, it has been reported �22–24� that such
curvature-induced alterations occur when the Ising lattice is
assigned to a surface with a constant negative curvature
�25,26�. Significant shifts in static and dynamic critical ex-
ponents toward the mean-field values were unveiled in Refs.
�22,23�, and the mean-field property of the system was ana-
lytically proven by employing the renormalization-group
method �24�.

The above-mentioned findings led to the exploration of
surface curvature effects in various kinds of statistical lattice
models �27–41�. For instance, the q-state Potts model on the
negatively curved surface exhibited a first-order phase tran-
sition when q�3 �35�, and the XY model on the same sur-
face showed the absence of Kosterlitz-Thouless transition
due to strong spin-wave fluctuation �31�. It is noteworthy
that the concept of negatively curved surfaces �or spaces� is
also relevant in many fields where the geometric character
underlying the system is of great significance, such as glass
science �42–48�, plasma physics �49–52�, quantum transport
�53,54�, chaos �55–58�, string theory �59�, and cosmology
�60,61�.

Recently, Baek et al. �39� studied the percolation transi-
tion in negatively curved lattices. They found two distinct

percolation thresholds—one that corresponds to the occur-
rence of a single infinite-sized cluster and the other that cor-
responds to the occurrence of many infinite-sized clusters
connecting a site deeply inside the lattice to that lying at the
outmost boundary of the lattice. The latter threshold origi-
nates from an exponential increase in the total number of
sites, N�eL, with the linear dimension of the lattice, L �for
the definition of L, see Sec. II in the present paper�. The
exponential increase in N leads to an important consequence:
the ratio of the perimeter to the area of the lattice remains
finite even within the thermodynamic limit �L→��. This re-
sult is in contrast to that in the case of a flat plane, wherein
N�L2, i.e., the ratio becomes zero for large values of L.
Similar percolation thresholds have been observed in en-
hanced binary trees �62� whose lattice structure is quite
analogous to that considered in Ref. �39�. It is conjectured
that the two-stage percolation transitions indicate the nonuni-
form ordering of the corresponding Ising model; that is, non-
vanishing boundary effects even for large N may cause spa-
tially nonuniform growth of ferromagnetic Ising domains
under cooling, wherein the ordering process near the outmost
boundary differs from that deep within the lattice. The pre-
cursor of such nonuniform growth was discussed in Ref. �9�;
the stable Griffiths phase was found near the outmost bound-
ary at a temperature lower than the mean-field transition tem-
perature.

In the present paper, we examine the ordering process of
the negatively curved Ising model at temperatures close to
and far greater than the mean-field transition temperature in
order to clarify the boundary-spin contributions to the do-
main growth and domain distribution during cooling. Using
Monte Carlo simulations, we have proven that short-range
order exists at temperatures far greater than the transition
temperature. The existence of short-range order at such high
temperatures is peculiar to the Ising model of negatively
curved surfaces and is thus an important consequence of
nonzero boundary effects that are observed even in large
systems.

II. REGULAR LATTICE ON A NEGATIVELY CURVED
SURFACE

This section gives a brief summary on the construction of
regular lattices on a surface with negative curvature. A sur-*shima@eng.hokudai.ac.jp
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face with constant negative curvature can be defined as a
single sheet of a two-sheeted hyperboloid expressed by

x2 + y2 − z2 = − 1�z � 1� , �1�

which is constructed in the Minkowski space endowed with
the Minkowskian metric ds2=dx2+dy2−dz2. Although this
definition is exact, it is inconvenient for computations since
three coordinates are used to describe a geometry that has
only two degrees of freedom. We thus use an alternative
representation of the surface—the Poincaré disk
representation—that is obtained by projecting the upper hy-
perboloid sheet onto the x-y plane by using the following
mapping:

�x,y,z� → � x

1 + z
,

y

1 + z
� . �2�

As a result of this mapping, the upper hyperbolic sheet is
transformed into a unit circle on the x-y plane endowed with
the metric

ds2 = f�dx2 + dy2�, f =
4

�1 − x2 − y2�2 . �3�

This unit circle is referred to as a Poincaré disk and serves as
a convenient representation of the surface with a constant
negative curvature. The Gaussian curvature � on the disk,
which is obtained by �23�

� = −
1

f
� �2

�x2 +
�2

�y2�log f , �4�

takes the value of �=−1 at arbitrary points on the disk. The
boundary of the disk corresponds to points at infinity in the
hyperbolic plane.

