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Résumé

The equation of deflection for a moderately thick plate presented in our previous
paper, is solved for two cases, namely, a) a simply supported rectangular plate
under distributed pressure, and b) a simply supported circular plate under uniformly
distributed pressure.

Results obtained here are used to calculate the maximum deflection of the
plate, and are compared with the results hitherto obtained.

§ 1. Notations and Equation of Flexural Deflection
of a Moderately Thick Plate
Notations '
x;: rectangular coordinates, (1=1; 2, 3)
& : components of displacement, (i=1, 2, 3)
1[0 0&;
ey = ’2“‘(5;2? o,
epr = &1+ a6 s
Aij = Aoy 0,5+ 2pe;; 0 components of stress, (¢, =1, 2, 3)

): components of strain, (7, 7=1, 2, 3)

with Lamé’s constants 2 and g,

(l,m)=L+mu, (&, m, n) =12+ miutnp?, etc.
h: thickness of plate,

3
D:'%: flexural rigidity of plate, and

wy: deflection of plate, .¢. vertical displacement of the middle plane of plate.

We shall take x;- and aj-axes on the middle plane of the plate, xs-axis being
directed downwards.

Equatioﬁ of Flexural Deflection of a Moderately Thick Plate

In the previous paper?, the fundamental equations for deflection of a moderately
thick plate were presented, and it was -shown that one can obtain approximate
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equations with any desired accuracy after considering that the thickness of plate
is small. We shall summarize the results here.

Expanding components of displacement & (i=1, 2,3) of the plate into power
series in xg:

o
&= 2 Ugp 25,
i=o
oo
2%
&= ]CZO Va1 25 (1-1)

&= kZ‘() w%xgk s

and introducing (1-1) into equations of equilibrium of an elastic body :

aaA” 1,1) et (0, ) ok, (1=1,2,3) (1-2)

0=

with
62 az
4= G0y =AY Gl

we obtain the following relations* among the coefficients of power series in egs.
(1-1):

—1)* k(1,1 -
Usgpyy = Yﬁ[dk”l—k 7<7L“>')v kot xl {E;I—AwO}] ’ (k:()y 1,2, "')
—1)* k(1,1 0 ]
Vak+1 :”(Q%éfi)’!'[dkvl'{' (1 ) 4= T%{El*dwo}]; (k=0,1,2, ) (1_3)
and
—1) R 1 1
with
,_, 3211 7831
Fi= + Py (1-4)
Boundary conditions at the surfaces of the plate read:
[’ = A =(1, 0) e +2(0, Legs at xy= %
h
0= A31 = 2<O, 1) €31 5 at xy= 21 (1‘5)
h
0 :A32:2(0, 1) €32y at @y = ié
J

where p=p (x;, x,) is the distributed external pressure over the upper surface of
the plate. Introducing (1—1) with (1-3) into (1-5), we have the following equations :

* We understand that the zero-th power of the Laplacian operator is equal to unity, 7. e. 49=1,
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1,0 p= Déui (2)kf§)ﬂ"i</2i>zk[(2k+ 1, 2k) 452 40—

w[pb-

—(2k+3, 2k+4) £115,],  (1-6)

o D A ok, 2812 2 —1, 2% —2) Ftiag | =0, (1-7
;;0 2k \ 2 [( b1, 2k4-2) 4" 51— ( e —2) wo]— y (1-7)
and
o (=1)F (hN® ‘
Z (2k)‘"1’"<"2”> 450, =0, (1-8)
with flexural rigidity D of the plate of thickness A:
A0, 1)(1,1)
D=""31,2 -
and
oo
= Oxy | Oy (1-9)

When the thickness of plate is small compared with its lateral dimensions,

one can find:

0wy dv
2, = 9z oy =0. (1-10)

