| Title | Biomarker Compositions of Dinoflagellates and Their Applications for Paleoenvironmental Proxies | |------------------|--| | Author(s) | Amo, Miki; Suzuki, Noriyuki; Kawamura, Hiroshi; Yamaguchi, Aika; Takano, Yoshihito; Horiguchi, Takeo | | Citation | Edited by Hisatake Okada, Shunsuke F. Mawatari, Noriyuki Suzuki, Pitambar Gautam. ISBN: 978-4-9903990-0-9, 223-226 | | Issue Date | 2008 | | Doc URL | http://hdl.handle.net/2115/38469 | | Туре | proceedings | | Note | International Symposium, "The Origin and Evolution of Natural Diversity". 1–5 October 2007. Sapporo, Japan. | | File Information | p223-226-origin08.pdf | # Biomarker Compositions of Dinoflagellates and Their Applications for Paleoenvironmental Proxies Miki Amo^{1,*}, Noriyuki Suzuki¹, Hiroshi Kawamura¹, Aika Yamaguchi¹, Yoshihito Takano² and Takeo Horiguchi¹ ¹Department of Natural History Sciences, Graduate School of Science, Hokkaido University, N10 W8, Kita-ku, Sapporo 060-0810, Japan ²Harmful Phytoplankton Section, Harmful Algal Bloom Division, National Research Institute of Fisheries and Environment of Inland Sea, Fisheries Research Agency of Japan, 2-17-5 Maruishi, Hatsukaichi, Hiroshima 739-0452, Japan #### **ABSTRACT** Four motile cells of autotrophic dinoflagellates, $Peridinium\ umbonatum\ var.\ inaequale,\ Akashiwo\ sanguinea,\ Scrippsiella\ tinctoria,\ and\ Prorocentrum\ micans,\ commonly\ contain\ five\ major\ sterols:\ cholesterol,\ 4-methylcholestan-3-ol,\ 4,\ 24-dimethylcholestan-3-ol,\ dinosterol\ and\ dinostanol.\ A\ motile\ cell\ of\ heterotrophic\ dinoflagellate,\ Protoperidinium\ crassipes,\ contains\ cholesterol,\ 4,\ 24-dimethylcholestan-3-ol,\ dinosterol,\ dinostanol\ and\ 4-tetramethylcholestan-3-ol\ as\ major\ free\ sterols.\ Dinosterol\ concentration\ of\ heterotrophic\ dinoflagellate\ is\ important\ source\ of\ dinosterol\ in\ some\ sediments.\ 4-Methylcholestan-3-ol\ and\ 4-tetramethylcholestan-3-ol\ occur\ respectively\ in\ autotrophic\ and\ heterotrophic\ dinoflagellates\ are\ believed\ to\ serve\ as\ potential\ biomarkers\ in\ respective\ types.\ Resting\ cyst\ of\ P.\ inaequale\ contains\ 4-methylcholestan-3\beta-ol,\ 4,\ 24-dimethyl-5\alpha-cholestan-3\beta-ol,\ dinosterol,\ dinostanol,\ and\ unknown\ C_{31}\ sterol\ as\ major\ free\ sterols.\ The\ unknown\ C_{31}\ sterol\ detected\ only\ in\ resting\ cyst\ could\ have\ been\ produced\ during\ resting\ stage.\ This\ compound\ may\ serve\ as\ a\ potential\ biomarker\ for\ resting\ cyst\ of\ dinoflagellate.$ **Keywords**: Autotrophic dinoflagellate, Heterotrophic dinoflagellate, Resting cyst, 4α -Methyl sterol ## INTRODUCTION Dinoflagellate is one of the major primary producers in the ocean since the Mesozoic. These microalgae occur throughout the world's oceans but are often more abundant in coastal areas. About half species of dinoflagellate are autotrophic ones, and others are heterotrophic. Some species are able to force themselves into a dormant or resting stage as part of their relatively complicated life cycle. These dormant stages, called resting cysts, are typically characterized by a thick and highly specialized cell covering. The motile stage of dinoflagellate is hardly recorded in sediments since the motile cell of dinoflagellate is labile against bio- and chemical degradations during the settling and the early diagenesis. The resting cysts of some dinoflagellates species are composed of resistant biomacromolecules, which can be preserved in sediments and sedimentary rocks. Geologic record of dinoflagellate evolution, therefore, is based on their resting cyst fossils in sedimentary rocks. The sterol compositions of dinoflagellates are generally dominated by 4α -methyl sterols including ^{*}Corresponding author, e-mail: mamo@nature.sci.hokudai.ac.jp Information for use in citing this article: Okada, H., Mawatari, S.F., Suzuki, N. and Gautam, P. (eds.), *Origin and Evolution of Natural Diversity*, Proceedings of International Symposium "The Origin and Evolution of Natural Diversity", 1–5 October 2007, Sapporo, pp. 223–226. 224 *M. Amo et al.