An infinite variety of regular polygonal lattices can be
built on the Poincaré disk. All the lattices satisfy the relation
�p−2��q−2��4, where p is the number of edges of each
polygon, and q is the number of polygons around each vertex
�26�. The heptagonal lattice of �p ,q�= �7,3� is considered in
the present work. Figure 1 shows the heptagonal lattice rep-
resented as a Poincaré disk. Although polygons depicted in
the figure appear to be distorted, all of them are exactly
congruent with the metric given in Eq. �3�. The size of the
entire lattice is characterized by the number of concentric
layers of heptagons, denoted by L, which effectively serves
as the linear dimension of the lattice.

For a given L, the total number of sites N is expressed by

N�L� = 	7 for L = 1,

7 + 7

�=0

L−2

�u+�v+�� + u−�v−��� for L � 2,� �5�

where u�=2��5 and v�= �3��5� /2; refer to the Appendix
for the derivation of Eq. �5�. The inset of Fig. 2 shows the
semilogarithmic plot of N�L� with L. The plot shows that N
increases exponentially for L�1. In fact, we obtain

B�L� 

N�L� − N�L − 1�

N�L�
→ 1 −

1

v+
�L → �� , �6�

which implies that the boundary contribution quantified by
B�L� does not become zero but remains finite within the limit
L→�. It is emphasized that nonvanishing property of B�L�
as well as the exponential increase in N�L� with L is a result
of the constant negative curvature of the underlying geom-
etry, and it is the reason behind the nontrivial critical behav-
ior of embedded lattices, as proven in previous studies
�22,23�.

III. NUMERICAL METHOD

The current study aims at exploring the ordering mecha-
nism of the heptagonal Ising model with ferromagnetic inter-
action. The Hamiltonian of the heptagonal Ising model is
given by

FIG. 1. Regular heptagonal lattice established on the Poincaré
disk. Here, the number of concentric layers of heptagons L is three,
and the total number of sites is 112. All heptagons depicted within
the circle are congruent with respect to the metric given in Eq. �3�.

FIG. 2. Graphical representation of the ratio of the number of
outmost boundary sites to the number of total sites, as expressed by
B�L�
�N�L�−N�L−1�� /N�L�. The horizontal axis represents the
number of concentric layers of heptagons L. Inset: Semilogarithmic
plot of N�L� vs L.
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H = − J

�i,j�

sisj, si = � 1, �7�

where �i , j� denotes a pair of nearest-neighbor sites on a lat-
tice with free boundary conditions. The coupling strength J
is a constant, considering the fact that all the Ising spins are
equally spaced on the Poincaré disk. Throughout this paper,
J /kB and J are used as the units of temperature and energy,
respectively. We have employed Monte Carlo simulations to
calculate the order parameter m= �si� and the two-point cor-
relation function C�rij�= �si ·sj� with rij 
�ri−r j�. Here, ri rep-
resents the location of the ith spin on the Poincaré disk, and
the distance rij is a measure of the number of bonds along the
shortest path between the ith and jth sites. Configuration
space sampling has been carried out by using a cluster-flip
algorithm �63�, and averages have been calculated by con-
sidering 105 samples.