Eq. (1-10) shows that there is a function ¢ such that:

u = g% s and v, = aafz , (1-11)
with

From (1-7)~(1-12), ¢ is expressed in the form:

b 2L 1)( )ch,»— 2(1,1) (4, 5)(&)4‘44%“

(1,2 3(1, 22
20, 11)5(517, 2(38 43) <’2> dddvwy— - . (1-13)

Eliminating &, from (1-6) by means of (1-12) and (1-13), we obtain:

B (13,16) / h (1479, 3704, 2332)
P*DM{"‘”OJF 101, 2)< )"w" R40(1, 2) ( )M

(35969, 135768, 171420, 72400) [ 1 \P
= I5120(1, 25 o | dddwogt (. (1-14)

Retaining terms of O (A?) in the right-hand side of egs. (1-13) and (1-14),
we obtain the equation for deflection of a moderately thick plate in the n-th order
approximation in our theory. We shall cite here merely the equations in the zero-th,
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the first, the second, and the third order approximations. For the sake of sim-
plicity, we shall omit the subscript of w, hereafter, writing w instead of .

A)  Zero-th order approximation

b= —w, (1-15)
and
p=Dddw. (1-16)
B) First order approximation
201,1) [ h\2
m o D (MY o
and
= Ddd{w—i— <1103(—16))< >Aw} (1-18)
C) Second order approximation
2 ; 2(1,1) (4, 5) [ h |
p=—w=g (3] o= Sy () e 119

and

o= DA A{w+ (1103( 16)) ( ) oot (1472212@15)%332)(11) U } (1-20)

D) Third order approximation
. 20,1 (R 2(1,1)(4,5) [ h !

_ 24, 11)5((217 2638 43) (%) Jddw (1-21)

and

(13,16). 16) h (1479, 3704, 2332) h

(85969, 135768, 171420, 72400) /1
+ 15120(1, 28 e

(1-22)

§ 2. Solution of Equation of Deflection for a Simply
Supported Rectangular Thick Plate

Eqgs. (1-6)~(1-8) as well as equations in any order approximation can be solved
for a simply supported rectangular plate under distributed pressure. '

Let the rectangular plate occupy the region: —a/2<x;<a/2 and —b/2< x,
<b/2, and be simply supported at x;=*+a/2 and z,=-+b5/2. We shall take the
boundary conditions in this case as follows:
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&=&=0, and A, =0, at x; = Fa/2 (2-1)
and ’
£,=8=0, and Ap=0. at zy=+b/2 (2-2)

Under the bhoundary conditions (2-1) and (2-2), solution of egs. {1-6)~(1-8)
can be expressed by :

o ® 2m—1 2n—1
Ql — 0 y (2"4)
and
2 = 21—
b= mzl an D,nn COS L%L v’cl-cos(~7il)—!l£vfr2 , (2~5)

with (1-11) and (1-12).
The distributed pressure p=p(x;, x,) is expressed in a double Fourier series :

=3 Z Pmn €OS {2m— 2 m—1)z :cl-cos@l—;—lﬁ—xz, (2-6)

m=1n=

with

2m—1 21—
S ap(xl, Tp) COS (—m/a—)—ﬁ— xl-cos—(—n—bi)ixzdxl dz, .

(772; n=1,2, 3; ) (2—7)

When the pressure is uniformly distributed, i.e. p=const (=p), expression
(2~7) turns simply to be:

24 . 1 m+n
Pown = —‘IET (2771(__ l))<2n__ 1) Do (77’1, n— 1, 2, 3, e ) (2—8)

Introducing (2-3)~(2-6) with (1-12) into (1-6)~(1-8), we obtain :

(1,1 h h h
W 1 Pun s (1,2) Tmno sinh/| 730 5 +cosh| ymn~ 5
mn — 6D Tmn (Tmn 1) sinh (7’wm ]l) —Tmn h !

