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Abstract

On the basis of statistical mechanics of the Q-Ising model, we formulate the Bayesian
inference to the problem of inverse halftoning, which is the inverse process of representing
gray-scales in images by means of black and white dots. Using Monte Carlo simulations,
we investigate statistical properties of the inverse process, especially, we reveal the con-
dition of the Bayes-optimal solution for which the mean-square error takes its minimum.
The numerical result is qualitatively confirmed by analysis of the infinite-range model. As
demonstrations of our approach, we apply the method to retrieve a grayscale image, such as
standard image Lena, from the halftoned version. We find that the Bayes-optimal solution
gives a fine restored grayscale image which is very close to the original. In addition, based
on statistical mechanics of the Q-Ising model, we are sucessful in constructing a practically
useful method of inverse halftoning using the Bethe approximation.

Keywords; statistical mechanics, inverse halftoning, Monte Carlo simulation, infinite-range
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1 Introduction

For many years, a lot of researchers have investigated various problems in information sciences,
such as image analysis based on the Markov random fields [1, 2, 3]. In recent two or three
decades, a considerable number of theoretical physicists [4, 5, 6] have studied various problems,
such as image restoration and error-correcting codes, based on the analogy between statisti-
cal mechanics and information processing. For instance, the mean-field theory established in
statistical mechanics have been applied to image restoration [7, 8] to approximate the optimal
solution. Then, Pryce and Bruce [9] have proposed the threshold posterior marginal (TPM) esti-
mate for image restoration based on statistical mechanics of the Q-Ising model. In recent years,
Nishimori and Wong [10] have constructed an unified framework based on statistical mechanics
of the Ising spin glass model for the problems of image restoration and error-correcting codes.
They evaluated the statistical performance via the Monte Carlo simulation and the replica the-
ory established in the theory of spin glasses. Since their study, statistical mechanical techniques
have been applied to various problems in image processing, such as the segmentation [11]. From
these facts, we find that the research field, the so-called Statistical Mechanics of Information is
now an established important subject in statistical mechanics.
In the field of the print technologies, many techniques of information processing have also de-
veloped. Particularly, the digital halftoning [12, 13, 14, 15, 16] is regarded as a key information
processing to convert a digital grayscale image to black and white dots which represents the
original grayscale levels appropriately. On the other hand, the inverse process of the digital
halftoning is referred to as inverse halftoning. The inverse halftoning is also important for us
to make scanner machines to retrieve the original grayscale image by making use of much less
informative materials, such as the halftoned binary dots. The inverse halftoning is ‘ill-posed’
in the sense that one lacks information to retrieve the original image because the material one
can utilize is just only the halftoned black and white binary dots instead of the grayscale one.
To overcome this difficulty, the Bayesian approach becomes a powerful tool which is clarified
to have close relation to statistical mechanics. Under the direction of this approach, Steven-
son [17] attempted to apply the maximum of a Posteriori (MAP for short) estimation to the
problem of inverse halftoning for a given halftone binary dots obtained by the threshold mask
and the so-called error diffusion methods. However, from the theoretical point of view, there
are few theoretical papers to deal with the inverse-halftoning based on the Bayesian inference
and statistical mechanics of information. Besides the Bayesian approach, we usually introduce
the ‘regularization term’ which compensates the lack of the information and regard the inverse
problem as a combinatorial optimization [18, 19]. For this problem, the optimization is then
achieved to find the lowest energy state via, for example, simulated annealing [20, 21].
In this study, based on the framework of statistical mechanics of the Q-Ising model [22] which is
regarded as the Bayesian inference, we formulate the problem of inverse halftoning to estimate
the original grayscale levels by using the information both on the halftoned binary dots and the
threshold mask. Here, we reconstruct the original grayscale revels from a given halftoned binary
image and the threshold mask so as to maximize the posterior marginal probability. Then, using
the Monte Carlo simulation for a set of the snapshots generated with the Gibbs distribution of the
Q-Ising model, we investigate statistical properties of the inverse process, especially, we reveal
the condition of the Bayes-optimal solution for which the mean-square error takes its minimum.
We clarify that the optimal performance is achieved around the Bayes-optimal condition that
the model prior is assumed to be completely same as the true prior. Then, from the statistical
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mechanical point of view, we show that the present method is carried out by constructing the
equilibrium state of the Q-Ising model under the constraints coming from the halftone process,
and further that the optimal performance is realized, if we appropriately set the hyperparamter
corresponding to the absolute temperature. In addition, we show that the performance under
the Bayes-optimal condition is superior to that of the MAP estimate, if the thresholds are not
set appropriately in the halftone process. Then, in order to investigate to what extent the
Bayesian approach is effective for realistic images, we apply the method to retrieve the grayscale
levels of the 256-levels standard image Lena from the binary dots. We find that the Bayes-
optimal solution gives a fine restored grayscale image which is very close to the original one.
Next, from the theoretical point of view, we clarify without the statistical uncertainty that the
analytical estimate of the infinite-range model supports the result of the Monte Carlo simulation
for the set of the snapshots of the Q-Ising model, although the infinite-range interactions are
introduced into the present model to realize the analyitical estimate. Moreover, we here construct
a practically useful technique based on the Bayes inference using the Bethe approximation for
inverse halftoning. Here the Bethe approximation is established in statistical mechanics to clarify
thermodynamic properties of magnetic spin systems approximately. Then, the Bayes inference
using the Bethe approximation is clarified to be regarded as the Belief propagation method in
the field of information sciences. In this study, we indicate that the present method is effectively
works for the set of the snapshots of the Q-Ising model by solving the self-consistent equations
of the Bethe approximation.
The contents of this paper are organized as follows. In the next section, we formulate the problem
of inverse halftoning based on statistical mechanics of the Q-Ising model. Here we mention the
relationship between statistical mechanics of the Q-Ising model and Bayesian inference of the
inverse halftoning. In the following section, we investigate statistical properties of the statistical
mechanical inverse halftoning by Monte Carlo simulations. We also show that the Bayes-optimal
inverse halftoning is useful even for realistic images, such as the 256-level standard image Lena.
Then, analysis of the infinite-range model supports the result of the Monte Carlo simulations.
We also indicate the validity of the Bethe approximation for inverse halftoning. Last section is
devoted to summary.

