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Abstract

First, a dimensionless rate equation including a floc disintegration term was
developed to describe the entire process of turbulent flocculation. Next, in order
to reduce the number of variables, a binary grouping method of particle size dis-
tribution was proposed. By these methods, it became possible to compare an ex-
perimental result of flocculation process with a numerical solution. As a result it
was found that the floc concentration, and the intensity and period of slow agita-
tion had an effect on both of the growth rate and the disintegration rate of flocs.

1. Introduction

The time variation of floc size distribution in the flocculation process is de-
scribed by simultaneous differential equations of s variables. Here s denotes the
number of primary particles included in the maximum size floc. The value of s
usually reaches a high order of 10% to 108 Thus, it is very difficult to solve these
equations even when a high speed computer is used. A solution to the problem
is to reduce the number of variables by introducing a grouping of flocs. The
authors propose a binary grouping method of floc size distribution. By the method,
for example, a 10%fold particle is classified as a floc of Group 20 because 10° is
nearly equal to 2% in the binary system. Thus, simultaneous differential equations
of 10° variables can be simplified to those of 20 variables. The purpose of this
paper is to show the details of grouping method with a satisfactory material balance
and to depict the time variation of floc size distribution.

2. Formulation of Turbulent Flocculation Model

A floc is an aggregate of a number of primary particles. A floc containing
{ primary particles (=1, 2, -+, 5) is defined as an ¢-fold floc. For turbulent floccula-
tion controlled by a viscous subrange transport rate, the number of collision-ag-
glomeration between ¢ and j-fold flocs per unit time and in a unit volume, RC;;,
is written as follows?.

. . . \3
RC,, = 12zaB| X d = L ngny (1)
g\ 2 2 I

where « is the circular constant, a a collision-agglomeration coefficient, 8 a constant,
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g the effective energy dissipation rate, y the viscosity of water, d the floc diameter,
n the number of flocs in a unit volume, and the subscripts 7 and j denote an i-
and a j-fold floc, respectively. Based on Eq. (1), the growth rate of i-fold floc, d#n;/dz,
is described as Eq. (2) for a flocculating system where the maximum floc is s-fold?.

dnz

=5 71'61(‘8\/60 {*I d +dz ]) 7y 4 71i‘;i::7;<d¢+dj)3nj} (2)

The density of a floc decreases with size growth because of embracing the
interstitial water. The relationship between the effective density p, and the diameter
d is observed® to be

pe=a-d™* (3)

where a and %k are constants dependent on floc characteristics. From Eq. (3) and
the definition of i-fold floc, the diameter of i-fold floc, d;, can be written as

dy = dy (iv o] pe ) = dy 90 = i (4)

where p,: and d; are the effective density and diameter of a primary particle,
respectively and f=1/(3—%). Substitution of Eq. (4) into Eq. (2) gives

dn, 3 e [1 iz, . L

At a final stage of the flocculation process, floc size distribution reaches a
definite equilibrium state. This kind of self-preserving final distribution is realized
when a disintegration term is introduced. If it is assumed that floc disintegration
is brought about by the dynamic pressure difference 4poo (g/p)d? of turbulent eddies
in the viscous subrange, the number of disintegration of i-fold floc per unit time
and in a unit volume, RD,, may be expressed as follows.

cey [ di—d? cey [ i¥—1 ce .
RDi:7°<—————d§~_d%>:_#A<_ﬁf_l >: 1) (6)

where ¢ is a coefficient relating to floc disintegration and A=s¥—1. In addition

to the above assumption, if it is assumed that a floc particle is disintegrated into
two same size flocs, the basic flocculation equation is written in a dimensionless
form as follows.

sz 1 22, . . szE .
dm =2 o T3 NN =N 8 4PN,
CG . .
+ [ {(20)—1) Nuo + {(2i =1 = 1} Ny
i D YN~ =N =129 (7)
where m=0G"'dinyt, b=(3/2)naf, G =Aey/tt, Ny=nyny and n, is the total number

of primary particles existing in the system. In Eq. (7), the first two terms on the
right hand side are the variations due to collision-agglomeration and the third term
is the variation due to disintegration.
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3. Binary Grouping of Floe Size Distribution

By binary notation, 257! to (2¥X—1)-fold particles are classified as Group K.
Thus, for a flocculation system where the maximum agglomeration number s is
less than 25, the binary notation is described by S groups of floc as shown in
Table 1. When the binary notation is used, the collision-agglomeration terms of
Eq. (7) are represented by the following three types of reaction.