(myn=1,2,3,-) (2-9)

1,1 hy . h h
- .(.1,2) Fun sinh Tmn g —cosh TmnTZ;

@mn - GD Ymn <Tmn h>3 Sinh (7171.77, h) —Ymn l‘), ’
(m, 71:1) 2) 3’ ' ) (2~10) .
with .
[@m-1zP [@r-1)=z] .
Yo = [ P + A . (m,n=1,2,3, ) (2-11)

By means of (2-3) and (2-9), we have the expression for w, which is found
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to be identical with the result obtained by Iyenger et al.? They obtained the solu-
tion of the equation derived from Vlasov’s method®.
If we express the right-hand side of eq. (2-9) into power series in h:

_ 1 P (13, 16) DY (297,454) (A}
LVW” - D rmn4 [1+ 10(1’ 2) <T7nn 2 Tmn 2 + ’

(my,n=1,2,3,--) (2-12)

and truncate the series at the terms of O{h®), we can obtain the solution of equa-
tion in the n-th order approximation.

§ 3. Solution of Equation of Deflection for a Simply Supported
Circular Thick Plate under Uniform Pressure

Let us take cylindrical coordinates 7=+a?+ 3 0=arctg (zs/x), and z=z,.

Then, Laplacian operator 4 reads:

»* 1 0 1 ¢
4= T o T g

7 7?

which appears in egs. (1-6)~(1-8), (1-16), (1-18), (1~20), etc.
Components of displacement and components of stress are to be written also
in cylindrical coordinates : '

& =& cos O+ sind, §= ~&sinf+&cost, & =6,
Ay = Aoyt 20 (08, /0r),  ete.
with

1 ag) 1 06 | 9
+ ] + oz °

r o or 7

Err =

We shall solve egs. (1-16), (1-18), and (1-20) for a simply supported circular
plate under wniform pressure p, over the surface of the plate. Accordingly we
have :

0 1 d d
&, =0, "67 =0, and 4= ';j 2{7<7 d7:> .
Let the circular plate occupy the region: 0<r<qa, and be simply supported

at 7==a. As for the boundary conditions, we shall take:
n

& =0, and M, = SZI Anzdz=0, at r=a (3-1)

and let us start from the zero-th order approximation.

A)  Zero-th Order Approximation
The solution w® of equation for deflection in the zero-th order approximation
(1-16), is expressed by a particular solution of (1-16), say w{”, plus a biharmonic

function (P, namely
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w® = wi” +wif , (3-2)
with
Dddw® = py, (3-3)
and |
ddwP =0. (3-4)
The solution of eq. (3-3) is given by:
wp = oy B, (3-5)

While, the solution of eq. (3-4), which is finite at =0, reads

wl = Cirt4-Gy, (3‘6)
with constants C; and C,. Determining C; and C, so as to satisfy the boundary
conditions (3-1) for =@, we obtain the solution of eq. (1-16):

w® = w® 4+ 7 :'614 % (a®—7 >{(—1(§?;’;))H a2-7‘2}. (3-7)

Expression (3-7) is nothing but the usual solution for a circular thin plate.

B) First Order Approximation

The solution w of eq. (1-18) for deflection in the first order approximation
is the sum of a particular solution of (1-18), say wi{’, and the solution w{’ of
the homogeneous equation for eq. (1-18), namely

w® = wi’ +wf”, (3-8)
with
1 /
DAA {w(l) + (1103( 0 (k}> Aw(l)} PO , (3__9)
and

POCSC YL P W T SU R POPR

The solution w{" of eq. (3-10) is decomposed into two parts, namely

i = wif + 1w, (3-11)
where
ddw = (3-12)
and
win+afwi =0, (3-13)

with
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o? = 10(1 2) (2
(13,16) \ i
The solutions of egs. (3-9) and (3-12) are:

1 po '
. = Po -
2ot 64 D rt, (3-14)
and .
w = Cr2 4Gy, (3-15)

with constants C; and C,. While, the solution of eq. (3-13) is expressed by a
Bessel function of order zero and is written as :

712)111 - AJQ(CU”) ‘ (3—16)
with a constant A.

