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                                  Abstraet

   The dynamic response of suspension bridges subjected to moving loads with a constant

velocity is studied. The free vibration analysis of suspension bridges is based on the

linearized deflection theory which restricts the amplitudes of vibration to be small, and the

dynamic response analysis is conducted by the method of modal analysis. Numerical

examples in which actual suspension bridges are used are presented as verification of the

analysis. Primary information for an impact factor in suspension bridges is also suggested

in this paper.

                               X. gpttrodianction

    In recent years, a new project with respect to long-span suspension bridges is being

planned with consideration to the geographical characteristics of Japan. The dynamic

behavior of such long-span bridges has become a vitally important engineering problem,

because a full understanding of the dynamic characteriStics of suspension bridges under

various dynamic Ioads such as wind forces, earthquakes, and moving vehicles is necessary

in order to improve their safety margin.

    Although the analysis of free vibration of suspension bridges has been investigated by

many specialists,'-5) there are almost no publications dealing with the dynamic response

analysis of suspension bridges subiected to moving loads.

    To the writers' knowledge, only three investigations6-") dealing with such dynamic

responses of suspension bridges have been published. K16ppel and Lie6) calculated the

dynamic deflections of a three-span suspension bridge by using a Fourier series solution,

but their mode of thinking in modal analysis seems doubtful. The dynamic analysis of a

single-span suspension bridge under a moving constant force or a moving pulsating force

was investigated by Vellozzi.') ln the late 1960's, Hirai and Ito&9) studied theoretically and

experimentally the practicability of railway suspension bridges. They showed that the

impact factor is sufficient to discuss about 15% for long-span railway suspension bridges.

    The primary objective of this study is to determine a sufficient number of natural

frequencies and mode shapes to make possible an accurate dynamic response analysis for

practical purposes. The problem is analyzed by the }inearized deflection theory, and the

effect of restraint conditions of the stiffening girders and the effect of deformations of the

'Department of Civil Engineering, Faculty of Engineering, Hokkaido University, Nishi 8 Kita 13 Kita-Ku.,

Sapporo, 060, Japan.
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tower are considered. The secondary objectives are to obtain a closed form solution for the

dynamic response of multispan susPension bridges traversed by moving Ioads with constant

velocity, and to investigate their dynamic characteristics. An approximate calculation

formula for the impact factor in suspension bridges is also provided in this paper.

                                2. Analysis

2-X. Assumptions

   In the dynamic response analysis of suspension bridges, conventional assumptions

based on the deflection theory are made.2'3") Additional assumptions in the present analysis

are as follows:

   (1) The amplitudes of vibration are sufficiently small so that the additional horizontal

component Hb･of the cable tension due to inertia forces is small in comparison with the

initial horizontal component fllo of the cable tension due to dead load. This assumption

permits the analysis to be based on a linear differential equation.

   (2) The types of stiffening girders are grouped into two classes according to their

characteristics. The hinged-span type bridge is simply supported at the intermediate

supports as shown in Fig. 1(a), and the continuous-span type bridge is continuously supported

over al} spans as shown in Fig. 1(b).

   (3) The boundary conditions of the cable support at the top of the tower are assumed

to be as follows: First, the horizonta} component of the cable tension Hb is assumed to be

the same on both sides of the tower in all spans of the cable (roller connection) as shown

in Fig. 2(a). This presupposes that the tower cable saddles are free to move horizontally and

there is no tower resistance to the displacement at the top. Second, the horizontal

component of the cable tension on both sides of the tower may differ slightly from the

friction forces at the tower-cable saddles. This means that the horizonta} movement of the

tower top is accompanied by a horizontal component of the force between the cable and the

tower. Figures 2(b) a.nd 2(c) show the cases of neg}ecting and considering the effect of an

axia} force AJ} due to the dead load at the tower top, respectively.

    (4) In the dynamic response analysis of suspension bridges under moving loads, the
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effects of the damping force and the mass associated with the moving loads are assumed

to be negligibly small.

    (5) A constant concentrated load P moves from left to right on the multispan suspen-

sion bridge with a constant velocity v. At time t--O, the moving load arrives at the end of

the first span and the dynamic response of the bridge starts at that time from rest

condition.