2 The model

In this section, based on statistical mechanics of the Q-Ising model on the square lattice, we
construct a Bayesian inference for the problem of inverse halftoning.
First, we consider an original grayscale image which is expressed as a snapshot from a Gibbs dis-
tribution of the ferromagnetic Q-Ising model having the spin variables {ξ} ≡ {ξx,y = 0, · · · , Q−
1|x, y = 0, · · · , L− 1}. Then, each image {ξ} follows the Gibbs distribution

Pr ({ξ}) =
1
Zs

exp

[
−Js

Ts

∑
n.n.

(
ξx,y − ξx′ ,y′

)2
]

(1)

at temperature Ts. Here Zs which is called as the partition function in statisitcal mechanics is
the normalization factor of the Gibbs distribution, namely,

Zs =
L−1∏
x=0

L−1∏
y=0

Q−1∑
zx,y=0

exp

[
−Js

Ts

∑
n.n.

(
ξx,y − ξx′ ,y′

)2
]
. (2)
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Then, the summation
∑

n.n.(· · · ) runs over the sets of the nearest neighboring pixels located
on the square lattice in two dimension. The ratio of strength of spin-pair interaction Js and
temperature Ts, namely, Js/Ts controls the smoothness of our original image {ξ}. In Fig. 1
(left), we show a typical example of the snapshots from the distribution (1) for the case of Q = 4,
Js = 1 and Ts = 1. The right panel of the Fig. 1 shows the 256-levels grayscale standard image

Figure 1: An original image as a snapshot from the Gibbs distribution of (1) having 100 × 100 pixels for the
case of Q = 4 (left), where we set to Ts = 1, J = 1. The right panel shows a 256-levels standard image Lena with
400 × 400 pixels.

Lena with 400 × 400 pixels. We shall use the standard image to check the efficiency of our
approach. In order to convert the original grayscale images to the the black and white binary
dots, we make use of the threshold array {M}. Each component Mk,l of the array {M} takes

0 2
3 1

0 8 2 10
12 4 14 6
3 11 1 9
15 7 13 5

Figure 2: The Bayer-type threshold arrays for the dither method with 2 × 2 (left) and with 4 × 4 (right).

a integer from 0 to Lm × Lm − 1 and these numbers are arranged on the Lm × Lm squares as
shown in Fig. 2 for Lm = 2 (left) and for Lm = 4 (right). For general case of Lm, we define the
array as

{M} =
{
Mk,l = 0,

Q− 1
L2

m − 1
,
2(Q− 1)
L2

m − 1
, · · · , Q− 1

∣∣∣∣k, l = 0, 1, · · · , Lm − 1
}
.

(3)

We should keep in mind that the definition (3) is reduced to {M} = {Mk,l = 0, 1, · · · , Q−1|k, l =
0, 1, · · · ,√Q−1} and the domain of each component of the threshold array becomes the same as
that of the original image {ξ} for L2

m = Q. In the dither method, we first make a pixel-to-pixel
map between each element of the threshold array Mk,l and the original grayscale ξx,y at the
(x, y)-th pixel considering the relations x = pLm + k and y = qLm + l. Here p and q are the
integers from 0 to L/Lm − 1. As shown in Fig. 3, we can see that this map is achieved by
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arranging (L/Lm)2 threshold arrays on the original grayscale image {ξ}. Next, we convert each
original pixel ξx,y into the binary dot τx,y by

τx,y = θ (ξx,y −Mx,y) . (4)

Here Mx,y which denotes the threshold corresponding to the (x, y)-th pixel of the original image
{ξ}. Then, θ(· · · ) denotes the unit-step function. Halftone images generated by the dither
method via (4) are shown in Fig. 4. We find that the left panel obtained by the uniform threshold
mask Mx,y = 1.5 (∀x,y) is hard to be recognized as an original grayscale image, whereas, the
center panel obtained by the 2×2 Bayer-type threshold array might be recognized as just like an
original image through our human vision systems (due to a kind of optical illusion). Obviously,
the inverse process of the above halftoning is regarded as an ill-posed problem. This is because
from (4), one can not determine the original image ξx,y (∀x,y) completely from a given set of
τx,y (∀x,y) and Mx,y (∀x,y).