Accordingly, the solution of eq. (1-18) under the boundary conditions (3-1)
can be written by :

w = w0l b wff e = B P Gt Gyt Adir), 3-17)

with constants A4, C;, and C,, expressed as follows: :

,Ai (13,16) P0(2 )2 1+%@<§1%>
a JO(

, . (3-18)
80(3, 2 4(1, 0 /
( ) aa)— 53 2)) <2Z ) Ji(aq)
C = ——1%—%0—612—# —}FagAJo(aa) ) (3-19)
and
Co= oy P @+ 4>A%w@ (3-20)

Expression (3-17) obtained here has a somewhat different feature from a
solution given by Love? :

1op (11, 10) 8(35, 66,32) (h

w =54 p - >{(> —" 5,962 \2) (3-21)
where he took another boundary condition. Eq. (3-21), however, has a similar
expression to (3-7) and also contains a term of O (h2).

C) Second Order Approximation
In a similar manner, the solution w® of eq. (1-20) in the second order ap-
proximation can be decomposed into three terms, namely
w? = wf? +wif +wil, (3-22)
with

2(12

D44 {w?) + 7
2

e + %Aﬂw?)} =P, (3-23)
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Ad4w® =0, {3-24)
and
AdwEi+ 205 dwii+ fi o = (3-25)
with |
w2201, 2)(13,16) (2} (84012 (2}
(1479, 3704, 2332) <h> o and B =579, 3704, 2339) ("h)
The solutions of egs. (3-23) and (3-24) are given as:
wi = 61—4 % r, (3-26)
and
wi = Cr2 -Gy, ' (3-27)

with constants C; and C,. While, the finite solution of (3-25) at =0 reads:
wift = Ay e ofer) - BiJm I (er) (3-28)

where [{er) is a modified Bessel function of order zero, with constants Ay, and
B,. We wrote one of the roots of the equation :

w2022 B =0, ' ' T (3-29)
to be k={+ip  ({=0 and 3=0),
with

g:\/ﬁf_;_ai, and n:\/ﬁzf:;:a_f_ . (3-30)

The solution w® of eq. (1-20) under the boundary conditions (3-1) can be
written as:
w® = w(z)—{—w(?—{—w% —

614 L8 iy Gt Cot A Ler) + B Sm Iy(s7) (3-31)

with

\gmL(/cé) { -+ 1107112 ( )} Jm {(ka)t I,(za)}

A= D 9’{e L(ha) am {(/ga)4 I(ka } Sm L(ka a) Re {(ha ( }* (3—32)

(17, 16)
s p Re L(rva)— { + 101 2 < )} Re {(ra)t I)(ka)}
—D“ EReL(m)Qsm{/fan(m)} Sm L{ga) Re {(za)t I(ra)} ’
1
6

B = (3-33)

Ci=~—+ %a2~4—612[A1§T{e{(/ca)ZIO(/ca)}—i—BIS“m{(/m)ZIO(/sa)}], (3-34)

and
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Co= — gy B at—Cat— AT Lk — B.YmLfea) (3-35)
where
L{ka) = (ka)* Iy(ka) — 2(xa) I,(ka)+ (51—;71’,12%)(2]71(1)2 {(/ra)‘* I{ka)—(raP L, (xa)} +

(1479, 3704, 2332) ( h \{2(1, 1)
420(1, 2)° 24 )\ (1,2

(£a)’ In(ka)—

(1919, 4248, 2332)
~ (1479, 3704, 2332) wa) hlxd)( . (3-36)

§ 4. Numerical Example

As for numerical examples, we shall consider the maximum deflection of a
plate under uniform pressure calculated from solutions of several approximate equa-
tions obtained in this paper.

A) Rectangular Plate
Uniform pressure p=p, (=const) is expressed in a double Fourier series in

(2-7), giving

24 _1 m+n
P =" (2m<-—1))(2n~1) po (mn=1,2,3, ) -1

The maximum deflection wm.x of a rectangular plate is obtained from (2-3) with
n=x,=0, i.e.