2-2. Fmee Vibmatkoges

   The linearized differential equation for the free vertical vibration of suspension

bridges is givenZ3)

                                                             '
  md4d:[X)-H. d2dV.(,X)+ ]£;,. Hp=-lg- tu2 v(x) (1)

in which V(x) is the transverse deflection at the distance x from the Ieft support of the

stiffening girder (eigenfunction or mode shape), El is the flexural stiffness of the stiffening

girder, w is the dead load of the bridge per unit length, g is the acceleration due to gravity,

and tu is the natural circular frequency. The general solution of Eq. (1) may be expressed

in the form

  v,(x,):=:Aicos ptil.i -t- Bisin ptii,' +Cicosh tt?.i +Disinh ttl' + w2gH. Hb,i

  pti=gblk.?'(zi-i),ui==#the,?'(z,+i),z,-ite4gWfEa2ri.2 (2b)

where the quantity with suffix i indicates that for ith span, and the integration constants

Ai, Bi, Ci, and Di are determined by the boundary conditions of the vibrating structure. The

boundary conditions at the Ieft end (xi = O) and the right end (xh = L.) of the stiffening girder

of a multispan suspension bridge are given

                 d2 X(0)
  Vi(e)=O, EL d.? =:-O, forx!=O (3a)
                 d2 T!lz(Ln)
  V}t(Ln)==O,El'n d.,2, =O, forxn==Ln (3b)

The boundary conditions at the intermediate support of the stiffening girder are given as

follows:

    (1) Hinged-span type bridge as showii in Fig. 1(a)

                     d2 X--i(L,'-i)                                                   d2 X･(O)
  Vi-i(Li-i)=O,EIi-i dxy.-, =e,Vi(O)=O,EIi dxy. =:O (3c)

  (2) Continuous-span type bridge as shown in Fig. 1(b)

             dl!1･nv,(L,-,) dX･(O)
Vl･-i(Li-i):O, dx,-, -==- dx, -,V,(O)i=O,El'i"i

d2 V,-,(L,Li)
= El' i
d2 V,(O)

dxr･-, dx ?･

 (3d)
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The following matrix notation may be obtained by substituting Eq. (2a) into Eqs. (3)

in which

  a={Ai,Bi, Ci, Di, A2, B2, C2, D2,''',An, Bn, Cn, Dn]T,
                                                                  (4b)
  h=={Iilb,i, Hb,2,`'',Hp,n}T

The orders of the coefficient matrices A and ff are 4n×4n and 4n× n (or 4n× I), respec-

tively. The vector a is o'f the order 4n× 1, while the vector h is either of the order n×1 in

the case of the hinged connection or of the order 1×1 (]Ub) in the case of the roller

connection.

    The remaining unknown quantities Hhi or Hh in Eq. (2a) are related to the eigenfupc-

tions V}(xi) by the so-called cable equation. The different connection types of the cable

support at the tower top are considered very carefully in the cable equation which relates

the elastic streching of the cable to geometric displacement. The equation is as follows:

    (1) Roller connection type as shown in Fig. 2(a)

   Eli!ii. Hp- i£i". XIL v(x)dx=o (s)
                    '
in which .Elb is the modulus of elasticity of the cable, A. is the cross-sectionaJ area of the

cable, and L, is the virtual length defined by the integral foL(ds/dx)3dx, in which ds is a

differentlal element along the cab}e curve.

    (2) Hinged connection type as shown in Figs. 2(b) and 2(c)

