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       On the Flexural Deflection of a Moderately Thick Plate

          Part II. Solution of Equation for Deflection of the Plate

                                                               '

                SatoruIGARASHI* YasutakaSARUWATART*
                Ei Iti TAKizAwA* Tohru NismMuRA**

                            (Received June 28, 1980)

                                  R6surn6

    The equation of deflection for a moderately thick plate presented in our previous

paper, is solved for two cases, namely, a) a simply supported rectangular plate

under distributed pressure, and b) a simply supported circular plate under uniformly

distributed pressure.

    Results obtained here are used to calculate the maximum deflection of the

plate, and are compared with the results hitherto obtained.

             S 1. Notatlons a}id Equation of Flexural DeflectioR

                       of a Moderately Thick Plate

Notations
                               '
    xi: rectangular coordinates, (i=1,2,3)

    6i:componentsofdisplacement,(im-1,2,3) .
    e,j=-l}-(g/t-l. + oO:8cl.): components of strain, (i,]'-ndi,2,3)

    Ekic =: ell+e22+e33,

    AiJ･ =lekictiij+2pt6w･: components of stress, (i,j'=1, 2, 3)

with Lame's constants A and pt,

    (l,7n)=l2+7npt, (l,7n.,n)==l22+7n2pt+npt2, etc,

    h: thickness of plate,

        h3(O, 1) (1, 1)
    D=:' 3(1,2) : flexuralrigidityofplqte, and
    zvo: deflection of plate, i, e. vertical displacement of the ilniddle plane of plate.

    We shall take xi- and x2-axes on the middle plane of the plate, Jca-axis belng

directed downwards.

Eqzeatio7i of Flexztral DefZection of a Moderately Thick Plate

    In the previous paperi), the fundamental equations for defiection of a moderately

thick plate were presented, and it was shown that one can obtain approximate
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equations with any desired accuracy after considering that the thickness of plate

is small. We shall summarize the results here.

    Expanding components of displacement ei (i=1,2,3) of the plate into power

serles ln x3:

            co        61 == E zt2k+1x32ic+i,

            ic=o

            co        e2=Ev2ic+ix32k", (1-1)            k-O
            oo        g, - z w,ic xgk,
            k-O

and introducing (1-1) into equations of equilibrium of an elastic body:

        o== 6oAct'S' == (i, i)--btAII,-skic+(o, i) d36i, (i=i, 2, 3) (1-2)

with

             62                       02
        d3 == aJc2 =A+ ocg '

we obtain the following relations* among the coeMcients of power series in eqs.

(1-1):

    z`2ic+i := -(6k-+1)i ! [dic ui+ -k-(lilii2ml)m)rmdic-i oa., {E･i-dxvo}], (k=o, 1, 2, ･･･)

    w,,., =-(-2-(i+1)1ic)-! [liicv,+-itil'21) Aic-i oO,,, {s,-Aw,}], (k==o, 1, 2, ･･･) t (lm3)

and

    Te,2ic ='Si2kl)l [Akxvo+ "tk"i'l;'2ilL) dk-i{-H'-"i-dwe}], (k=o, 1, 2, ･･･)

with

        :･, -= g,Z,`i +-3-t71-. (i-4)

    Boundary conditions at the surfaces of the plate read:

        ±-Pi-=A33=(1,O)eicte+2(O,1)e33, at x3=±Ll/i'

                                           h
           o;::A,,=2(O,1)E,,, 3-                                at x=+'2- (1-5)

           O=A3,=2(O,i)E,2, at r3:::±Z'

where p=p(xi,x2) is the distributed external pressure over the upper surface of

the plate. Inttoducing (1-1) with (1-3) into (1-5), we have the following equations:

'g We understand that the zero-th power of the Laplacian operator is equal to unity, i, e. dO=1,
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co

z
k=O

(1, 1) P

(- 1)ic

    oo=:: DZ --
    k=O

(2fe)!

(-(21..

(- 1)k (2k + 2)

(2k + 3) !

(S･ )2k[(2fe + 1, 2k) Ak'2zvo -

)2ic[(2fe+1,2k+2>dicL7･',

-(2k+3, 2k+4) Ak+i .N:1]'

-(2k-1,2fe-2)dlt'izve]=O,

(1-6)

(1-7)

and

with

   ,zco., (,5feI-)l- (-S'-

flexural rigidity D of

        h3(O, 1) (1, 1)
   D-

)2icAkgl=O,

the plate of thickness h:

3(1, 2) '

(1-8)

and

one

    g,--g-k- --3Zi-･

When the thickness of
can find:

plate is small compared with its lateral

(1-9)

dimensions,

Eq. (1-10)

gl ., gxztl

  shows

1(1 =

- 60,",i =O･

that there is a

.-a¢

Oxl '
and T)i=

function

--6.e

av2 '

ip such that:

(1-10)

(1-11)

with

From

  :.,=Aip.

