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                          Flocculation Process
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                            (Received June 30, 1979)

                                 Abstract

    First, a dimensionless rate equation including a floc disintegration term was

developed to describe the entire process of turbulent fiocculation. Next, in order

to reduce the number of variables, a binary grouping method of particle size dis-

tribution was proposed. By these methods, it became possible to compare an ex-

perimental result of flocculation process with a numerical solution. As a result it

was found that the fioc concentration, and the intensity and period of slow agita-

tion had an effect on both of the growth rate and the disintegration rate of flocs.

                              1. Introduction

    The time variation of floc size distribution in the flocculation process is de-

scribed by simultaneous differential equations of s variables. Here s denotes the

nu,mber of primary particies included in the maximum size floc. The value of s

usually reaches a high order of 103 to 106. Thus, it is very diflicult to solve these

equations even when a high speed computer is used. A solution to the problem

is to reduce the number of variables by introducing a grouping of fiocs. The

authors propose a binary grouping method of fioc size distribution. By the method,

for example, a 106-fold particle is classified as a floc of Group 20 because 106 is

nearly equal to 220 in the binary system. Thus, simultaneous differential equations

of 106 variables can be simplified to those of 20 variables. The purpose of this

paper is to show the details of grouping method with a satisfactory material balance

and to depict the time variation of floc size distribution.

              2. Formulation ef TurbuieRt Floectilation Model

    A floc is an aggregate of a number of primary particles. A floc containing

i primary particles (i=1,2,･･･,s) is defined as an i-fold floc. For turbulent fioccula-

tion controlled by a viscous subrange transport rate, the number of collision-ag-

glomeration between i and j'-fold flocs per unit time and in a unit volume, RCib

is written as followsi).

        Rqj=i2nap V-:'- (k+d2" )3 n,n, (o

where n is the circular constant, a a collision-agglomeration coeflicient, P a constant,

 *) Department of Sanitary Engineering, Faculty of Engineering, Hol<kaido University.
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eo the effective energy dissipation rate, pt the viscosity of water, d the floc diameter,

n the number of flocs in a unit volume, and the subscripts i and ]' denote an i-

and a ifold floc, respectively. Based on Eq. (1), the growth rate of i-fold floc, dnildt,

is described as Eq. (2) for a flocculating system where the maximum floc is s-fold2).

         diti`::::;TcupV-:'i(5Z,'illli,(d,･+diinD3njntm,･-niIZJ-i,(cli+dj)3nj･] (2)

    The density of a fioc decreases with size growth because of embracing the

interstitial water. The relationship between the effective density p, and the diameter

d is observed3) to be

where a and k are constants dependent on floc characteristics. From Eq. (3) and

the definition of i-fold floc, the diameter of i-fold floc, ch, can be written as

        di=Cll'(i'pe,ilPe,i)i13=di'ii'`3-k' == cli'N (4)

where p,,i and cli are the effective density and diameter of a primary particle,

respectively and f=11(3-k). Substitution of Eq. (4) into Eq. (2) gives

                               '         diZt` = ; Tcrpd?V-i:'- [-lli111)i,(.if+(i-1')f]3nini-,･-niIZ. ]---`,(N+.i")3n,･] (5)

                                                             '                                                                   '
    At a final stage of the fiocculation process, floc size distribution reaches a

definite equilibrium state. This k!nd of self-preserving final distribution is realized

when a disiBtegration term is introduced. If it is assumed that floc disintegration

is brought about by the dynamic pressure difference zipc/D (eolpt)d2 of turbulent eddies

in the viscous subrange, the number of disintegration of i-fold fioc per unit time

and in a unit volume, RDi, may be expressed as follows.