IV. RESULTS AND DISCUSSION

Figure 3 shows the temperature dependence of C�rij ,T�
for different rij’s. We have set L=9 �i.e., N=40 432� in all
calculations. We found that for rij 	4, C�rij� shows power-
law decay with T and thus survive at T�Tc�1.25 �22� al-
though m�T� is almost zero there. The survival of C�rij� in-
dicates that small-sized ferromagnetic domains remain active
even at high temperatures although they do not contribute to

m�T� because of the change in sign between positive �si
=+1� and negative �si=−1� domains. To explore the variety
of domain sizes and examine boundary effects on size varia-
tions, we evaluate the correlation function, which is denoted
by CL�rij ,T�, of two spins that lie in the Lth layer. Figure
3�b� shows the T dependence of CL for rij =1, 2, and 4, in
which L is varied from six to nine �data for L	5 are omitted
since they are indistinguishable from data for L=6�. Interest-
ingly, the data of CL for each rij value collapses onto a single
curve at T�Tc. This collapse implies that the domains that
continue to exist at T�Tc are of the same size and are uni-
formly scattered over the entire lattice, regardless of their
distance from the outmost boundary.

It is emphasized that the persistence of domains at such
high temperatures is supplementary to previous findings
�9,22� related to low-temperature behaviors of an identical
system. It was found that at T
Tc, the central region of the
lattice �far from the outmost boundary� exhibits an ordered
phase that is a consequence of a mean-field transition �22�,
while the outer region �close to the boundary� exhibits a
stabilized Griffiths phase that is free from extrinsic disorder
�9�. Note that the former result indicates the presence of a
paramagnetic phase in the central region at T�Tc, where
Ising spins are randomly oriented due to large thermal fluc-
tuations. Hence, one would expect the formation of ferro-
magnetic domains to be hindered at T�Tc; however, con-
trary to the expectation, the formation is observed in the
current simulations. This apparent contradiction is attributed
to the finite-size effect. For a moderately large L, the strong
boundary-spin contributions penetrate to the center of the
lattice, as a result of which small-sized domains arise not
only near the boundary but also in the central region. We
conjecture that the domain in the central region disappears if
a sufficiently large value of L is considered: however, huge
computational costs are involved when the value of L is large
enough.

To gain a better insight into the above issue, we evaluate
the quantity mL�T�
 1

N
s�ri�DL�, where DL is a circular
region enclosed by the Lth layer. Figure 4 shows the T de-
pendence of mL�T� for different values of L. It is found that
above Tc, mL�T� for L=3 is finite whereas m�T� becomes
almost zero. This indicates an incomplete cancellation be-
tween the positive and negative domains in the region DL=3

(b)

(a)

FIG. 3. �Color online� �a� Double logarithmic plot of spontane-
ous magnetization m�T� �thin line�, and two-spin-correlation func-
tion C�rij� �thick lines�. �b� Correlation functions of two spins both
of which lie within a Lth concentric layer.

FIG. 4. �Color online� Spontaneous magnetization mL�T� within
a circular region DL enclosed by the Lth layer.
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due to its small size. We emphasize that mL�T� should be-
come zero if DL is in the paramagnetic phase with no finite-
sized domains. Therefore, the finiteness of mL=3�T� at T
�Tc is another piece of evidence that supports the persis-
tence of small-sized domains. We have also confirmed that
finite mL=3�T� at high T tends to disappear with an increase in
L since boundary-spin contributions are prevented from pen-
etrating to the center of the lattice.

Figure 5 illustrates the ordering process of our moderately
large Ising lattice with a decrease in the temperature. At T
�Tc, small-sized ferromagnetic domains �indicated by open
and solid circles� are randomly embedded in the paramag-
netic phase, which is shown in gray. These domains are dis-
tributed homogeneously across the lattice but give rise to
finite mL�T� for small values of L due to the incomplete
cancellation between the positive and negative domains.
Subsequently, a decrease in T results in the growth of do-
mains within the inner region. Eventually, the ferromagnetic
phase is formed through the mean-field phase transition.
Nevertheless, near the outmost boundary, small domains re-
main active and fluctuate on a large time scale, as observed
in Ref. �9�.