Figure 3: The pixel-to-pixel map between each element of the threshold array and the corresponding original
grayscale pixel.

In this manuscript, in the procedure of the Bayesian inverse digital halftoning, we attempt
to restore the original grayscale image from a given halftone image by means of the so-called
maximizer of posterior marginal (MPM for short) estimate. In this method, we define {z} =
{zx,y = 0, · · · , Q − 1|x, y = 0, · · · , L − 1} as an estimate of the original image {ξ} which is
arranged on the square lattice and reconstruct the grayscale image on the basis of maximizing
the following posterior marginal probability:

ẑx,y = arg max
zx,y

∑
{z}�=zx,y

Pr({z}|{τ}) = arg max
zx,y

Pr (zx,y|{τ}) , (5)

where the summation
∑

zx,y �={z}(· · · ) runs over all pixels except for the (x, y)-th pixel and the
posterior probability P ({z}|{τ}) is estimated by the Bayes formula:

Pr ({z}|{τ}) =
Pr ({z}) Pr ({τ}|{z})∑
{z} Pr ({z}) Pr ({τ}|{z}) (6)
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Figure 4: The left panel shows a halftone image converted by the dither method using the uniform threshold
M = 2 from the snapshot from a Gibbs distribution of the Q = 4 Ising model shown in Fig. 1 (left). The center
panel shows a halftone image obtained by the dither method using the 2× 2 Bayer-type threshold array from the
same snapshot. The right panel shows a halftone image converted by the dither method using the 4×4 Bayer-type
threshold array from the 256-level standard image Lena with 400 × 400 pixels shown in Fig. 1 (right).

In this study, following Stevenson [17], we assume that the likelihood might have the same form
as the halftone process of the dither method, namely,

P ({τ}|{z}) = Π(x,y)δ (τx,y, θ (zx,y −Mx,y)) , (7)

where δ(a, b) denotes a Kronecker delta and we should notice that the information on the thresh-
old array {M} is available in addition to the halftone image {τ}. Then, we choose the model of
the true prior as

Pr({z}) =
1
Zm

exp

[
− J

Tm

∑
n.n.

(
zx,y − zx′ ,y′

)2
]
, (8)

where Zm is a normalization factor. J and T are the so-called hyper-parameters. It should be
noted that one can construct the Bayes-optimal solution if we assume that the model prior has
the same form as the true prior, namely, J = Js and Tm = Ts (what we call, Nishimori line in
the research field of spin glasses [4]).
From the viewpoint of statistical mechanics, the posterior probability Pr({z}|{τ}) generates the
equilibrium states of the ferromagnetic Q-Ising model whose Hamiltonian is given by

H ({z}) = J
∑
n.n.

(
zx,y − zx′,y′

)2
, (9)

under the constraints

∀x,y τx,y − θ (zx,y −Mx,y) = 0. (10)

Obviously, the number of possible spin configurations that satisfy the above constraints (10) is
evaluated as

∏
(x,y) |Qτx,y −Mx,y| and this quantity is exponential order such as ∼ αL2

(α: a
positive constant). Therefore, the solution {z} to satisfy the constraints (10) is not unique and
this fact makes the problem very hard. To reduce the difficulties, we consider the equilibrium
state generated by a Gibbs distribution of the ferromagnetic Q-Ising model with the constraints
(10) and increase the parameter J gradually from J = 0. Then, we naturally expect that the
system stabilizes the ferromagnetic Q-Ising configurations due to a kind of the regularization
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term (9). Thus, we might choose the best possible solution among a lot of candidates satisfying
(10).
From the view point of statistical mechanics, the MPM estimate is rewritten by

ẑx,y = ΘQ(〈zx,y〉), 〈zx,y〉 =
∑

z

zx,yPr({z}|{τ}) (11)

where ΘQ(· · · ) is the Q-generalized step function defined by

θQ(x) =
Q−1∑
k=0

k

{
θ

(
x−

(
k − 1

2

))
− θ

(
x−

(
k +

1
2

)) }
. (12)

Obviously, 〈zx,y〉 is a local magnetization of the system described by (9) under (10).

2.1 Average case performance measure

To investigate the performance of the inverse halftoning, we evaluate the mean square error
which represents the pixel-wise similarity between the original and restored images. Especially,
we evaluate the average case performance of the inverse halftoning through the following averaged
mean square error

σ =
1

Q2L2

∑
{ξ}

Pr ({ξ})
∑
(x,y)

(ẑx.y − ξx,y)
2 . (13)

We should keep in mind that the σ gives zero if all restored images are exactly the same as the
corresponding original images.

3 Results

In this section, we first investigate the statistical properties of our approach to the inverse
halftoning for a set of snapshots from a Gibbs distribution of the ferromagnetic Q-Ising model
via computer simulations. Then, we check the usefulness of our approach for the realistic images,
namely, the 256-levels standard image Lena. We next analytically evaluate the performance for
the infinite-range model. Moreover, in order to construct a practically useful method, we propose
a Bayesian inference using the Bethe approximation.