  EL,`il, Hb,i- tl, .4Ltx･(xi)dxi=rm6f･+(sl･', for i=:i,2,･･･,n (6a)

in whjch 6S and 63'are the horjzontal displacements of the tower top at the left and righ't

support of the ith span, respectively. In the case where the effect of the axial force is

neglected, these displacements can be expressed by

                                                  '
  6f =- ,.L,?/li:i.L, (Hb,i--i-ffp,i), S7･' ==- ,i£ii'/lil,,, (Lib,,-iiib,,.,) (6b)

in which EtL,i and Lt,i are the average flexural stiffness and height of the ith tower,

respectively. In the case where the effect of the axial force A4･ is considered

  sf, .= rm L.･itii [taiiilt5.iiZe,i./tii)-i](Hb,,-,-fl,,i),

  6:,--L,,,.i.i[taii.(l.(IZ,L,,t･i)-i](th,,-Hh,.,) ' (6c)

inwhichKt= N, Etlt,,.Therelationmatrixequationbetweenthevectorsaandhcan
also be obtained by substituting Eq. (2a) into Eqs. (5) or (6a)

in which the coefficient matrices G and E are of the orders n ×4n and n × n in the case of

thehingedconnection,and1×4nand1×1inthecaseoftherollerconnection,respectively.
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   A set of homogeneous equations with the vector a is obtained by eliminating the vector

h from Eqs. (4a) and (7)

For non-trivial solutions a it is required that the determinant of the coefficient matrix of

Eq. (8) should vanish

This Eq. (9) is a frequency equation of rnultispan suspension bridges and is a transcendental

equation on the natural circular frequencies cv. The roots are obtained by applying the

Regula-Falsi method'O) and by using a high-speed digital computer. The relative values of

elements in the vectors a and h corresponding to a particular value of natural circular

frequency can be obtained by Eqs. (8) and (7), respectively. Furthermore, the eigenfunction

ll}(xi) of Eq. (2a) which is also called the modal shape function is determined by replacing

the corresponding natural circular frequency.

2-3. Forced Vgbratioits

   The modal analysis method is used to determine the dynamic response of suspension

bridges subjected to moving Ioads. The dynamic deflection function rp(gt) is expressed as

simply as possible mathematically

          co  ij(x,t)=:: an(x)q.,(t) (10)         rn=1
in which q. (t) is the time function. The Lagrange's equation leads to the following equation

of motion for elastic structures

                  Qnt(t)
  ijnt(t)+to?nqnt(t)=w.M,,. (11a)
                   g

in which a dot denotes the differentiation with respect to time 4 (?. (t) is the general force,

and

  Mn2t=.CL U?i(x)clx=:,l', vaL" Vn2ti(xt)dxi (11b)

The term of external force Qm (t) in Eq. (11a) is determined from the series expansion of

loads (see Ref. 11), and is formulated in the case of a concentrated load P with a constant

velocity v

  Qnt(t) =:: P" Xn(vt) (12)
The solution of Eq. (11a) is obtained by using the Laplace transform method as follows:

            co  op(Xr, ts)=: Unr(xr)[ap ms(ts)+Wms(ts)] (13a)
           ln-=.1

in which

  ¢MS(tS) == -ts w.Mrc,?, .(itS "ms(VT)Sin[cam(ts-T)]dT,

             g  w.,(t,)=q.,(o)cosca.t･,+lr':S,ie)sinto,.t's ' a3b)
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where the constants q., (O) and ams (O) are determined from initial conditions at the time

ag--O, and the subscripts r and s present the measuring and loading span number of

multispan suspension bridges, respectively. When the moving Ioad traverses the second

span and subsequent spans, the constants q.. (O) and dims (O) are obtained by the following

equatlons

  q.,(o)=¢.,,-i( Ll-i )+ay.,.-,( Ll-i ), a.,(o)=fo .,,-,( Lsi )+fiij.,,", ( LS-i ),

The dynamic deflection of multispan suspension bridges at any point can be computed by

Eq. (13a). Furthermore, the slope and the bending moment of suspension bridges can be

obtained by the first and the second derivatives of Eq. (13a) with respect to the space

coordinate x, respectively.

                            3. Nwamegei¢al scxalimp}es

   Numerical examples are presented to demonstrate the effectiveness of the analysis and

to show some characteristics of the dynamic behavior of suspension bridges. The proto-

typical examples are three kinds of three-span suspension bridges having center span

lengths of 315, 770, and 1100 m. Their geometries and structural properties, necessary for

the dynamic analysis, are summarized in Table 1.