        RD, :- CIO(Si･iSi･)- Clo(1:--,i)- ZEi (iaf.i) (6)

where c is a coefllcient relating to floc disintegration and h=sZf-1. In addition

to the above assumption, if it is assumed that a floc particle is disintegrated into

two same size flocs, the basic fiocculation equation is written in a dimensionless

form as follows.

         dd",iV`. - ± IEi,V+(i-j')f)3NiAJL-y-Ni lzJ--l(il+7'f)3Nj

             + b,C,,Gd'ih [2((2i)2f-1]N2z+((2i-1)2f-1]Mi-i

             +((2i+1)2f-1]N2i.i-(i2f-1)Nl] (im-1,2,･･･,s) (7)

where m=bG'dgnot, b=(3!2)naP, G' ==Veolpt, Ni=ntlno and no is the total number

of primary particles existing in the system. In Eq. (7), the first two terms on the

right hand side are the variations due to collision-agg}omeration and the third term

is the variation due to disintegration.
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              3. Binary Grouping of Floc Size Distribution

    By binary notation, 2K-i to (2"-1)-fold particles are classified as Group

Thus, for a flocculation system where the maximum agglomeration number s

less than 2S, the binary notation is described by S groups of floc as shown

Table 1. When the binary notation is used, the co!lision-agglomeration terms

Eq. (7) are represented by the foilowing three types of reaction.

                   TABLE1. Composi･tionofFlocGroups
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K
 is

in

of

Group K

 1

 2
 3

 4
 5

S-1
 S

Particles consisting
  of Group K
 (-i-fold particles>

1

2, 3

4, 5, 6, 7

8, 9, 10, 11, ･･･, 15

16, 17, 18, -･･, 31

2S-2, 2S-2+1, ..., 2S-1-1

2S-1, 2S-1+1, ･･･, s

 Number of particles
consisting of Group K

   1
   2
   4
   8
   16

  2S-2

s+1-2S-1

Nurnber of primary
particles in Group K
      (LiD

     1
     2.5

     5.5

    11.5

    23.5

(28-i+2S-2-1)f2

  (2s-i+s)12

    (1) (Group I)×(Group K>->[Group K]+[Group K+1]
                                    (K=2, 3, ･･･, S-1 ;I=1, 2, ･･･, K- 1)

   (2) (GroupI)×(GroupK)->[GroupK] (K=S;I=::1,2,･･･,S-1)
    (3) (GroupK>×(GroupK)-->[GroupK+1] (K=1,2,･･･,S-1)
For the disintegration term, the reaction is written as follows.

   (4) (GroupK>-->[GroupK-1]+[GroupKl (K=2,3,･･･,S)
Thus, the rate of floc number variation in Group K can be shown as follows.

    dM(          ff-1 "-2 rr-1 S-1    d. =" E., AfJJVViNr( + ,Z., Bf,(iLiNiNic-i ' ,¥., BY}g,iff' IVrNK- .=¥.,CY}g,ilNiA(i<

           (K=2t--S-1) (K=3-S) (K==2-S-1) (K=1nyS-2)
         - S2i Dy}S}}N.N,,+"£iA;2,>NiNK-BY16?>NlgNi<+Aff-S3,}-iNr<-iNi(-i

          l=rr+l l=1           (K=1-S-2) (K=S) (K=1-S-1) (K=2-S)
         -AYi5/?}ACifNr<+Pi(r`+'iNi<+i+Ek"Nic (8)
          (K==1-S-1)(K=1-S-1)(K=2･--tS)

Here, the superscripts (1) to (4) correspond to the reactions presented above. While

the general forms of coefllcients in Eq. (8) are detailed in the appendix, an example

with respect to the reactions (1) and (4) will be shown ln the following.

    If we assume I=2 and K=3, and a uniform size distribution in each group,

the reaction (1) is described as in Table 2. Among flocs of Group I=2, (2×2+3)!
812.5 of them is transferred by the reaction to Group K=3 and the remaining
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 Collision-agglomeration between

 Groups 2 and 3

(Group I)
2

3

4 5･ 6 7 (Group K)

6

7

   7i

I8

8

9

9

10

[Group K]
   +[Group K+1]

TABLE 3. Disintegration of Group 3

4 5 6 7 (Group K)

2

2

2

3

3

3

     3
:,･-------------------･ [Group K-1]+[Group K]

(2×2+3×3)!8!2.5 is transferred to Group K+1=4. The same is seen for Group
K==3 as 131815.5 and 31!815.5 are transferred to Group K=3 and K+1=4, respec-
tively. The representative collision diameter is the sum of 713 and 1313-fold particle

diameters. At the same time, by these reactions Groups K=3 and K+1=4 in-
crease their contents by 20!815.5 and 4418/11.5, respectively. The sum of 13!5

and 3115-fold particle diameters is the representative collision diameter in this case.