3.1 Monte Carlo simulation

We first carry out Monte Carlo simulations for a set of halftone images, which are obtained from
the snapshots of the Q = 4 Ising model with 100 × 100 pixels by the dither method using the
uniform thresholds Mx,y = 3/2 (∀x,y), Mx,y = 1/2 (∀x,y) and the 2 × 2 Bayer-type threshold
array as shown in Fig. 2. In order to clarify the statistical performance of our method, we
reveal the hyper-parameters J and Tm dependence of the averaged mean square error σ. For
this purpose, we use 10 snapshots of the ferromagnetic Q = 4 Ising model {ξx,y} with 100× 100
pixels on the square lattice. These images are generated by the Monte Carlo simulation based
on the Metropolis algorithm with 20000 Monte Carlo steps (MCS, for short) from a random
pattern at Ts = 1. Then, when we restore the grayscale image, we carry out the Monte Carlo
simulation based on the Metropolis algorithm with 20000 MCS at assumed temperature Tm,
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starting from the halftone image {τ}. Here the halftone image {τ} is obviously satisfied with
the constraint δ(θ(ξx,y−Mx,y), θ(zx,y−Mx,y)) = 1 at each pixel. As shown in Fig. 5 (a), we first
investigate the hyperparameter Tm dependence of the mean square error when the threshold are
set to M = 3/2 under the conditions, Q = 4, Ts = 1, Js = 1, J = 1. This figure shows that
the present method achieves the best possible performance under the Bayes-optimal condition,
that is, J = Js and Tm = Ts, and that the limit Tm → ∞ leading up to the MAP estimate
gives almost the same performance as the Bayes-optimal MPM estimate. This fact means that
it is not necessary for us to take the Tm → 0 limit when we carry out the inverse halftoning via
simulated annealing. On the other hand, as shown in Fig. 5 (b), we show the Tm dependence
of the mean square error for the case that the threshold is set to Mx,y = 1/2 at each pixel.
Here we set other parameters as Q = 4, Ts = 1, Js = 1 and J = 1. In this case, as is same
as the Mx,y = 3/2, we also confirm that the optimal performance is achieved under the Bayes-
optimal condition. However, this figure indicates that the performance under the Bayes-optimal
condition is superior to that of the Tm → 0 limit of the present method. From the statistical
mechanical point of view, this result suggests that the thermal fluctuations enable us to improve
the performance of the present method by tuning the absolute temperature Tm to the Bayes-
optimal condition. These results indicate that the performance of the present method under the
Bayes-optimal condition is at least superior to the MAP estimate. From the restored image
in Fig. 6 (center), it is actually confirmed that the present method effectively works for the
snapshot of the ferromagnetic Q-Ising model. It should be noted that the mean square error
evaluated for the 2 × 2 Bayer-type array is larger than that for the M = 2 uniform threshold.
This result seems to be somewhat counter-intuitive because the halftone image shown in the
center panel of Fig. 4 seems to be much closer to the original image, in other words, is much
informative to retrieve the original image than the halftone image shown in the left panel of the
same figure. However, it could be understood as follows. The shape of each ‘cluster’ appearing
in the original image (see the left panel of Fig. 1) remains in the halftone version (the left
panel of Fig. 4), whereas, in the halftone image (the center panel of Fig. 4), such structure is
destroyed by the halftoning process via the 2 × 2 Bayer-type array. As we found, in a snapshot
of the ferromagnetic Q-Ising model at the inverse temperature Js/Ts = 1, the large size clusters
are much more dominant components than the small isolated pixels. Therefore, the averaged
mean square error is sensitive to the change of the cluster size or the shape, and if we use the
constant threshold mask to create the halftone image, the shape of the cluster does not change,
whereas the high-frequency components vanish. These properties are desirable for us to suppress
the increase of the averaged mean square error. This fact implies us that the averaged mean
square error for the 2 × 2 Bayer-type is larger than that for the constant mask array and the
performance is much worse than expected.
Moreover, the above evaluations might be helpful for us to deal with the inverse halftoning from
the halftoned image of the standard image with confidence. In fact, we are also confirmed that
our method is practically useful from the resulting image shown in Fig. 6 (right) having the
mean square error σ = 0.002005.

3.2 Analysis of the infinite-range model

In this subsection, we check the validity of our Monte Carlo simulations, namely, we analytically
evaluate the statistical performance of the present method for a given set of the snapshots from
a Gibbs distribution of the ferromagnetic Q-Ising model in which each spin variable is located
on the vertices of the complete graph. For simplicity, we first transform the index from (x, y)
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to i so as to satisfy i = x+ Ly + 1. Then, the new index i runs from i = 1 to L2 − 1 = N . For
this new index of each spin variable, we consider the infinite-range version of true prior and the
model as

Pr ({ξ}) =
e−

βs
2N

�
i<j(ξi−ξj)

2

Zs
, Pr ({z}) =

e−
βm
2N

�
i<j(zi−zj)

2

Zm
(14)

where the scaling factors 1/N appearing in front of the sums
∑

i<j(· · · ) are needed to take a
proper thermodynamic limit. We also set βs ≡ Js/Ts and βm ≡ J/Tm for simplicity. Obviously,
Zs and Zm in (13) are the normalization factors of the infinite-range versions of model and true
priors.
In order to investigate the statistical performance of present method, we here estimate the
thermodynamic properties of the system {z} in terms of the free energy as

[〈f〉]ξ = −β−1
m

∑
{ξ}

e−
βs
2N

�
i<j(ξi−ξj)