TaBLe 1.  Composition of Floc Groups

Particles consisting . Number of primary
Group K of Group K C}:ﬂ;ﬁhﬁg Ooff Ig;éif[l)e% particles in Group K
(i-fold particles) (Lx
1 1 1 1
2 2, 3 2 2.5
3 4,5, 6,7 4 55
4 8 9, 10, 11, -, 15 8 115
5 16, 17, 18, -+, 31 16 235
S—1 25-2 25=2.41, ... 25-1—1 28—2 (25—14-28-21)/2
S 25-1 25141, ., s s4+1—28-1 (2S-145)/2

(1) (Group I)x(Group K)—{Group K]+[Group K+-1]
(K=2,3, -, 8S—1;I=1,2, -, K— 1)
(2) (Group I)x(Group K)—[Group K] (K=S; I[=1,2,--,5-1)
(8) (Group K)x(Group K)—[Group K+1] (K=1,2,--+,5-1)
For the disintegration term, the reaction is written as follows.
(4) (Group K)-—[Group K—1]+[Group K] (K=2,3,:,.5)

Thus, the rate of floc number variation in Group K can be shown as follows.

dNK K1 K2 o -1 a 8—1 a
d - Z Ar(,l}(NI =+ Z BI,1(~1NINK—1 - Z BYI,I)(NINK— Z CYI,}rNINK
am =1 I=1 I=1 I=%+1

(K=2~S5—1)  (K=3~S5) (K=2~8—1) (K=1~S5—2)
S—1 K—-1
— 2. DY{%N;Ng+ I; APNINg—BY ) NsNg+ AP 1Ng_1Nie_y

I=x+1
(K=1~S8—2) (K=S) (K=1~S5—1) (K=2~S5)
_AY]S)I(NKNI{—I_DJ((%{—)INK+I+E(I§)NI( ( 8)

(K=1~S—1)(K=1~S5—1) (K=2~5)

Here, the superscripts (1) to (4) correspond to the reactions presented above. While
the general forms of coefficients in Eq. (8) are detailed in the appendix, an example
with respect to the reactions (1) and (4) will be shown in the following.

If we assume [=2 and K=3, and a uniform size distribution in each group,
the reaction (1) is described as in Table 2. Among flocs of Group I=2, (2x2+3)/
8/2.5 of them is transferred by the reaction to Group K=3 and the remaining
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TaBLe 2. Collision-agglomeration between
Groups 2 and 3

4 5 6 7 (Group K)

(Group I) [Group K]
"""""""""" +[Group K+1]
3 7 8 9 10

TasLeE 3. Disintegration of Group 3

4 5 6 7 (Group K)

e — [Group K—1]+[Group K]

(2% 2+43x3)/8/2.5 is transferred to Group K-+1=4. The same is seen for Group
K=3 as 13/8/5.5 and 31/8/5.5 are transferred to Group K=3 and K-+1=4, respec-
tively. The representative collision diameter is the sum of 7/3 and 13/3-fold particle
diameters. At the same time, by these reactions Groups K=3 and K+1=4 in-
crease their contents by 20/8/5.5 and 44/8/11.5, respectively. The sum of 13/5
and 31/5-fold particle diameters is the representative collision diameter in this case.
On the other hand, the reaction (4) for Group K=3 is exemplified as in Table 3.
When one floc is disintegrated into two particles, the number of Group K—1=2
and K=3 are increased by (2X3-+3x4)/4/2.5 and 4/4/5.5, respectively.

Thus, if the functional forms as F(p, q)={p'+¢)* and H{w)=(cG'|bndih)+(u*
—1) are used for the collision-agglomeration term and the disintegration term of
Eq. (7), respectively, then a set of rate equations for the two reactions exemplified
above is written as follows.

