| Title            | On a Solution of Non-linear Differential Equation \$ frac{ u}{ t}-<br>u^{2} frac{ u}{ x}+ frac{ ^{5}u}{ x^{5}}=0\$ |
|------------------|--------------------------------------------------------------------------------------------------------------------|
| Author(s)        | Yamamoto, Yoshinori; Haibara, Tadashi; Takizawa, Éi Iti                                                            |
| Citation         | Memoirs of the Faculty of Engineering, Hokkaido University, 15(3), 351-355                                         |
| Issue Date       | 1981-01                                                                                                            |
| Doc URL          | http://hdl.handle.net/2115/37991                                                                                   |
| Туре             | bulletin (article)                                                                                                 |
| File Information | 15(3)_351-356.pdf                                                                                                  |



## On a Solution of Non-linear Differential Equation

$$\frac{\partial u}{\partial t} - \alpha u^2 \frac{\partial u}{\partial x} + \gamma \frac{\partial^5 u}{\partial x^5} = 0$$

## Yoshinori YAMAMOTO Tadashi HAIBARA Éi Iti TAKIZAWA

(Received June 25, 1980)

## Résumé

Non-linear partial differential equation:

$$\frac{\partial u}{\partial t} - \alpha u^2 \frac{\partial u}{\partial x} + \gamma \frac{\partial^5 u}{\partial x^5} = 0,$$

with  $\alpha \gamma > 0$ , has a solution:  $u(x, t) = A \cdot \mathfrak{p}(b(x+vt))$ ,

where  $\mathfrak{p}(z)$  is Weierstraß'  $\mathfrak{p}$ -function.  $A^2=360 \ \gamma b^4/\alpha$ , b, and v are constants.

The Weierstraßian p-function multiplied by the squared Jacobian sn-function is found to be a solution of the Korteweg de Vries equation.

The general evolution equation can be written as:

$$\frac{\partial}{\partial t}u = -\frac{\partial}{\partial x}F(t, x, u, u_x, u_{xx}, \cdots), \qquad (1)$$

with the conserved density u=u(x,t) and flux F. The subscript denotes differentiation.

If we take:

$$F = \frac{\delta I}{\delta u} \,, \tag{2}$$

and

$$I = \int_{D} \left\{ \frac{\varepsilon}{2} u^{2} + \frac{\zeta}{6} u^{3} + \frac{\alpha}{12} u^{4} + \frac{\beta}{2} (u_{x})^{2} + \frac{\gamma}{2} (u_{xx})^{2} \right\} dx, \qquad (3)$$

where  $\delta I/\delta u$  means the functional derivative of I with regard to u, and  $\alpha$ ,  $\beta$ ,  $\gamma$ ,  $\varepsilon$ , and  $\zeta$  are constants.

Assuming that all the functions u,  $u_x$ ,  $u_{xx}$ , and  $u_{xxx}$ , vanish at the upper and the lower boundaries of domain D, we have

$$\frac{\delta I}{\delta u} = \varepsilon u + \frac{\zeta}{2} u^2 + \frac{\alpha}{3} u^3 - \beta u_{xx} + \gamma u_{xxx}. \tag{4}$$

From (1), (2), and (4), we obtain

Institute of Precision Mechanics, Faculty of Engineering, Hokkaidô University, Sapporo, JAPAN.

$$u_t + \varepsilon u_x + \zeta u u_x + \alpha u^2 u_x - \beta u_{xxx} + \gamma u_{xxxxx} = 0.$$
 (5)

While, the solution of the higher order Korteweg de Vries equation:

$$u_t - \alpha u^n u_x + \eta (u u_{xx})_x + \eta' u_x u_{xx} - \beta u_{xxx} + \gamma u_{xxxxx} = 0, \qquad (6)$$

was discussed by several authors. e.g. For n=2,  $\alpha=-45$ ,  $\eta=15$ ,  $\eta'=\beta=0$ , and  $\gamma=1$ , soliton solutions of eq. (6) was found by Hirota's method<sup>1,2)</sup>. For n=2,  $\alpha=-30$ ,  $\eta=\eta'=10$ ,  $\beta=0$ ,  $\gamma=1$ , eq. (6) has also soliton solutions<sup>2,3)</sup>.

An oscillatory solitary wave was observed<sup>4)</sup> in a non-linear electric circuit for n=1,  $\alpha=-1$ ,  $\eta=\eta'=\beta=0$ , and  $\gamma=-1$  in (6), with reference to the computation<sup>5)</sup>, although the exact soliton solution for this equation seems to have not yet been found.