(1-7)-(1-12),

ip =: - TVO

  ip is expressed in

- '1i'l'21) ({;' )2Aw,-

  2(1, 1) (27, 68, 43).

the form:

2(1, 1) (4,

im 15(1,2)3
   (1-6) by means of

     (13, 16) rh
     lo(1, 2) k'2

     (35969, 135768,
   +

(-

3(1, 2)2

s) .(e･ )` dd wo -

Eliminating ts-/i from

p = DAd(xvo+

12t--)6dddwo- ''''

     (1-12) and (1-13), we

)2id.,+ (1479, 3704,. .2332) (

       840 (1, 2)2

171420,72400) h
                15120(1,2)3 2

terms of O(h2") in the right-hand side of

equation for deflection of a moderately thick

in our theory. -VSre shall cite here merely the

(

obtain:

    .g.-)`dATvo+

-)6Addxvo+ ''']'

eqs. (1-13)

plate in the

equatlons ln

(1-12)

(1-13)

    Retaining

we obtain the

approxlmatlon

(1-14)

and (1-14),

 n-th order

the zero-th,
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the first, the second, and the third order approximations. For the sake of sim-

plicity, we shall omit the subscript of wo hereafter, writing xv instead of wo.

A) Zero-th order amproximation

and

B) First order amprocimation

        ip= -w- 2(1(lt21) ('h2m)2dzv, (1-17)

and

        p== Ddd(w+ (io3('t62)) (-Z-)2Awl. (i-is)

q ,S2?cond order amproximation

        ip=..-uZ(mi]2ii?)-(g)2A,.-2(i,･(llSk5)(g)4dd,., (i-ig)

and

        p-Dua(.+ (11o3(,ll62)) (g)2A,.+ (147gzgkO,4i)?332) (g)4AA,.1. (IN2o)

D) Third order amproximation

        ip =- -w- -l-i-li2-l) (g)2d,. pt 2(13,(ll Se s) (-C,t)4AA.-

                - 2(1, lis((21Z,2g,8, 43) ({;, )6 dAd., (1-21)

and
          tttt/
        p := DAd(,.+ ii,3(･,l6,)) (g)2A.. (i4Zg.zgZ,O,4s):332) (g)4,,,..

                   +(35969,1315s716286(117,124),20,72400)(g･)6dAd,.]. (1-22)

            S2. Solution of Equation of Deflection for a Simply

                     Supported Rectangular Thick Plate

    Eqs, (1-6).-v(1-8) as well as equations in any order approximation can, be solved

for a simply supported rectangular plate under distributed pressure.

    Let the rectangular plate occupy the region: -a/2E{{{xi<a/2 and -b/2<x2

 <b!2, and be simply supported at xi[=±a12 and x2=±b!2. We shall take the
 boundary conditions in this case as follows:
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       e2=83==O, and An::O, at xi=±a!2 (2-1)
                                                    /and

       gi=e3=O, and A22:=:O. at x2==±b!2 (2-2)
    Under the boundary conditions (2-1) and (2-2), solution of eqs. (1-6)N(1-8)

can be expressed by;

        Tv=.il.l;.,til.l;,w..cos-gL2M:1)Tx,･cos(27iil)rrnc,,. (2-3)

and

        ¢=,.Ee=O,,#,--,opmn cos-CtMZ1)Z xi.cos (2iii1) rr x2, (2-s)

vsrith (1-11) and (1-12),

    The distributed pressure P==p(xi, x2) is expressed in a double Fourier series:

       p= ,t9., ,#.=,p.,. cos L2M7i>--g!- x,.cos (2nii) z x,, (2n6)

                                                  'with

        pmn = a4b j--b2ej'legp(jci, u2) cos (2M71)LZL ari'cos (2iZi1) Z x2d cidv2 .'