(31%2 - 8><72.5 F<%‘1?33"> N2N3“8‘>£EF<%,'S5L> NNy
+7-><9WH(5.5)

o= (o5~ wxes)F(5, ) NN grss (5 5)
+<% —1> H(5.5)

fﬁ“ - 8><4f1.5 F(%%) NN

The summation of these equations shows that the material balance, i.e.,

s s .
Z LgNg=1 or Z Ly =0 ( 9)
=1 frams]
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holds. Here, Lg is the number of 'primary particles included in the floc of
Group K.

4, Computation and Experiment

Two constants & and ¢ which are implicitly included in Eq. (8), are evaluated
by comparing simulation results obtained under steady and unsteady conditions
with experimental measurements.

Under the steady condition, the relation as

dNK/dm:O (K‘—:l, 2, ,S) (10)

should hold. Thus, the number of flocs in Group K can be calculated from the
simultaneous quadratic equations which are obtained by setting the left hand side
of Eq. (8) to be zero. These equations can be solved for various values of ¢/b by
using the Newton linearizing method. Here, it should be noted that one of these
equations is not independent {rom the others and must be replaced by Eq. (9).
As the value of ¢/b, the solution of the minimum error relative to the steady state
experimental result is used.

When the value of ¢/b is substituted into Eq. (8), this equation is solved by
use of the Runge-Kutta-Gill method. The computational result and experimental
result will coincide when dimensionless flocculation time, m, is expanded by an
appropriate factor of &6 Thus, the value of b is obtainable from the relation
as b=m/(G' dinyt) where the value of G', d|, and n, are known. In the next step,
the value of ¢ is obtained as ¢=(c/b) X b.

A batch flocculation experiment by using kaolinite-aluminum floc was carried
out under the conditions shown in Table 4. The floc diameters were measured
at various time intervals by close-up photography. The minimum diameter was
defined as 2.87 X 107%cm in this experiment. Two constants a and % with respect
to floc density were measured from the settling test and were 2.83 x 10~ and 1.3,

respectively.
TABLE 4. Summary of Experimental Conditions
and Computational Results
L e e B P B PR B
(mg/l) (min) {sec™!) |(103cm—3)| (cm)
1 40 1 2.6 3.50 0.155 881 0.0638 252 1.61
2 40 1 3.8 3.50 0.125 611 0.0293 175 0513
3 40 5 2.6 3.50 0.160 930 0.0592 19.6 1.16
4 40 5 3.8 3.50 0.110 492 0.0270 13.1 0.3565
5 60 1 2.6 5.25 0.175 1083 0.0841 4,10 0.344
6 60 1 3.8 5.25 0.150 834 0.0335 3.86 0.129
7 60 5 2.6 5.25 0.135 697 0.0654 5.57 0.364
8 60 5 3.8 5.25 0.105 455 0.0321 3.29 0.106

*  Aluminum to turbidity ratio is 0.04.
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The results of three experimental runs are shown in Figs. 1, 3 and 5. The
computational results for the three cases are depicted in Figs. 2, 4 and 6, respectively.
It seems from these figures that the computational results are in close agreement
with the experimental results, relative to the problems involved in conducting these
experiments. The values of & and ¢ were obtained for eight runs as in Table 4.
These data show that the higher the kaolinite concentration is, the more intensive
the slow agitation becomes and likewise the longer the period of rapid agitation is,
the larger the values of b and ¢ are.

5. Conclusion

In the past, the entire process of turbulent flocculation could not be analyzed
numerically due to the difficulty of solving a large number of differential equations. .
The difficulty was dissolved by introducing the binary grouping method of floc size
distribution.

The main results of the present study may be summarized as follows.

1) The final steady state of floc number distribution can be attained by in-
troducing a distintegration term of flocs to the conventional rate equation of collision-
agglomeration flocculation.

2) The binary grouping method has been precisely shown with a satisfactory
material balance.

3) The turbulent flocculation process is assumed to be characterized by the
two coefficients & and ¢. The former has an effect on floc growth rate and the
latter on floc disintegration rate.

4) Two coefficients mentioned above are independently obtainable by running
a comparison of a computational solution with the experimental result under a
steady and unsteady state.