2

Zs

× log


∑

{z}
e−

βm
2N

�
i<j(zi−zj)2Πiδ (θ(ξi −Mi), θ(zi −Mi))


 , (15)

Here [〈· · · 〉]ξ means thermal average of some physical quantities (· · · ) averaged over the infinite-
range version of the true prior P ({ξ}) as quenched disorders. The thermodynamic properties
of the system {z} are clarified from the saddle-point conditions of the free energy both on the
magnetization m0 of the original image {ξ} and the magnetization m for the restored pixels {z}
as

∂ [〈f〉]ξ
∂m0

= 0,
∂ [〈f〉]ξ
∂m

= 0. (16)

Throughout the straightforward calculation, we can derive the explicit forms of the self-consistent
equations of m0 and m as

m0 ≡ 1
N

N∑
i=1

ξi =

∑Q−1
ξ=0 ξ exp[2βsm0ξ − βsξ

2]∑Q−1
ξ=0 exp[2βsm0ξ − βsξ2]

. (17)

m ≡ 1
N

N∑
i=1

zi =

∑Q−1
ξ=0

(�Q−1
z=0 z e2βmmz−βmz2

δ(θ(ξ−M),θ(z−M))
�Q−1

z=0 e2βmmz−βmz2
δ(θ(ξ−M),θ(z−M))

)
e2βsm0ξ−βsξ2

∑Q−1
ξ=0 e2βsm0ξ−βsξ2

.

(18)

Then, the average case performance is determined by the following averaged mean square error:

σ ≡ 1
NQ2

N∑
i=1

{ξi − ΘQ(〈zi〉)}2

=

∑Q−1
ξ=0

{
ξ − ΘQ

(�Q−1
z=0 z e2βmmz−βmz2

δ(θ(ξ−M),θ(z−M))
�Q−1

z=0 e2βmmz−βmz2
δ(θ(ξ−M),θ(z−M))

)}2

e2βsm0ξ−βsξ2

Q2
∑Q−1

ξ=0 e2βsm0ξ−βsξ2

(19)
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Solving these self-consistent equations with respect to m0 in Eq. (17) and m in Eq. (18),
we evaluate the statistical performance of the present method through the quantity σ (19)
analytically.
As we have mentioned using the Monte Carlo simulation, we estimate how the mean square
error depends on the hyper-parameter Tm for the infinite-range version of our model when we
set to Q = 8, Js = 1, Ts = 1, M = 3.5 (= (Q − 1)/2), 4.5 and J = 1. We find from Figs. 7
(a) and (b) that the mean square error takes its minimum in the wide range on Tm including
the Bayes-optimal condition Tm = Ts (= 1). Here, we note that m = m0 (= 3.5) holds under
the Bayes-optimal condition, Tm = Ts for both cases of M = 3.5 and M = 4.5, which is shown
in Fig. 8. From this fact, we might evaluate the gap ∆ between the lowest value of the mean
square error and the second lowest value obtained at the higher temperature than Ts as follows.

∆ 	
∑Q−1

ξ=0 (ξ −m0)2e2βsm0ξ−βsξ2

Q2
∑Q−1

ξ=0 e2βsm0ξ−βsξ2
−

∑Q−1
ξ=0 (ξ −m0 − 1)2e2βsm0ξ−βsξ2

Q2
∑Q−1

ξ=0 e2βsm0ξ−βsξ2

=

∑Q−1
ξ=0 (2ξ − 2m0 + 1)e2βsm0ξ−βsξ2

Q2
∑Q−1

ξ=0 e2βsm0ξ−βsξ2
=

1
Q2

(20)

For example, for Q = 8, we evaluate the gap as ∆ = (8)−2 = 0.00156 and this value agree with
the result shown in Fig. 7. From Figs. 7 and 8, we also find that the range of Tm in which the
mean square error takes the lowest value coincides with the range of temperature Tm for which
the magnetization satisfies m(Tm) = m(Ts = 1)±1 = 3.5±1 as shown in Fig. 8. This robustness
for the hyper-parameter selecting is one of the desirable properties from the view point of the
practical use of our approach. Further, in order to clarify the validity of thermal fluctuations,
we observe the gray-level distribution shown in 9. This means that thermal fluctuations due
to the appropriate temperature Tm generates the appropriate gray-level distribution shown in
9(a). Then, as shown in 9 (b), if Tm is set to be smaller than the optimal value (Tm = 0.1),
the gray-level distribution of the restored image is similar to the initial state. On the contrary,
as shown in 9 (b), if Tm is set to be larger than the optimal value (Tm = 5.0), the gray-level
distribution becomes broad due to thermal fluctuations.