                     - (m,n== 1, 2, 3, ･･･)                                                               (2-7)

    When the pressure ls uniformly distributed, i.e. p=const (=po), expression

(2-7) turns simply to be:

             24 (-1)m+n
        PMn=:rt2(27n-1)(2n-1)Po･ (M,72::1,2,3,･･･)                                                               (2-8)

    Introducing (2-3)t--(2-6) with (1-12) into (1-6).v(1-8), we obtain:

        wrnn = 6iD 'ri.'?#n, (r..h)3 [iililM(rM"Ili'li).ShillS.,(.rin)n:i2:!r).;;hcosh(7"n"tLL) ,

                                             (m,n=l,2,3,･･･) (2-9)

                           fi[ll ;] (r7nn -//r) sinh (rmn -hi) - cosh (rmn 7h2m)

               1 Pmn
        dimn==-6I"mr..4(rm"h)3 sinh(r7nnh)-rmnh ''
                         '                                            (m,n==1,2,3,--･) (2-10)

                                                   '

        r..2=[(27n:i]1)rr]2+[(22iil)rc]2. (7n,n=1,2,3,･･･) (2-11)

    By means of (2-3) and (2-9), we have the expression for w, which is found
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to be identical with the result obtained by Iyenger et al.2' They obtained the solu-

tion of the equation derived from Vlasov's method3).

    If we express the right-hand side of eq. (2-9) into power series in h:

        wrn" = 'i' l}"N S, i,:L'l;m[1 + (i.o3ill62)) (rmn -h2L)2 h K4229o76 (4i5, 42)>-(r..-tl･L)`+ ･,,],

                                              (7n,n==1,2,3,･･･) (2-12)

and truncate the series at the terms of O(h2'i), we can obtain the solution of equa-

tion in the n-th order approximation.

       g3. Soliition of Equation of Defiectioii for a Simply Supported

               Circular Thick PIate under Uniform Pressure

    Let us take cylindrical coordinates r=Vxl+xg,0==arctg(x21xi), and 2=x3.

Then, Laplacian operator d reads:

             02 1O 102        A= arE-+"i7- or +-ii-E72 ao2'

which appears in eqs. (1-6)N(1-8), (1-16), (1-18), (1-20), etc.

    Components of displacement and components of stress are to be written also

in cyliridrical coordinates:

        e.--eicosO+62sinO, ee=-6isinO+62cosO, 6,=63,

        Arr==Aelek+2pt(a6.lar), etc.

with

             1 a(r6,)                        1 Oe,                                a6,
        Skic=7- art'-"+V'i7-OO+02'

    We shall solve eqs. (1-16), (1-18), and (1-20) for a simply supported circular

plate under it.niprm pressure po over the surface of the plate. Accordingly we

have:

        e,=o, -'oQo=o, ancl A='ii:Lcbd.(r-i--r).

    Let the circular plate occupy the region: O(r(a, and be simply supported

at r= a. As for the boundary conditions, we shall take:

                             h        gz==O, and M,iSl's,A..2cin==O, atr=a ' '(3-1).

                                                                     '
and let us start from the zero-th order approximation.

A) Zero-th Ordei' Amproximation

    The soiution w(O) of equation for defiection in the zero-th order approximation

(1-16), is expressed by a particular solution o£ (1-16), say wfO>, plus a biharmonic
function wi?), namely
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        w(O)=wlO)+wfO,), (3-2)
with

                     '        DddTe,iO'=p,, (3-3)                             '
and

    The solution of eq, (3-3) is given by:

        wio) ==: 614 -PD' r4. (3-s)
While, the solution of eq. (3-4), which is finite at r==O, reads

        wig)=Clr2+C5, (3-6)
with constants Cl and Cla. Determining q and Cb, so as to satisfy the boundary

conditions (3-1) for wCO', we obtain the solution of eq. (1-16):

        w(o) -- Tvlo)+wso,) ==-6i4- -P-DO-(a2-r2>(-gltig; 2i)O) a2-r2). (3-7)

    Expression (3-7) is nothing but the usual solution for a circular thin plate,

B) First Order Amprotimatio7i

    The solution w(') of eq. (1-18) for deflection in the first order approximation

is the sum of a particular solution of (1-18), say wSi), and the solution wEi) of

the homogeneous equation for eq. (1-18), namely

        w("=wY)+wS'), (3-8)
with

        DdA(wy'+ (iio3it62>) (rl21' )2dw£i') =: po, (3-g)

and

        Ad(i+ g',3(',ltzi) (-C'l-)2Alxvsi)-(i+-Si,3('tS,-))(h,-)2AlAAws')-o. (3-io)

The solution wS') of eq. (3-10) is decomposed into two parts, namely

        TvEi)=7evi?+?evSl, (3-11)
where

        AdTvii,) == O, (3-12)
and

        dwS),+cr2w£}), =: O, (3-13)
with
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       .2= 2,03(,ii,2)) (wh2nv)2.