Wmax —

il
s

Wi + (4-2)

1 1

W, are given in eq. (2-9) for the exact solution of the plate and in eq. (2-12)
for approximate solutions.
For a square plate, 7.e. a=b, we calculate wpy.y for various values of A/a,

TaBrLE 1. Comparison of the maximum deflections of
a simply supported square plate (¢=5) under
uniform pressure.

(/£=3/2, and Poisson’s ratio=0.3)

wWmax/we (e : exact solution)
hja _
0 th(t%riﬂe;la;}zg)rox. 1st order approx. Reissner®

0.05 0.989 1.000 1.000
0.10 0.956 1.000 0.998
0.15 0.907 1.000 0.996
0.20 0.846 1.001 0.995
0.25 0.779 1.003 0.993
0.30 0.711 1.005 0.993
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after truncating series (4-2) at appropriate terms (m, n=5~6). In Table 1, the
values twpax/t, are shown in the zero-th and the first order approximations in
our theory and are compared with the values calculated from Reissner’s theory®.
w, means the exact solution given by (4-2) with (2-9). The ratio 2/p is taken
to be 3/2, with Poisson’s ratio (4/2)/(A+ p)=0.3.

In the zero-th order approximation (7.e. thin plate), the relative error |1—
—(Wmax/we)| is comparatively small (e. g. less than 5% for h/a=—0.1), while, for in
creasing thickness, the error increases from ca. 9% (for A/a=0.15) to ca. 30% (for
h/a=0.3). In the first order approximation in our theory, the values of twmax
agree very well with the exact solution, e.g. the error is 0.5% for h/a=0.3. In
the second order approximation, the values of wy,.. coincides very well with the
exact values (e. g. the error is less than 0.1% for h/a<0.4).

B) Circular Plate

The maximum deflection wwn,, 0f a circular plate under uniform pressure is
obtained from egs. (3-7), (3-17), and (3-31), with »=0.
In the zero-th order approximation, we have :

_ (15,10) p
Wmax — m ﬁaA‘ ) (4"3)
while the first order approximation gives :
3 4 2 2
Wanax = G @l <1+ T >AJo(aa)—|—A, (4-4)

with (3-18). The maximum deflection in the second order approximation reads:

Winax = % fg a4 A+ H—— Re{(sa)* I(ka)} —Re I, (/ca)] A+

+ [i Sm {( rka)? Io(m)} —Jm Io(/ca)} B, (4-5)

with (3-32) and (3-33).

Numerical results calculated from (4-3)~(4-5) and from Love’s solution are
compared in Table 2. In this case, the exact solution can not be obtained, and
numerical values of v, are shown as a ratio of wp. to w®, for values of A/2a.
w® means the values in the zero-th order approximation (thin plate). The ratio
Mp is taken to be 3/2 and Poison’s ratio 0.3.

For the plate of small thickness, the values wwp./w® in the first and the
second order approximations and also in the theory of Love, do not differ very
much. For example, the values of the difference |1 —(wm.:/w®)| are less than 10%
for h/2a<<0.1. The value increases with increasing thickness of the plate.

Although the {features of (3-31) in our second order approximation and (3-21)
given by Love are quite different from each other, the numerical values given in
our second order approximation (4-5) show a very good agreement with those
obtained by (3-21) for all the values of #/2a. The maximum difference between
them is merely less than 7%.
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TABLE 2. Comparison of the maximum deflections of
a simply supported circular plate under
uniform pressure.

(4/r=3/2, and Poisson’s ratio=0.3)

wWmax/w® (w0 : 0-th order approximation)

h/2a

Ist order approx. | 2nd order approx. Love®
0.05 0.997 1.012 1.009
0.10 1.090 1.047 1.036
0.15 1.016 1.111 1.081
0.20 1.441 1.221 1.145
0.25 1.462 1.314 1.226
0.30 1.683 1.337 1.326
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