3-1. Naturai Fweqwaeptcies

   The computed natural periods of A, B, and C bridges are presented for the first five

modes of the asymmetric and symmetric vibration in Tables 2, 3, arid 4, respectively. It is

seen from these tables that there is a slight difference in the lower modes of symmetric

vibration, between the roller connection and the hinged connection. On the other hand, the

difference due to cable supports at the top of the tower is not recognized in the higher

modes of vibrations. Also, there is a considerable difference between the hinged-span type

and the continuous-span type bridges. The va}ues of the natural periods of suspension

          TABLE 1. Characteristics of sampled suspension bridges (lt=9.81kN).

Characteristicvalues Abridge Bbridge Cbridige

stiffeningL2(m)
girderLl(M)

w2(tlm)
wl{tlm)
I2Cm4)
Il(m'}
E(t!m2>s

315

gs

8.12

8.l2

O.6

O.6

2.lxlo7

770

250

IO.IS5

10.545

2.452

2.I08
2.lxlo7

llOO

260

IO.485

}o.7as

S.591

5.877
2.lxio7

CableE2Cm}
A(m2}c

E(tlm2)e

3S

O.0901
1.6xlo'

76

O.2280
2.0xlo7

IOO

O.3S53
2.0xlo7

(rn>TowerLtIt(m"}Et(t/m2) 60.000

1.000
2.lxlo7

l]8.850

3.320
2.lxlo7

180.257

IO.466
2.lxlo7
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TABLE 2. Computed natural periods (in seconds) of vertical vibration of A bridge.

Hinged-spantype 'Contlnuous-spantype
Modetypes
of
vertical
vibration

Mode
order

Roller'connectlon

Hinged
connection
(N=O}

Hinged
eonnection
(NiO}

Roller'connection

Hinged'conneetion

{N=O}

Hinged'connectlon

(NiO)

Asyinmetr±c
mode

lst

2nd

3rd

4th

5th

3.2262

1.0912

O.9463

O.4360

O.2486

3.2262

l.08Sl

O.9463

O.4360

O.2486

3.2262

l.0884

O.9463

e.4360

O.2486

2.7121

l.O057

O.7488

O.40S8

O.2679

2.7112

1.0044

O.7484

O.4058

e.2679

2.7113

l.O045

O.7485

O.4058

O.2679

mode
Ist

2nd

3rd

4th

5th

2.6846

l.5650

1.0319

O.6190

O.3229

2.6267

1.S619

l.0283

O.6189

O.3229

2.6282

1.5620

1.0283

O.6189

O.3229

2.6792

l.4668

O.8473

Q.5492

O.3133

2.6189

l.4652

O.B45S

O.5491

O.3133

2.6205

l.4654

O.B458

O.5491

O.313]

TABLE 3. Computed natural periods ( in seconds) of vertical vibration of B bridge,

Hinged-spantype Continuous-spantypeModetypes
of
vertical
vibration

Mode
order

Roller'connectlon

Hingedi'connection

(N=O)

I{inged'connectlon

(N*e)
Roller
connection

Hinged'connectlon

(N=O]

Hinged'connectlon

(N4O)

mode
lst

2nd

3rd

4th

5th

6.7851

3.9884

2.5489

l.2935

O.7696

6.7851

3.9742

2.S489

1.2935

e.7696

6.78Sl

3.9821

2.5489

1.2935

O.7696

6.2628

3.4933

2.3190

l.3094

l.118e

6.2608

3.4B49

2.3189

1.3094

l.118e

6.2619

3.4896

2.3190

1.3094

1.l180

'Symmetrlc

mode
lst

2nd

3rd

4th

Sth

5.9576

3.9424

2.7698

1.7620

O.9B19

5.9357

3.940S

2.7697

1.7620

O.9819

5.9479

3.9416

2.7698

1.762e

b.9B19･

5.6374

3.8749

2.5621

1.6596

1.2037

5.6179

3.8734

2.S620

1.6596

1.2037

5.6287

3.8742

2.5620

1.6596

l.20]7

TABLE 4. Computed natural periods (in seconds) of vertical vibration of C bridge.