3.3 Bethe approximation

In this section, we construct a practically useful method to inverse halftoning by making use
of the Bethe approximation which is established in statistical mechanics to approximate the
thermodynamic properties of magnetic spin systems. Then, we investigate the statistical per-
formance of the Bethe approximation to inverse halftoning based on the mean square error.
First, we indicate how to apply the Bethe approximation to the MPM estimate. For conve-
nience, we here note the marginal probability distributions Pr (ξx,y|{τ}), Pr

(
ξx,y, ξx′,y′ |{τ}) as

ρx,y (ξx,y), ρ
x′,y′
x,y

(
ξx,y, ξx′,y′

)
. The definition of the marginal probability distributions we use here

are

ρx,y (zx,y) =
∑
{ζ}

δ(zx,y, ζx,y)ρ ({ζ}) , (21)

ρx′,y′
x,y

(
zx,y, zx′,y′

)
=

∑
{ζ}

δ(zx,y, ζx,y)δ(zx′,y′ , ζx′,y′)ρ ({ζ}) , (22)
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for the probability distribution:

ρ ({z}) =

∏
(x,y) ψx,y (zx,y)

∏
n.n. φ

x′,y′
x,y

(
zx,y, zx′,y′

)
∑

{ζ}
∏

(x,y) ψx,y (ζx,y)
∏

n.n. φ
x′,y′
x,y

(
ζx,y, ζx′,y′

) . (23)

Here we set as ψx,y(z) = δ (τ, θ(z −M)) and φx′.y′
x,y (z, z′) = exp

[−J (z − z′)2
]
, where z, z′ =

0, · · · , Q − 1. In the framework of the Bethe approximation, we first consider the Bethe free
energy which is given by

F
[
ρx,y(z), ρx+1,y

x,y (z, z′), ρx,y+1
x,y (z, z′)|x, y = 0, · · · , L− 1, z, z′ = 0, 1, · · · , Q− 1

]
= E

[
ρx,y(z), ρx+1,y

x,y (z, z′), ρx,y+1
x,y (z, z′)

] − S
[
ρx,y(z), ρx+1,y

x,y (z, z′), ρx,y+1
x,y (z, z′)

]
. (24)

at Tm = 1. Here the first term in the right-hand side is the energy:

E
[
ρx,y(z), ρx+1,y

x,y (z, z′), ρx,y+1
x,y (z, z′)

]
= −

∑
(x,y)

Q−1∑
ζ=0

[
log δ (τ, θ(z −M))

]
ρx,y (z)

+ J
∑
(x,y)

Q−1∑
z=0

Q−1∑
z′=0

(
z − z′

) (
ρx+1,y

x,y

(
z, z′

)
+ ρx,y+1

x,y

(
z, z′

))
. (25)

Then, the second term in the right-hand side is the entropy:

S
[
ρx,y(z), ρx+1,y

x,y (z, z′), ρx,y+1
x,y (z, z′)

]
= Sx,y +

(
Sx+1,y

x,y − Sx,y − Sx+1,y

)
+

(
Sx,y+1

x,y − Sx,y − Sx,y+1

)
, (26)

where

Sx,y = −
Q−1∑
z=0

ρx,y (z) log ρx,y (z) , (27)

Sx′,y′
x,y = −

Q−1∑
z=0

Q−1∑
z′=0

ρx′,y′
x,y

(
z, z′

)
log ρx′,y′

x,y

(
z, z′

)
. (28)

We note that S[ρx,y(z), ρ
x+1,y
x,y (z, z′), ρx,y+1

x,y (z, z′)] is an approximation of the entropy S = −∑
{z} ρ({z}) log ρ({z})

based on the Bethe approximation. Then, we derive the deterministic equations on the set of
the messages {µ(x′,y′)→(x,y)(z)} (z = 0, · · · , Q−1) based on the variational principle of the Bethe
free energy with respect to ρx,y(z), ρ

x+1,y
x,y (z) and ρx+1,y

x,y (z) under the normalization conditions:

Q−1∑
z=0

ρx,y (z) =
Q−1∑
z=0

Q−1∑
z′=0

ρx+1,y
x,y

(
z, z′

)
=

Q−1∑
z=0

Q−1∑
z′=0

ρx,y+1
x,y

(
z, z′

)

=
Q−1∑
z=0

Q−1∑
z′=0

ρx−1,y
x,y

(
z′, z

)
=

Q−1∑
z=0

Q−1∑
z′=0

ρx,y−1
x,y

(
z′, z

)
= 1. (29)
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and the reducibility conditions:

ρx,y (z) =
Q−1∑
z′=0

ρx+1,y
x,y

(
z, z′

)
=

Q−1∑
z′=0

ρx,y+1
x,y

(
z, z′

)
=

Q−1∑
z′=0

ρx−1,y
x,y

(
z′, z

)
=

Q−1∑
z′=0

ρx,y−1
x,y

(
z′, z

)
.

(30)

using the Lagrange multipliers. Here, the set of messages {µ(x′,y′)→(x,y)(z)} is defined using
the Lagrange multipliers which are introduced to ensure the normalization and reducibility
conditions. As the detailed definition of the messages {µ(x′,y′)→(x,y)(z)} and the derivation of
the deterministic equations on {µ(x′,y′)→(x,y)(z)} are similar to that of the conventional Bethe
approximation which is shown in [5], we merely show the results of the variational calculation
in the Bethe approximation. The obtained deterministic equations on the set of the messages
{µ(x′,y′)→(x,y)(z)} (z = 0, · · · , Q− 1) are

µ(x′,y′)→(x,y) (z) =

∑Q−1
z′=0 φ

x′,y′
x,y (z, z′)ψx′,y′ (z′)

∏
(x′′,y′′)∈D(x′,y′)\(x,y) µ(x′′,y′′)→(x′,y′) (z′)∑Q−1

ζ′=0

∑Q−1
ζ=0 φ

x′,y′
x,y (ζ ′, ζ)ψx′,y′ (ζ)

∏
(x′′,y′′)∈D(x′,y′)\(x,y) µ(x′′,y′′)→(x′,y′) (ζ) .