    The solutions of eqs. (3-9) and (3-12) are:

                                                     '        wi')== 614 PD' r`,. (3-14)

        wf?=Cir2+Cb, (3-15)
with constants Ci and Ch. While, the solution of eq. (3-13) ls expressed by a

Besselfunctionoforderzeroandiswrittenas: ･

        wft'i=AtJb(evr), (3-16)
with a constant A.

    Accordingly, the solution of eq. (1-18) under the boundary conditions (3-1)

can be written by:

        w("=w9)+wfl>+wlR=u84T'PmDOr`+qr2+Cb+AJo(crr),
                                                              (3-17)

with constants A, Cl, and Cb, expressed as follows:

        A--gi,3(',l62))a`{}'i(2h.)2,,(.'i)-4illiiffi/i2i,h(//)rm'2,)i..)' (3-i8)

        q==- i16 -PD'i! a2+tcr2A4(cra), (3-19)

        ch= 634 {:'ta4-(i+ cr24"2)AJ,(cra). (3-2o)

    Expression (3-17) obtained here has a somewhat different feature from a
solution given by Love4):

        w--614-PDO(a2-rD((i(31;i)O)a2-r2+8s((315,'2??s,322))(-C;')2], (3-21)

where he took another boundary condition. Eq. (3-21), however, has a similar

expression to (3-7) and also contains a term of O(h2).

C) Sbcond Order Amproximation

    In a similar manner, the solution w(2) of eq, (1-20) in the second order ap-

proxirpation can be decomposed into three terms, namely

        ve,(2)=zevi2)+w£2,)+wS?),, (3-22)
with

                                                '        DdA(Tv£2'+ 2p{: Awf2'+-k/ AAze,E2'] == po, (3-23>
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        dA2e,K'==O, .･ -(3-24)
                          '                                      '
alld

        dAwi?),+2crgdTevi?), +Pa w£l), ::= O, (3-25)
                                                     tt tttt                                          tt                                                   'with

        .,2==(i4427(gi,'327)8i43,'2i363)2)(-il-)2, and p,4::=(i47gf307(io'4?)S332)(-h2-)`･

    The solutions of eqs. (3-23) and (3-24) are given as:

        wi2)= 614 {lg'- r4, (3-26)
and

        wK)=qr2+Cb, ･ '. (3-27)
with constants Cl and (b. While, the finite solution of (3-25) at r==O reads:

                                                              ttt                                                            '                                                                '        wSl'i=Ai Me4(mD+Bi 5nt %(rcr), ' (3-28)
                                        .t                                                  ttwhere Io(rcr) is a modified Bessel function of order zero, with constants Ah, and

Bi. We wrote one of the roots of the equation:

                                    '        rc4+2a22rc2+P24=O, ''･' '(3-29)
toberc=C+irp (C)Oandrp)O),
with

        c=VP22Ecr22, and rp=VP22Icr22. (3-3o)

    The solution Tv`2' of eq. (1-20) under the boundary ℃onditions (3-1) can be

wrltten as:

        xv(2) ::= w£2)+wil)+wii)i =

            =614-iO-i`+Clr2+Ch+AiERelb(rcr)+Bi3nilb(rcr), (3-31)

with

        A,-2.-o a4 gll,!'L' 2.ig",) f, i/1'.;, i,loi(),!"),(shz)li,gSII`i,:"2,121rc.:',l, (3-32)

        Bi=-L!D?rmg'a`'wailliL(i."ts'li,IS"(i.it,,(ii.O//ll'l'lil,,(:hla.),ll.Iliilli(f,:Z`,?1[a.L',,,(3-33)

        Cl == nv 116 '{IS' a2- 41.2[Aiwte((rca)24(rca)]+B,3m((rca)2%(rca)]], (3-34)

and
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        Cb == - 614 -:S' a`-Cla2-Aiwae4(rca)-Bi3rn4(rca), (3-35)

where

        L(rca) =:: (rca)2%(rca) -2(rca) 4(rca) + (si(7ii2g) ( 2h. )2 {(rca)`4( nta) -(rca)3k(rca)]+

             . (i472>g7(,O,`s)?332) (,h. )`({il',l) (rca)64(rca) -

             - [l2,igi S3g2i Zgg:l (rca)s4(rca)]. (3-36)

                         S4. Numerical Example

    As for numerical examples, we shall consider the maximum defiection of a

plate under uniform pressure calculated from solutions of several approximate equa-

tions obtained in this paper.