Hingedspantype Continueus-spantypeModetypes
of
vertical
vibration

Mode
order

Roller'connectien

Hinged'connectlon

(N=O)

}Iinged'conneatlon

(N±O}

Roller'connection

Hinged
connection
(N==O)

'Hinged'connectlen

{NiO)

mode
lst

2nd

3rd

4th

5th

8.I045

].2200

2.9623

l.6896

1.0236

8.1045

3.2200

2.9S91

l.6S96

1.0236

8.1045

3.2200

2.960S

1.6896

1.0236

7.4380

3.1490

2.4451

1.5704

O.9980

7.4376

3.l481

2.4438

1.5704

O.9980

7.4377

3.1485

2.4444

1.S704

O.9980

Symmetric
mode

lst

2nd

3rd

4th

5th

5.9345

4.42S5

2.6686

2.2635

1.2957

5.9046

4.4115

2.661S

2.2629

1.2957

5.9068

4.4128

2.6617

2.2629

1.29S7

5.6621

4.3643

2.5115

1.9869

1.2296

5.6233

4.3554

2.5085

l.9B56

1.2295

5.62Sl

4.3566

2.S087

1.9856

1.2295

bridges with hinged stiffening girders are generally large in comparison with those of

suspension bridges with continuous stiffening girders.

    The effect of the vibration in the flexural stiffness of towers upon the natural fre-

quencies is given in the following. Figure 3 shows the relation between the flexural stiffness

ratio of the tower to the stiffening girder of center span and the first natural period for the

symmetric mode of vibrations of the B bridge. When the flexural stiffness of the tower
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decreases, the natural period gradually approaches that of the roller connection (hinged-

span type = 5.9576 sec ; and continuous-span type =, 5.6374 sec). It can be concluded that

the effect of the flexural stiffness of the tower can be known only when the value of EtL/

(El) is approximately larger than 10. In other words, the difference due to cable supports

at the tower top arises when the flexural stiffness of the tower increases by about 10 times

that of the stiffening girder. From a practical point of view, however, the deformation of

the tower may be neglected in the analysis of free vertical vibrations, because the range of

values of EtL/(El) is approximately from one to flve.

3-2. Resgeomse gistomy Cekarves

   In Figs. 4 and 5 are shown the response history curves of deflection for the B bridge

when a coficentrated load with a constant velocity v == 20 m/sec is passing through from left

to right. The abscissa in these figures represents the distance between the left support and

the position of the load on the bridge normalized with respect to the total bridge length.

The ordinate of the history curves presented herein is normalized with respect to the

maximum static response value of the measuring points under consideration. Also shown

in broken lines in each figure is the statjc response, that is the response if the speed of the

moving load approaches zero.

   Although numerical computations are carried out using up to 12 terms of the series of

Eq. (13a), there is no significant difference between the roller connection and the hinged

connection in the numerical resuits. The static responses at the quarter point and the center

point of the second span seem to be governed aimost entirely by the fundamental mode of

asymmetric and symmetric vibrations as shown in Figs. 4 and 5, respectively.

   It is also c}ear that the static response of the hinged-span type br!dge produces the

bent-angle (discontinuous slope form) at the intermediate supports. On the other hand, there

is no bent-angle in the static response of the continuous-span type bridge as shown in Figs.

4(b) and 5(b). This fact suggests that continuous suspension bridges offer more advantages

for railway vehicles running through them than hinged suspension bridges.

    The dynamic amplification factor 6 defined by the following equationi') is used to

evaluate dynamic effects (the term dynamic effects is used herein to denote the difference

between the dynamic response and the static response)

  6.. -IZd･max-ops･max xloo (%) (15)
         rps,max

in which rp d,max and ij s,max are the maximum values of the dynamic and static response,

respectively. It is seen from Figs. 4(a), 4(b), 5(a), and 5(b) that the dynamic amplification

factors calculated by Eq. (15) are 8.70%, 2.48%, 18.40%, and 2.72%, respectively.

3-3. Effect of Speed

   The effect of speed is described by the speed parameter a.9'i') This parameter is a

nondimensional quantity which depends on the load speed, flexural stiffness, mass per unit

length, cable sag length, and span length of suspension bridges. The relation between the

dynamic amplification factor of deflection and the speed parameter is shown in Figs. 6, 7,

and 8. The 6-a relation diagrams for the range of values of the speed parameter O.O$ a $
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O.40 is calculated by increasing in increments of O.O025. It is seen in these figtires that the

dynamic amplification factors have a number of local peal<s and possess a general tendency

to increase as the speed parameter increases.