,

(31)

from the (x′, y′)-th pixel to the (x, y)-th pixel. Here D(x, y) is the set of the lattice points of the
nearest neighbors to the (x, y)-th pixel, namely, {(x+ 1, y), (x− 1, y), (x, y + 1), (x, y − 1)} and
D(x′, y′)\(x, y) is the set of the lattice points of the nearest neighbors to the (x′, y′)-th pixel exept
for the (x, y)-th pixel. By making use of the solution of the set of the messages {µ̂(x′,y′)→(x,y)(z)},
we can estimate the marginal probability distribution ρ̂x,y (z) and the thermal average of the
local magnetization 〈zx,y〉 at the (x, y)-th pixel by

ρ̂x,y (z) =
ψx,y (z)

∏
(x′,y′)∈D(x,y) µ̂(x′,y′)→(x,y)(z)∑Q−1

ζ=0 ψx,y (ζ)
∏

(x′,y′)∈D(x,y) µ̂(x′,y′)→(x,y)(ζ)
, (32)

〈zx,y〉 =
Q−1∑
z=0

zρ̂x,y (z) . (33)

When we actually carry out the Bethe approximation, we derive the solution of the set of the
messages {µ(x′,y′)→(x,y)(z)} using the following procedure.

Algorithm
Step 1: First set the initial condition of the set of the messages {µ(0)

(x,y)→(x′,y′)(z)} appropriately.

Step 2: Then, by making use of the set of the messages {µ(k)
x,y→x′,y′(z)} (k = 0, 1, 2, · · · ),

calculate the set of the messages µ(k+1)
x,y→x′,y′(z) in terms of the deterministic equations:

µ
(k+1)
(x′,y′)→(x,y) (z) =

∑Q−1
ζ=0 φ

x′,y′
x,y (z, ζ)ψx′,y′ (ζ)

∏
(x′′,y′′)∈D(x′,y′)\(x,y) µ

(k)
(x′′,y′′)→(x′,y′) (ζ)∑Q−1

ζ′=0

∑Q−1
ζ=0 φ

x′,y′
x,y (ζ ′, ζ)ψx′,y′ (ζ)

∏
(x′′,y′′)∈D(x′,y′)\(x,y) µ

(k)
(x′′,y′′)→(x′,y′) (ζ)

,

(34)

where k is the number of the iteration for the deterministic equations on {µ(k)
(x′,y′)→(x,y)

(z)}.
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Step 3: If

1
L2

∑
(x,y)

Q−1∑
z=0

(
µ

(k+1)
(x′,y′)→(x,y)(z) − µ

(k)
(x′,y′)→(x,y)(z)

)2
< ε (35)

is satisfied, we regard {µ(k+1)
(x′,y′)→(x,y)(z)} as the solution of the equations, {µ̂(x′,y′)→(x,y)(z)} and

go to Step 4. Otherwise, go to Step 2 and then repeat the procedure in Step 2. In this study,
we set to ε = 1.0 × 10−5.
Step 4: Calculate the pixel value of the restored grayscale image as

ẑx,y =

∑Q−1
z=0 z ψx,y (z)

∏
(x′,y′)∈D(x,y) µ̂(x′,y′)→(x,y)(z)∑Q−1

ζ=0 ψx,y (ζ)
∏

(x′,y′)∈D(x,y) µ̂(x′,y′)→(x,y)(ζ)
(36)

by making use of the set of the solutions {µ̂(x′,y′)→(x,y)(z)} for the deterministic equations.

Then, in order to clarify the efficiency of the Bethe approximation to inverse halftoning, we
investigate statistical properties for the set of the snapshots of the Q-Ising model with 100×100
pixels. As shown in Figs. 10 (a) and (b), we find that the Bethe approximation accurately
restores the grayscale images under the Bayes-optimal condition Tm = Ts = 1 and J = Js = 1
and that the optimal performance of the Bethe approximation (σ̂ = 0.004421 ± 0.000075 for
M = (Q−1)/2 and σ̂ = 0.015123±0.000025 for the 2×2 Bayer’s threshold array case) is slightly
inferior to that of the Monte Carlo simulatons (σ̂ = 0.004426± 0.000157 for M = (Q− 1)/2 and
σ̂ = 0.014861 ± 0.000091 for the 2 × 2 Bayer’s threshold array case).

4 Summary

In this paper, we investigated the condition to achieve the Bayes-optimal performance of inverse
halftoning based on statistical mechancs of the Q-Ising model by making use of computer simu-
lations, analysis of the infinite range model and the Bethe approximation. Especially, from the
statistical mechanical point of view, we clarify that the present method achieves the optimal
performance for the set of the snapshots of the Q-Ising model, when we appropriately tune the
hyperparameter which is regarded as the absolute temperature. We were also confirmed that
our Bayesian approach is useful even for the inverse halftoning from the binary dots obtained
from standard images, in the wide range on Tm including the Bayes-optimal condition, Tm = Ts.
Moreover, we are sucessful in constructing the practically useful technique for inverse halftoning
based on the MPM estimate using the Bethe approximation.
We hope that some modifications of the prior distribution might make the quality of the inverse
halftoning much better. It will be our future work.