V. CONCLUSION

In the present work, we have considered the ordering
mechanism of the Ising lattice model assigned to a nega-
tively curved surface. We have found that small-sized do-
mains survive at temperatures much higher than Tc, at which
the inner bulk region of the lattice goes through mean-field
phase transition. The existence of small domains is attributed
to the nonzero boundary-spin contribution that is unique to
negatively curved surfaces. Our results are consistent with
those of previous studies: the Griffiths phase is present near
the outmost boundary of the lattice while the inner-core re-
gion undergoes the mean-field phase transition. This consis-
tency sheds light on the nature of phase ordering in a wide
variety of statistical lattice models assigned to negatively
curved surfaces, most of which need to be further studied.
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APPENDIX: PROOF OF FORMULA (5)

This appendix is devoted to the derivation of Eq. �5�—the
explicit form of N�L� as a function of L. We classify all the
congruent heptagons in the lattice into two groups: �i� hep-
tagons having a common edge with the adjacent heptagon
lying in the inner concentric layer �referred to as “A” hepta-
gons� and �ii� those having two common edges with the ad-
jacent one heptagon in the inner layer �referred to as “B”
heptagons�. Figure 6�a� illustrates our classification, in which
either of the symbols A or B is assigned to all heptagons
except for the central one.

We see in Fig. 6 that the second innermost layer �L=2�
consists of seven B’s, the third innermost layer �L=3� con-
sists of 14 B’s and seven A’s, and so on. We identify the four

(b)(a) (c)

FIG. 5. Illustration of the ordering process: the left panel represents T
Tc�1.25, the middle panel, T�Tc, and the right panel, T
�Tc. The open and solid circles indicate ferromagnetic domains with positive and negative directions, respectively. The gray area represents
the paramagnetic phase.
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FIG. 6. �Color online� �a� Classification scheme of heptagons
and associated sites in the lattice. All heptagons are classified into
two groups as indicated by symbols A and B �see text for the
method of classification�. A group of four �or three� sites encircled
by a curve is attributed to those of the attached B �or A� heptagon;
the four sites grouped by a very thick curve, for instance, are re-
garded as those of the heptagon marked by the bold “B” index. �b�
Proliferation diagram of A and B heptagons in the lattice. Each A
and B block in the diagram symbolizes the associated group of three
and four sites, respectively, at the Lth layer.
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sites within a hatched region as those attached to the B hep-
tagon; in a similar way, the three sites enclosed by a curve
are identified as those attached to the A heptagon. Then, we
can say that the four sites of a B heptagon located at L=2
“engenders” one A heptagon and B heptagons at L=3. Simi-
larly, it follows that an A heptagon at L=3 generates a pair
containing an A heptagon and a B heptagon at L=4 �although
it is not shown in Fig. 6�a��. This proliferation process is
summarized by the diagram in Fig. 6�a�; each A �or B� block
symbolizes an ensemble of three �or four� sites, and a block
in the Lth layer creates several blocks in the �L+1� layer.
The diagram illustrates a method to count the total number of
sites contained in a given Lth layer.

We now have all the ingredients to derive the formula. Let
us denote the number of A �or B� heptagons in the Lth layer
by aL �or bL� and set a2=0, b2=7. It follows from the dia-
gram that for any L�3,

aL = aL−1 + bL−1, bL = aL−1 + 2bL−1. �A1�

We eliminate bL from Eq. �A1� to obtain aL−3aL−1+aL−2
=0 whose solutions under the conditions a2=0 and a3=7 are
given by

aL =
7�5

5
��v+�L−2 − �v−�L−2� for L � 3, �A2�

where v�= �3��5� /2. Hence, we have for L�2,

bL =
7�5

10
�w+�v+�L−2 + w−�v−�L−2� , �A3�

where w�= �1+�5. As a result, the desired formula—Eq.
�5�—for N�L�
3aL+4bL can be obtained.
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