In the present paper we shall consider eq. (5) with  $\alpha = -\alpha$ ,  $\varepsilon = \zeta = \beta = 0$ , or eq. (6) with n=2 and  $\eta = \eta' = \beta = 0$ , i. e.

$$u_t - \alpha u^2 u_x + \gamma u_{xxxxx} = 0. \qquad (\alpha \gamma > 0) \tag{7}$$

Assuming a travelling solution with velocity v:

$$u(x,t) = u(x+vt) \equiv u(\xi), \tag{8}$$

with

$$\xi = x + vt, \qquad (v = \text{const}) \tag{9}$$

and putting (8) into eq. (7), we obtain

$$vu_{\varepsilon} - \alpha u^2 u_{\varepsilon} + \gamma u_{\varepsilon \varepsilon \varepsilon \varepsilon \varepsilon} = 0 , \tag{10}$$

which can be integrated to give

$$vu - \frac{\alpha}{3}u^3 + \gamma u_{\epsilon\epsilon\epsilon\epsilon} = -C, \tag{11}$$

with an integration constant C.

A solution of eq. (11) can be obtained as

$$u(\xi) = A \cdot \mathfrak{p}(b\xi)$$
, (A: real positive) (12)

with a real constant b, and  $A^2 = 360 \gamma b^4/\alpha$ .  $\mathfrak{p}(z) = \mathfrak{p}(z|2\omega_1, 2\omega_3)$  is the Weierstraßian  $\mathfrak{p}$ -function with fundamental periods  $2\omega_1$  and  $2\omega_3$ :

$$2\omega_1 = 2 \int_{e_1}^{+\infty} \frac{dz}{\sqrt{4z^3 - g_2 z - g_3}},$$
 (13)

and

$$2\omega_3 = 2i \int_{-\infty}^{e_3} \frac{dz}{\sqrt{-(4z^3 - g_2 z - g_3)}} . \tag{14}$$

 $2\omega_i$  is real and  $2\omega_3$  is purely imaginary, and  $e_i = \mathfrak{p}(\omega_i)$  (i = 1, 2, 3), are all real quantities, for

$$g_2^3 - 27g_3^2 > 0$$
 (15)

We put here  $\omega_2 = \omega_1 + \omega_3$ .  $e_i$ 's satisfy the following cubic equation:

$$4z^{3} - g_{2}z - g_{3} \equiv 4(z - e_{1})(z - e_{2})(z - e_{3}) = 0,$$
(16)

with  $e_3 < e_2 < e_1$ .

By means of relations:

$$e_1 + e_2 + e_3 = 0 (17)$$

$$g_2 = -4(e_1e_2 + e_2e_3 + e_3e_1) = \frac{v}{18\gamma b^4} = 20\frac{v}{\alpha A^2},$$
 (18)

and

$$g_3 = 4e_1e_2e_3 = \frac{C}{12A\gamma b^4} = 30\frac{C}{\alpha A^3},$$
 (19)

eq. (16) is written as:

$$4z^3 - 20\frac{v}{\alpha A^2}z - 30\frac{C}{\alpha A^3} = 0. {(20)}$$

Function  $\mathfrak{p}(z)$  is an even function of z and has a pole of order 2 in any primitive period-parallelogram on the complex z-plane. So, the solution (12) is a real solution  $A \cdot \mathfrak{p}(b\xi)$  with v < 0, travelling towards +x-direction for  $\alpha < 0$  and  $\gamma < 0$ , while it is also a real solution with v > 0, travelling towards -x-direction for  $\alpha > 0$  and  $\gamma > 0$ .

The function  $\mathfrak{p}(z)$  is expressed as

$$\mathfrak{p}(z) = e_3 + \frac{e_1 - e_3}{sn^2(z\sqrt{e_1 - e_3}, k)}, \tag{21}$$

with the Jacobian elliptic function sn(z, k) of modulus k:

$$k = \sqrt{\frac{e_2 - e_3}{e_1 - e_3}} , (22)$$

and we can find that the function  $\phi(\xi)$  defined by:

$$\phi(\xi) = A \cdot \mathfrak{p}(b\xi) \cdot sn^2 \left( b\xi \sqrt{e_1 - e_3}, k \right)$$

$$= A \left\{ (e_1 - e_3) + e_3 \cdot sn^2 \left( b\xi \sqrt{e_1 - e_3}, k \right) \right\}, \tag{23}$$

satisfies the folloring Korteweg - de Vries equation:

$$\frac{\partial \phi}{\partial t} - \alpha_0 \phi \frac{\partial \phi}{\partial x} + \gamma_0 \frac{\partial^3 \phi}{\partial x^3} = 0 , \qquad (24)$$

with

$$\alpha_0 = \frac{v(e_2 - e_3)}{A(e_3^2 + e_1 e_2)} \,, \tag{25}$$

and

$$\gamma_0 = \frac{ve_3}{12b^2(e_3^2 + e_1e_2)} \ . \tag{26}$$

A) If we tend  $k \rightarrow 0$ , then we have:

$$2\omega_1 \longrightarrow \pi/\sqrt{-3e_3}$$
,  $2\omega_3 \longrightarrow i\infty$ , (27)

$$e_{1} \longrightarrow \frac{2}{A} \sqrt{\frac{5v}{3\alpha}} ,$$

$$e_{2} = e_{3} \longrightarrow -\frac{1}{A} \sqrt{\frac{5v}{3\alpha}} ,$$

$$(28)$$

and the integration constant C should be chosen to be:

$$C = \frac{4v}{9} \sqrt{\frac{5v}{3\alpha}} , \qquad (29)$$

so that eq. (7) could have a real solution. And the solution (12) takes the form:

$$u(x,t) = \sqrt{\frac{5v}{3\alpha}} \cdot \left\{ 3 \operatorname{cosec}^2 \left( b \xi \sqrt{\frac{1}{A}} \sqrt{\frac{15v}{\alpha}} \right) - 1 \right\}. \tag{30}$$