On the other hand, the reaction (4) for Group K=3 is exemplified as in Table 3.

When one floc is disintegrated into two particles, the number of Group K-1=2

and K==3 are increased by (2×3+3×4)1412.5 and 414/5.5, respectively.
    Thus, if the functional forms as F(p,q)=(pf+qf)3 and H(u)=(cG'!bnodih).(u2f

-1) are used for the collision-agglomeration teym and the disintegration term of

Eq. (7), respectively, then a set of rate equations for the two reactions exemplified

above is written as follows.

        ddMnz == - s×72.s F(37,L!33rm) N2A'b ri s:32.s F( is3, 3si)N2Nh

             + -2-R92.s H(s.s)

                                   '
        -ddl)? =(s×20s7t - s×13s.s)F(K, 133)AxhNb- s×31s.s F( ls3, 3sl)

             +(s}s -1) H(s.s)

        ddM. =s×4il.s F(ls3,3sl)MNh

The summation of these equations shows that the material balance, i. e.,

        .2.,LKNi<=1 or .2S]=,LKddN,1.`=o ' (g)
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holds. Here, LK is the number of,primary particles included in the floc of

Group K.

                      4. Computation and Experiment

    Two constants b and c which are implicitly included in Eq, (8), are evaluated

by comparing simulation results obtained under steady and unsteady conditions

with experimental measurements.

    Under the steady condition, the relation as

        dN,,!dm=O (K=1,2,･･･,S) (10)
should hold. Thus, the number of flocs in Group K can be calculated from the

simultaneous quadratic equations which are obtained by setting the left hand side

of Eq. (8) to be zero. These equations can be solved for various values of clb by

using the Newton Iinearizing method. Here, it should be noted that one of these

equations is not independent from the others and must be rep!aced by Eq. (9).
As the value of c/b, the solution of the minimum error relative to the steady state

experimental result is used.

    When the value of clb is substituted into Eq. (8), this equation is solved by

use of the Runge-Kutta-Gill method. The computational result and experimental
result will coincide when dimensionless flocculation time, m, is expanded by an

appropriate factor of b. Thus, the value of b is obtainable from the relation

as b=ml(G'dinot) where the value of G', clL and no are 1<nown. In the next step,

the va}ue of c is obtained as c=(c!b) ×b.
    A batch flocculation experiment by using kaolinite-aluminum floc was carried

out under the conditions shown in Table 4. The floc diameters were measured

at various time intervals by close-up photography. The minimum diameter was

defined as 2.87×10-3cm in this experiment. Two constants a and k with respect

to floc density were measured from the settling test and were 2.83×10-4 and 1.3,
respective!y.

                TABLE4. SummaryofExperirnental Conditions
                          and Computational Results

Run

1

2

3

4

5

6

7

8

Kaolinite
 dosage
 (mgll)

40

40

40

40

60

60

60

60

Period of rapid

  agltatlon
   (min)

1

1

5

5

1

1

5

5

 Gi
<secnl)

2.6

3.8

2.6

3.8

2,6

3,8

2,6

3,8

  7ZO
(103cm-3)

3,50

3.50

3.50

3.50

5.25

5.25

5.25

5.25

(cm)

O.155

O.125

O,160

O,110

O,175

O.150

O.135

O.105

s

881

611

930

492

1083

834

697

455

clb

O,0638

O,0293

O.0592

O,0270

O.0841

O,0335

O.0654

O.0321

b

25.2

17.5

19.6

13,1

4,10

3.86

5.57

3.29

c

1,61

O,513

1.16

O.355

O,344

O,129

O,364

O,106

* Aluminum to turbidity ratio is O.04.
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    The results of three experimental runs are shown in Figs. 1, 3 and 5. The
computationai results for the three cases are depicted in Figs. 2, 4 and 6, respectively.