Acknowledgment

We were financially supported by Grant-in-Aid Scientific Research on Priority Areas “Deepening
and Expansion of Statistical Mechanical Informatics (DEX-SMI)” of The Ministry of Education,
Culture, Sports, Science and Technology (MEXT) No. 18079001.

13



References

[1] J. Besag, J. Roy. Stat. Soc. B 48, no. 3, 259 (1986).

[2] R.C. Gonzales and R.C. Woods, Digital Image Processing, Addison Wesley, Reading, MA.
(1992).

[3] G. Winkler, Image Analysis, Random fields and Markov Chain Monte Carlo Methods,
Springer (2002).

[4] H. Nishimori, Statistical Physics of Spin Glasses and Information Processing: An Introduc-
tion, Oxford University Press, London (2001).

[5] K. Tanaka, J. Phys. A: Math. Gen. 35, R81 (2002).

[6] N. Sourlas, Nature 339, 693 (1989).

[7] K. Tanaka and T. Morita, Physics Letters, 203, 122 (1995).

[8] J. Zhang, IEEE Transaction on Image Processing, 5, 1208 (1996).

[9] J.M. Pryce and D. Bruce, J. Phys. A: Math. Gen. 28, 511(1995).

[10] H. Nishimoi and K. Y. M. Wong, Phys. Rev. E, 6, 132 (1999).

[11] M. Okada, K. Doya, T. Yoshioka and M. Kawato, Technical Report of IEICE, NC98-184,
239 (1999).

[12] R. Ulichney, Digital Halftoning, MIT Press, Massachusetts (1987).

[13] B.E. Bayer, ICC CONF. RECORD, 11 (1973).

[14] R. W. Floyd and L. Steinberg, SID Int. Sym. Digest of Tech. Papers, 36 (1975).

[15] C.M. Miceli and K.J. Parker, J. Electron Imaging 1, 143(1992).

[16] P.W. Wong, IEEE Trans. on Image Processing 4, 486(1995).

[17] R.L. Stevenson, IEEE 6, 574(1997).

[18] S.D. Cabrera, K. Iyer, G. Xiang and V. Kreinovich: On Inverse Halftoning: Computational
Complexity and Interval Computations, 2000 Conference on Information Science and Sys-
tems, The Johns Hopkins University, March 16-18 (2005).

[19] M. Discepoli and I. Greace, Lecture Note on Computer Science 3046, 388 (2004).

[20] S. Kirkpatrick, C.D. Gelatt and M.P. Vecchi, Science 220, 671 (1983).

[21] S. Geman and D. Geman, IEEE Trans. Pattern Anal. and Mach. Intel. 11, 721 (1989).
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(a)

(b)

Figure 5: (a) The mean square error as a function of Tm. The original image is a snapshot from a Gibbs
distribution of the Q = 4 ferromagnetic Ising model with 100 × 100 pixels and Ts = 1.0, Js = 1 and J = 1. The
halftone images are obtained by the uniform threshold M = 3/2 and 2 × 2 Bayer-type arrays. (b) The mean
square error as a function of Tm. The original image is a snapshot from a Gibbs distribution of the the Q = 4
ferromagnetic Ising model with 100 × 100 pixels and Ts = 1.0, Js = 1 and J = 1. The halftone images are
obtained by the uniform and uniform threshold M = 1/2.
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Figure 6: The left panel shows a Q = 4 grayscale image restored by the MPM estimate from the halftone image
shown in Fig. 4 (left). The center panel shows a Q = 4 grayscale image restored by the MPM estimate from the
halftone image shown in Fig. 4 (center). The right panel shows a Q = 256 grayscale image restored by the MPM
estimate from the halftone image shown in Fig. 4 (right).
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(a)

(b)

Figure 7: (a) The mean square error as a function of the parameter Tm when Q = 8, Ts = 1, Js = 1,
M = (Q − 1)/2 and J = 1, (b) The mean square error as a function of the parameter Tm when Q = 8, Ts = 1,
Js = 1, M = 4.5 �= (Q − 1)/2 and J = 1. The value mi for each line caption denotes the initial condition of the
magnetization m to find the locally stable solution.
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Figure 8: The magnetization m as a function of the parameter Tm when Q = 8, Ts = 1, Js = 1, M = 4.5 �=
(Q − 1)/2, τ = 0 and J = 1.

18



(a)

(b)

(c)

Figure 9: (a) The gray-level distribution of the restored image at Tm = 0.1, (b) The gray-level distribution of the
restored image at Tm = 1.0, (c) The gray-level distribution of the restored image at Tm = 5.0. Other paramegters
are set as Q = 8, Ts = 1, Js = 1, M = 4.5 �= (Q − 1)/2 and J = 1.
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Figure 10: The left panel shows a Q = 4 grayscale image restored by the MPM estimate using the Bethe
approximation from the halftone image shown in Fig. 4 (left). The right panel shows a Q = 4 grayscale image
restored by the MPM estimate using the Bethe approximation from the halftone image shown in Fig. 4 (center).
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