* the C_{30} sterol called dinosterol (4 α , 23, 24-trimethyl-5 α -cholest-22E-en-3 β -ol). This sterol is rarely found in other algae and hence has been often used as an indicator of dinoflagellate contribution to the marine sediments. However, sedimentary dinosterols do not necessarily provide sufficient information about the motile stage of dinoflagellate and the relative contribution of heterotorophic and autotrophic dinoflagellates. Sterol compositions vary quite considerably between different species of dinoflagellates [1]. Some particular sterols can be potential biomarkers for motile cells of dinoflagellates. The objective of the present study is to search for characteristic sterols of motile cell and resting cyst of autotrophic and heterotorophic dinoflagellates. ### MATERIALS AND METHODS Five motile cells of dinoflagellates (Peridinium umbonatum var. inaequale, Akashiwo sanguinea, Scrippsiella tinctoria, Prorocentrum micans, Protoperidinium crassipes) and a resting cyst of P. inaeguale were cultured. After the cultivation, the samples were collected at GF/F filters. Lipids were extracted by ultrasonication with methanol/dichloromethane. The combined lipid extract was saponified with 0.5 mol KOH/methanol. The neutral fraction was extracted with diethylether/n-hexane (1:9), and was fractionated into four fractions by silica gel column chromatography. The sterol fraction was analyzed using a Hewlett Packard 6890 series gas chromatograph (GC). The compounds were identified by mass spectral analysis using a gas chromatograph-mass spectrometer (GC/MS) (Hewlett Packard GC HP6890 and MS HP5973). ## RESULTS AND DISCUSSION Four motile cells of autotrophic dinoflagellates, *Peridinium umbonatum var. inaequale*, *Akashiwo sanguinea*, *Scrippsiella tinctoria*, and *Prorocentrum micans*, commonly contain five major sterols in the free sterol fraction (Fig. 1). These major sterols are cholesterol, 4-methylcholestan-3-ol, 4, 24-dimethylcholestan-3-ol, dinosterol and dinostanol (4, 23, 24-trimethylcholestan-3-ol). A motile cell of heterotrophic dinoflagellate, *Protoperidinium crassipes*, contains cholesterol, 4, 24-dimethylcholestan-3-ol, dinosterol, dinostanol and 4-tetramethylcholestan-3-ol as major free sterols (Fig. 1). The dinosterol concentrations of autotrophic dinoflagellates vary within a range of 0.18 to 0.52 pg/cell. The dinosterol concentration of heterotrophic dinoflagellate *P. crassipes* is 2.3 pg/cell, which is about 4–12 times higher than the range for autotrophic species. The genus *Proto- peridinium* currently includes more than 200 spe- **Fig. 1** Total ion chromatograms of sterol fractions from all motile cells of dinoflagellates. 1: Cholesterol, 2: 4α -Methylcholestan- 3β -ol, 3: Campesterol, 4: β -Sitosterol, 5: 4α , 24-Dimethyl- 5α -cholestan- 3β -ol, 6: Dinosterol, 7: 4α -23, 24-Trimethylcholest-17 (20)-en3 β -ol, 8: 4α , 23R, 24R-Trimethyl- 5α -cholestan- 3β -ol, 9: 4α -Tetramethylcholestan- 3β -ol. cies, and its members are some of the commonest organisms in the neritic plankton [2]. These observations suggest that the heterotrophic dinoflagellate can be an important source of dinosterol in some sediments. The dinosterol flux is not always applicable as the proxy of primary production by dinoflagellates in those sediments, in which heterotrophic dinoflagellates are significant contributors of organic matter. 4-Methylcholestan-3-ol was commonly detected in autotrophic dinoflagellates, but not in heterotrophic dinoflagellate in the present study (Fig. 1). On the contrary, 4-tetramethylcholestan-3-ol was detected only in heterotrophic dinoflagellate (Fig. 1). The sterol composition of dinoflagellates is dominated by 4-methyl sterols, including dinosterol, which is found in many dinoflagellate species [e.g. 3]. Haptophyte algae of the genus *Pavlova* contain 4, 24-dimethyl-5α-cholest-22E-en-3β-ol, 4, 24-dimethyl- **Fig. 2** Total ion chromatograms of sterol fractions from motile cell and resting cyst of *P. inaequale* and mass spectra of C_{31} sterol. 