While, function  $\phi(\xi)$  defined in (23) reads:

$$\phi(\xi) = \sqrt{\frac{5v}{3\alpha}} \cdot \left\{ 3 - \sin^2 \left( b \xi \sqrt{\frac{1}{A} \sqrt{\frac{15v}{\alpha}}} \right) \right\}. \tag{31}$$

B) If we take  $k\rightarrow 1$ , then from (13), (14), (17), (18), (19), and (22), we have:  $2\omega_1 \longrightarrow +\infty$ ,  $2\omega_3 \longrightarrow i\pi/\sqrt{3e_1}$ , (32)

$$e_{1} = e_{2} \longrightarrow \frac{1}{A} \sqrt{\frac{5v}{3\alpha}} ,$$

$$e_{3} \longrightarrow -\frac{2}{A} \sqrt{\frac{5v}{3\alpha}} ,$$

$$(33)$$

and the integration constant C should be chosen to be:

$$C = -\frac{4v}{9}\sqrt{\frac{5v}{3\alpha}} \ . \tag{34}$$

Solution (12) turns to be:

$$u(x,t) = \sqrt{\frac{5v}{3\alpha}} \cdot \left\{ 3 \coth^2 \left( b \xi \sqrt{\frac{1}{A}} \sqrt{\frac{15v}{\alpha}} \right) - 2 \right\},\tag{35}$$

which gives a solitary pulse at  $\xi = x + vt = 0$ . While, function  $\phi(\xi)$  for  $k \to 1$  reads:

$$\phi(\xi) = \sqrt{\frac{5v}{3\alpha}} \cdot \left\{ 3 - 2 \tanh^2 \left( b \xi \sqrt{\frac{1}{A} \sqrt{\frac{15v}{\alpha}}} \right) \right\}. \tag{36}$$

C) If 0 < k < 1, function  $\mathfrak{p}(b\xi)$  is real for the values of C, which lies in the region:

$$-\frac{4}{9} \cdot |v| \cdot \sqrt{\frac{5v}{3\alpha}} < C < \frac{4}{9} \cdot |v| \cdot \sqrt{\frac{5v}{3\alpha}} . \tag{37}$$

When we take C=0, then eq. (11) reads:

$$vu - \frac{\alpha}{3}u^3 + \gamma u_{\epsilon\epsilon\epsilon\epsilon} = 0, \tag{38}$$

and eq. (20) becomes to be

$$z\left(z^2 - 5\frac{v}{\alpha A^2}\right) = 0. \tag{39}$$

Then, solution (12) can be reduced to:

$$u(x,t) = \sqrt{\frac{5v}{\alpha}} \cdot \left\{ \frac{2}{sn^2 \left(b\xi\sqrt{\frac{2}{A}}\sqrt{\frac{5v}{\alpha}}, \sqrt{\frac{1}{2}}\right)} - 1 \right\},\tag{40}$$

with

and 
$$g_3 = 4e_1e_2e_3 = 0 , \\ g_2 = \frac{v}{18rb^4} = \frac{20v}{\alpha A^2} > 0 ,$$
 (41)

i. e.

$$e_2 = 0$$
,  
 $e_1 = -e_3 = \frac{1}{A} \sqrt{\frac{5v}{\alpha}}$ ,  $\}$  (42)

and

$$k = \sqrt{\frac{-e_3}{e_1 - e_3}} = \sqrt{\frac{1}{2}} . {(43)}$$

While, function  $\phi(\xi)$  for C=0, reads:

$$\phi(\xi) = \sqrt{\frac{5v}{\alpha}} \cdot \left\{ 2 - sn^2 \left( b\xi \sqrt{\frac{2}{A}} \sqrt{\frac{5v}{\alpha}}, \sqrt{\frac{1}{2}} \right) \right\}. \tag{44}$$

## References

- 1) R. Hirota: J. Math. Phys. 14 (1973), 807.
- 2) R. Hirota: Bussei Kenkyû (Researches in Chemical Physics) 32 No. 2, (1979), 105. (in Japanese)
- 3) K. Sawada and T. Kotera: Progress Theoret. Phys. 51 (1974), 1355.
- 4) H. Nagashima: J. Phys. Soc. Japan 47 (1979), 1387.
- 5) T. Kawahara: J. Phys. Soc. Japan 33 (1972), 260.