5) The experimental and computational results are in a fairly good agreement
and show that the values of & and ¢ are affected by the floc concentration, the
intensity of slow agitation and the period of rapid agitation.
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Appendix: General From of the Coeflicients in Eq. (8)

(I) If the coefficients AfY% to Ax %, in Eq. (8) are denoted together as

=i <))

where Lg is obtainable from Table 1, each value is calculated as follows.
(1) For AfY (K=2,3,--,85-1; I=1,2,.--, K—1):

a) in the case where 26<s—2741
2221{+I—2221, T:x:21—2(9.21(+1—2_3.21{—1_7'221—1_1_9'21—1_1)/357‘1,

Y =2172(9. 22K~ Q. QK1 L 3. 0K~1 17,0202 [)[3=y,, r—21"2(2K 32014 1)=r.

b) in the case where s—21712>2%82>5— 2142
2221——2<2K_21—1+1)+(S_21(_21—1+1) (3,21-1_1_21(__3_2)/2522, T:x:TI, Y=Y,
r=r.

c) in the case where 2¥>s—2"141
2==2072(2s — 2K 3. 21714 B)=2,, T=a="T}, Y=Yy, r=r.

(2) For B, %, (K=3,4,---,8; I=1,2,--+, K—-2):

a) in the case where 25 1<{s—2741
z:2K+I“3, T:2I—1(9.21(+I—3_3.2[{—2+7.22I*‘3_9.2[—2_}_1)/3,
2=2T72(7+22171 _ Q.21-14-1)/3, yy=27"2(9.2K+1~2 __3.0K~1_7.081-2 | 1)/3,
F=21"2 (3.271 1),

b) in the case where s—2/712>25"1>5 27142
2221—2(21{"1_21—1_‘_1)+P1<2]f—1+3.21—1_5_2)/2’
T:221—3(2K+21—1_1)+P1{3.21—1(21(—1+21—1_«1)_(1)1_’_1) (21“2—21_1—1—5‘)}/3,
x:21~1(7,221~1_9.21—1_}_1>/3_(21(—1+21_3_2) (21{—1+21_5H1) (5_21(~1_|_21+1)/6,
?/:21”2(9'21{+I_2~‘3'2K_1”7‘221_2-1“1)/3

(R4 2T 2) (2574 0T s 1) (25— 27 +5)/6,
F=22172 P (327714281 5 DV/2 where Py=s—2K"1-207141,

¢) in the case where 25 1>s—277141
2= 212(25— OF—1 _3.20-1 4 3) T'= P,(s+25-1), z=P,(3+27-1_1),
Y=P,(2F 1 3.2 1 5-1), r=2P,, where P,=27"2(s—2K"141).

(3) For BYY) (K=2,3,---,5-1;I=1,2,---,K-—1):

a) in the case where 28<s—2741
2z, T=y=21"2(9.2K+ _3.0K_7.221-2 1 1)3,
2= 0172(7.221-1 Q. 011 £ 1)/3, =2T~2(3.27-1_1),

b) in the case where s—271>2K>5—2142
=g, T=y=27"2(9.2K+~1_3.0K__7.227-2 1 1)/3_ Py(2K*+1 21 | §)/6,
a=27"2(7.2871 — 9.2 14 1)/3 — Py(s — 2K 4- 271 1) /6,
022 | (s 0K _I=1.1) (2K 4 3,201 _5_2)/2,
where Py=(28+27—s—2)(25+27—s—1).