A) Rectaugular Plate

    Uniform pressure P:=:Po (=const) is expressed in a double Fourier series in

(2-7), giving

              24 (-1)m+n
        Pmn =-iiT, (2mrm1)(2n-1) Po･ (M,n"1,2,3,･･･) (4-1)

The maximum deflection wmax of a rectangular plate is obtained from (2-3) with

xl=x2=O, i.e.

              eo oe      xevmax=ZZIJVmn･ (4-2)
             m=±1n=1
W.. are given in eq. (2-9) for the exact solution of the plate and in eq. (2-12)

for approximate solutions.

    For a square plate, i.e. a=b, we calculate w... for various values of hla,

              TABLE 1. Comparison of the maximum deflections of
                        a simply supported square plate (a == b) under

                        uniform pressure.
                        (2fpt==312, and Poisson's ratio= O.3)

hla

Tvmaxlxve (Tve: exact solution)

O-th order approx.
  (thin plate)

s

lst order approx. Reissner5)

O.05

O.10

O.15

O.20

f
l

O.989

O.956

O.907

O.846

1.000

1.000

1.000

1.001

1.000

O.998

O,996

O.995

O.25

O.30

O.779

O.711

1.003

1.005

O.993

O,993
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after truncating series (4-2) at appropriate terms (m,n t5.-v6). In Table 1, the

values 'tev...lzev, are shown in the zero-th and the first order approximations in

our theory and are compared with the values calculated from Reissner's theory5>.

Tev, means the exact solution given by (4-2) with (2-9). The ratio 2!pt is taken

to be 3!2, with Poisson's ratio (212)!(R+tt)==O,3.

    In the zero-th order approximation (i.e. thiR plate), the relative error ll-

-(te,.,.1?iv,)l is comparatively small (e.g. Iess than 5% for h!a=O,1), while, for in

creasing thickness, the error increases from ca. 9% (for h!a==O.15) to ca. 30% (for

h!a==O.3). In the first order approximation in our theory, the values of ?v...

agree very well wlth the exact solution, e.g. the error is O.5% for h!a=O.3. In

the second order approximation, the values of w... coincides very well with the

exact values (e.g. the error is less than O.1% for hla<O.4).

B) orrcularPlate

    The maximum deflection no... of a circular plate under uniform pressure is

obtained from eqs. (3-7), (3-17), and (3-31), with r=O.

    In the zero-th order approximation, we have:

               (11slO) Po, '                           , (4-3)        w..x := ]64(3, 2) Da ･
while the first order approximation gives:

        7v.,. =:: 634 L2D'-P- a`-(1+ cr24"2)A,lb(cra)+A, (4-4)

with (3-18). The maximum deflection in the second order approximation reads:

        w... = 634- '2i'O" a`+ Ai+ [-i"' wae((rca)24(rca)) - wae4(rca)] Ai+

             +[-i--gut((rca)24(rca))-,gm4(rca)]Bi, (4-5)

with (3-32) and (3-33).

    Numerical results calculated from (4-3)N(4-5) and from Love's solution are

compared in Table 2. In this case, the exact solution can not be obtained, and

numerical values of w... are shown as a ratio of xv... to w(O), for values of h!2a.

w(O) means the values in the zero-th order approximation (thin plate). The ratio

R/pt is taken to be 312 and Poison's ratio O.3.

    For the p}ate of small thickness, the values ?v...!?v(O) in the first and the

second order approximations and also in the theory of Love, do not differ very

much. For example, the values of the difference il-(w...!Tv(O))1 are less than 10%

for h12a<O.1. The value increases with increasing thickness of the plate.

    Although the features of (3-31) in our second order approximation and (3-21)

given by Love are quite different from each other, the numerical values given in

eur second order approximation (4-5) show a very good agreement with those
obtained by (3-21) for all the values of h!2a, The maximum difference between

them is merely less than 7%.
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    TABLE 2. Comparison of the maximum deflections of
              a simply supported circular plate under
              uniform pressure.

              (21p=312, and Poisson's ratio=O.3)

NISHIMURA

TVmax!w(O) (zv(o): O-th order approximation)

h12a
lst orderapprox. 2nd order approx, Love4)

O.05

O.10

O.15

020

O.25

O.30

O.997

1.090

1.016

1.441

1.462

1.683

1,O12

1.047

1.111

1.221

1.314

1.337

1,O09

1,036

1.081

1.145

1.226

1.326
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