    Also, the dynamic amplification factors of the hinged suspension bridges are very large

in comparison with those of the continuous suspension bridges. The maximum deflection

of a suspension bridge occurs frequently in the neighborhood of the quarter point of the

center span. A significant difference between the hinged-span type and the continuous-span

type bridges is observed in the a-ev relation diagrams for deflection at this point (L2/4).

Furthermore, the dynamic amplification factor at Li/2 and L2/2 is about the same or less
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than that at L2/4. The supplemental curves ev/(1- a)9) shown in these figures represent such

properties as the enveloping line of the dynamic amplification factors.

   The relation between the dynamic amplification factor and the speed parameter for

slope and bent-angle at the first intermediate support (x2 =O) is shown in Fig. 9. In the same

manner as the deflections described above, the dynamic amplification factors for the slope

of the hinged suspension bridge are very large in comparison with those of the continuous

suspension bridge. Although the continuous suspension bridge by no means produces the

bent-angle at the intermediate supports, the hinged suspension bridge produces the bent-

angle.

    It is also worth noticing that the dynamic amplification factor of the bent-angle is of

considerable dimensions.

3-4. E]npact Factoy

    The dynamic amplification factor discussed in this paper corresponds to the impact

factor in bridge design. The estimation of impact factor is a complicated plaiming problem,

because the impact is influenced by various factors9) such as the effects of moving mass,

wave propagation, hammer-blow force of wheel and vehicle-springs. The impact factor

specification is not at present considered for highway bridges having a span length of more

than 200 m. However, it is presumed from the above-mentioned consideration that the

impact factor must be included to a certain degree in the bridge design of stiffening girders.

From the computed results of three kinds of bridges shown in Table 1 and other suspension

bridges with the various span lengths, the impact factor iv in suspension bridges may be

calculated by the following equations

'iv=
220

iv =

4oo+e

 120

,for the hinged-span

3eo+e

type

,for the continuous-span

bridge

type bridge

(16a)

(16b)

in which 2 is the span length of suspension bridges. The above formulae will give a close

approxirnation to the required value within the limitation of moving speed from 100 km/

hr to 150 l<m/hr.

    The effect of uniformly distributed loads is neglected in this study, but it is possible to

consider the effect in the calculations. However, the impact factor for a distributed Ioad

may be considered less than that for a concentrated moving load. The effect of structural

damping is also neglected in the above investigation, but it can be estimated from the

damping characteristics expected in an actual bridge that the dynamic effects will decrease

by several percent.") It should be noted that the value calculated from Eqs. (16> makes a

rough estimation of the impact factor and is slightly large. When one uses them practically,

an overestimation for the impact factor in long-span suspension bridges gives a safe-side

design consideration.

                                4. CoNc]RMsiopms

In this study a procedure for the dynamic response analysis of multispan suspension

tl
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bridges subjected to moving loads has been developed. Since the solution is expressed in a

closed form, the dynamic response at any time and at any point on the bridge can be easily

obtained. Also, the final form of the solution is simple and very convenient for making a

computer program of suspension bridges.

    It can be concluded from the numerical results of natural frequencies that the effect

due to the difference in the cable support conditions at the tower top is negligibly small in

suspension bridges. However, the effect due to the difference in the support conditions of

the stiffening girder is considerable.

    The va!ues of the natural periods of hinged suspension bridges are genera!ly larger

than those of continuous suspension bridges. The dynamic effects produced by moving

loads generally increase with decreasing span length and increasing speed of moving Ioads.

The dynamic effects of hinged suspension bridges are very large in comparison with those

of continuous suspension bridges. Also, hinged suspension bridges produce the bent-angle at

the intermediate supports and their dynamic amplification factors indicate large values.

Finally, it is concluded from an engineering standpoint that the continuous-span type of

suspension bridges has the advantage of good stability for railway vehicles in comparison

with the hinged-span type normally used in suspension bridges.
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