¢) in the case where 25>s— 27141
2=z, T=y=P,2F-3:21"145+41), =P, (3.2771--1), r=2P,
where Py=27"2(s—2%+1).
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(4) For CY{% (K=1,2,-,85~2; I=K+1, K+2,--,5—1):
a) in the case where 27<s—2K+1
g= 0K+t =g T:y:21c~2(9,21<—1__7,221{~1+9,2K+I—2_3,21—1_1>/3ET2,
xZZK—z('?,22K—2_9,2K+I—1+9,221—2+3,21—1_1)/3Ex1, r=2K-2(21 3.0k~ 4 1)=rp,.
b) in the case where s—251>2I>5—2K19
2= 2K (2 — 2K 1) (s— 27 — 2E-14 1) (342811 97 _5_9)/9= 5
T=y=T, x=x, r=r,.
c) in the case where 27>s— 25111
2=287%(2s 32K 2T} Qy=2,, T=y="T,, x=x, r=rs
(6) For DY} (K=1,2,---,8~2; I=K+1,K+2,---,5—1):
a) in the case where 2/<s—2%+1
=2 T:y:21<—2(7.221(—1_9.21{“1+1)/3’ x:21{—2(9.2K+[—1_7.221{”2_3.21’_‘_1)/3,
r:21{—*2(3.2lf—1_1)‘
b) in the case where s—251>21>5_2K12
2=z, T:@/ZZI(“Z(’/'ZZK_I-—9-21(_1—|—1)/3—P3(s+2K+1—21)/6,
x=2K"2(9.2K41=2 3,01 7.92K-2 4 1)[3_ P,(s— 2K 4 2I+1)/G,
7= QU2 (5 DKL Q7| 1) (3.2K-1 .91 _s_9)/2,
c) in the case where 27>s—25714+1
=2, 1T=y=P53:-251—1), x=Py(s—3.25°142741),
r=2P;, where Py=2%"%(s—271),
(6) For A% (K=S; I=1,2,---, K—1):
a) in the case where 27 <s—2%1
g=r=21"%25s—2K —3.27-14 3),
T:xZZI—Z{S'2K—1_9.2K+1~2_7,221—1+9.2[—1(S+2)_35__4}/3,
y:21~2{3 (s —2K-1 211 ]) (s4-2K-1 — 27-1) _(97-1_1) (35_21+1_|_2)}/3.
b) in the case where s—25141<27<{25— 2541
g=r=2"P/2, T=2="DPi(s—2514-27)/6, y=Py(s--2% —2I-1)/6,
where Py=(s— 251 —27-1.{.1) (s — 2K~1 _21-1 1 9).
¢) in the case where 27>2s—2%42
T=x=y=0.
(7y For BY#H, (K=1,2,---,5-1):
a) in the case where 2¥<s—25t
g =282 (25— 25 3.2K-113)
T:y:21(~2{3,2s—1_9,2K+s—2_7,221(—1+9,21(—1(5+2)_35_4)}/3’
ngzc—2{3(s_2s—1__2K—1_i_1) (54251 2K=1) _(9K-1_ 1) (35_21@1_[*2)}/3.
b) in the case where s—25141<26<25—25-1-1
g=r=P2, T=y=P,(s—251425)/6, x=P,(s+25—251)/6,
where Py—=(s—25-1—2K~14 1) (5251 2%=1 | 0}
c¢) in the case where 25>2s—25+42
T=x=y=0.
(8) For Ap ¥, (K=2,3,:-,.9):
a) in the case where 3.25¥<3(s+1)
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2=2r =283 T'=2x=2y=22K"4(3.25-2 1)
b) in the case where 3s--4<3.25<4s
2=2r=(s— 325724 1) (5.2K2 — 5 2) }- 2K-2(2K-24 1),
T= 20 =2y =20K4(3. 2572 1) (s 2K~1) (2K —5 — 1) (2K — 5 — 1) (2K — 5 — 2)/3.
¢) in the case where 3.25>4s-+1
2=2r="P,, T'=2x=2y="PF(s+2%2%)/3, where Py=(s—2%"141)(s—25"142}.
(9) For AY S, (K=1,2,---,5-1):
a) in the case where 3.25"1<(3(s+1)
zzr:zzl{—z’ T:x:’y:ZZK_a(BtZK—I—l).
b) in the case where 35s4+4<3.25 1 <45
2=r=28"2 (2K 1 4 1) 4 (s— 326714 1) (5. 251 —5—2)/2,
T=z=y=228"3(3.2F"1 1) —(2K+*1 5 1) (2K+1—s— 2) (s +2K)/6.
c) in the case where 3.2K*1>4541
2=r=F)/2, T=x=y="F,(s+2%1/6, where Py=(s—2%+41)(s—2%42),
(IT) If the coefficients D), and E¥ in Eq. (8) are denoted together as
G v

T Y yer
bngdih Ly (L —1),

the values of v and [ are calculated as follows.
(1) For D&, (K=1,2,---,5-1):

a) in the case where 1<K<S—2
v=3(25—-1)/2, I=K+1.

b) in the case where K>S5-1
v=(2%45)/2, [=K+1.
(2) For EP (K=2,3,---,95):

a) in the case where 2<K<S—1

'U:l”“LK, l:K
b) in the case where K= and s32%-—-1
V= "“LK, l:K

¢) in the case where K=S and s=2%—1

’():(l—LK), l:K