1: Cholesterol, 2: 4α -Methylcholestan-3 β -ol, 5: 4α , 24-Dimethyl-5 α -cholestan-3 β -ol, 6: Dinosterol, 8: 4α , 23R, 24R-Trimethyl-5 α -cholestan-3 β -ol, 9: 4α -Tetramethycholestan-3 β -ol. 5α -cholestan-3β-ol, 4-methyl-24-ethyl- 5α -cholestan-22E-en-3β-ol and 4-methyl-24-ethyl- 5α -cholestan-3β-ol [4]. Bacteria have ever been proposed as one of the sources of 4-methyl sterols in sediments [5], but only a few bacteria contain 4-methyl sterols [6, 7]. Some higher plants also contain C_{30} 4-methyl sterols. However, they occur generally in small amounts since the sterols are biosynthetic intermediates to other sterols [8]. These observations thus lead to the conclusion that dinoflagellates are major sources of 4-methylcholestan-3-ol and 4-tetramethylcholestan-3-ol. 4-Methylcholestan-3-ol and 4-tetramethylcholestan-3-ol may be useful biomarkers of autotrophic and heterotrophic dinoflagellates, respectively. Resting cyst of P. inaequale contains 4-methylcholestan-3 β -ol, 4, 24-dimethyl-5 α -cholestan-3 β -ol, dinosterol, dinostanol, and unknown C₃₁ sterol as major free sterols (Fig. 2). Although sterol distribution of resting cyst is nearly similar to that of motile cell, the unknown C₃₁ sterol occurred only in resting cyst (Fig. 2). None of motile cells contains this unknown C_{31} sterol. 4α -Methylgorgostanol is known as typical C_{31} sterol produced by dinoflagellate [8]. 4α-Methylgorgostanol was originally detected in zooxanthellae of Briareum asbestinum and dinoflagellate, Kryptoperidinium (= Glenodinium) foliaceum [9, 10]. However, mass spectral study shows that the unknown C₃₁ sterol in the present study is clearly different from 4α-methylgorgostanol. The unknown C₃₁ sterol has not been detected in the microalgal culture samples. This compound could have been produced during resting stage. Further study on this unknown C₃₁ sterol will provide clues for biomarkers of dinoflagellate resting cysts. ## **CONCLUSIONS** - 1. The dinosterol concentration of heterotrophic dinoflagellate is about 4–12 times higher than those of autotrophic species, suggesting that the heterotrophic dinoflagellate can be an important source of dinosterol in some sediments. - 2. 4-Methylcholestan-3-ol was detected only in autotrophic dinoflagellates, whereas 4-tetramethylcholestan-3-ol was confined to the heterotrophic dinoflagellates. These compounds may serve as potential biomarkers in the respective types of dinoflagellates. - 3. The unknown C_{31} sterol detected in resting cyst of *P. inaequale* could be a potential biomarker of dinoflagellate resting cysts. 226 M. Amo et al. #### **ACKNOWLEDGMENTS** This work was supported in part by the 21st Century COE Program for the "Neo-Science of Natural History" Program (Leader: Prof. H. Okada) under a grant from the Japanese Ministry of Education, Science, Sports and Culture. #### REFERENCES - Volkman, J.K., 1999. Sterols of four dinoflagellates from the genus Prorocentrum. Pytochem., 52, 659–668. - Yamaguchi, A. and Horiguchi, T., 2005. Molecular phylogenetic study of the heterotrophic dinoflagellate genus Protoperidinium (Dinophyceae) inferred from small subunit rRNA gene sequences. Phycol. Res., 53, 30–42. - Pirretti, M.V., Giampiero, P., Boni, L., Pistocchi, R., Diamante, M. and Gazzotti, T., 1997. Investigation of 4-methyl sterols from cultured dinoflagellate algal strains. Journal of Phycology, 33, 61–67. - Volkman, J.K., Kearney, P. and Jeffrey, S.W., 1990. A new source of 4-methyl sterols and 5α (H)-stanols in sediments: - prmnesiophyte microalgae of the genus *Pavlova*. Org. Geochem., 15, 489–497. - Mermoud, F., Glucar, F.O., Siles, S., Chassaing, B. and Buchs, A., 1982. 4-Methylsterols in recent lacustrine sediments: terrestrial, planktonic or some other origin? Chemosphere, 11, 557–567 - Bird, C.W., Lynch, J.M., Pirt, F.J., Reid, W.W., Brooks, C.J. W. and Middleditch, B.S., 1971. Steroids and squalene in *Meth-ylococcus capsulatus* grown on methane. Nature, 230, 473–474 - Bouvier, P., Rohmer, M., Benveniste, P. and Ourisson, G., 1976. Δ⁸⁽¹⁴⁾-steroids in the bacterium *Methylococcus capsula*tas. Biochem. J., 159, 267–271. - 8. Goad, L. and Goodwin, T.W., 1972. The biosynthesis of plant sterols. Progr. Phytochem., 3, 113-198. - Alam, M., Martin, G.E., Ray, S.M., 1979. Dinoflagellate sterols. Isolation and structure of 4-methyl gorgostanol from the dinoflagellate *Glenodinium foliaceum*. Org. Chem., 44, 4466–4467. - Steudler, P.A., Schmitz, F.J. and Ciereszko, L.S., 1977. Chemistry of coelenterates. Sterol composition of some predatory-prey pairs on coral reefs. Comp. Biochem. Physiol., 56B, 385–392.