It seems from these figures that the computational resuits are in close agreement

with the experimental results, relative to the problems involved in conducting these

experiments. The values of b and c were obtained for eight runs as in Table 4.

These data show that the higher the kaolinite concentration is, the more intensive

the slow agitation becomes and likewise the longer the period of rapid agitation is,

the larger the values of b and c are.

                                5. Conclusion

    In the past, the entire process of turbulent flocculation could not be analyzed

numerically due to the dithculty of solving a large number of differential equations.

The difliculty was dissolved by introducing the binary grouping method of floc size

distribution.

    The main results of the present study may be summarized as follows.

    1) The final steady state of floc number distribution can be attained by in-

troducing a distintegration term of fiocs to the conventional rate equation of collision-

agglomeration flocculation.

    2) The binary grouping method has been precisely shown with a satisfactory

material balance.

    3) The turbulent flocculation process is assumed to be characterized by the

two coefliclents b and c. The former has an effect on fioc growth rate and the

latter on floc disintegration rate.

    4) Two coeflicients mentioned above are independently obtainable by running

a comparison of a computational solution with the experimental resu!t under a

steady and unsteady state.

    5) The experimental and computational results are in a fairly good agreement

and show that the values of b and c are affected by the floc concentration, the

intensity of slow agitation and the period of rapid agitation.
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          Appendix: General From of the CoeMcients in Eq. (8)

    (I) If the coeflicients A.(,i} to A.-S?}-i in Eq. (8) are denoted together as

        ..T.. ((-iii-Y.(-Y.-Y13

where LK is obtainable from Table 1, each value is calculated as follows.

(1) For A",i} (K=2,3,･･･,S-1;I=1,2,･･･,K-1):
    a> in the case where 2KE{gs-2J+1

2=2K÷i-2ii2,,T=,nc==2i-2(9.2K+J-2-3.2K-i-7.22J-i+9.2i-i-1)13IIIi7'l,,
zx=2i'2(9.22"h2-9.2K'J-i+3.2K-i+7.22i-2-1)13iiizli,r-2J-2(2K-3.2i-i+1)=r,.

    b) in the case where s-2i-i>-2">-s-2i+2
2=2i-2(2K-2f-i+1)+(s-2K-2i-i+1) (3.2iLi+2"-s-2)12iii22, T=::x :Tl, y=yi,

1-=1'1.

    c) in the case where 2K2s-2i-i+1
2..21-2(2s-2K-3.2f-l+3)ii!i23, T=t=Ti, Z/=Yl, 7"=7'1.

(2) For BiXLi (K=3,4,･･･,S;I=1,2,･･･,K-2):
    a) in the case where 2K-isgs-2J+1
2=2K+l-3, T=2i-i(9.2K+i-3.3.2K-2+7.22J-3-9.2r-2+1)!3,
e=2J-2(7.22iHi-9.2i-i+1)13,y=2i-2(9.2K'J-2-3.2K7i-7.22r-2+1)13,

r=2i-2 (3･2i-i-1).

    b) in the case where s-2i"'22K-i2s-2i+2
2=2J-2(2Krm'-2i-i+1)+Pi(2"-i+3･2f-'-s-2)!2,
T=22J-3(2K+2i-i-1)+P,(3･2Z-i(2K-i+2i-i-1)-(P,+1)(2K-2-2i-i+s))/3,

rc=2J-`(7･22i-i-9･2J-i+1)!3-(2K-'+2J-s-2)(2Kei+2i-s-1)(s-2K-i+2J'i)16,
zl=2Tpt2(9.2K'i-2-3.2K-i-7.22i-2+1)f3

              -(2"mi+2i-s-2)(2K"i+2i-s-1)(2K-2i+s)16,
r=22i-2+Pi(3.2i-i+2K-i-s-2)!2, where Pi=s-2K-'-2i-i+1.
    c) in the case where 2K-'l}ls-2H+1
2=2i-2(2s-2K-'-3.2i-'+3), T=P2(s+2K-i), x=P2(3.2J-'-1),
z/=4(2"-'-3e2i-i+s+1), r==2P,, where P,=2i-2(s-2K-i+1).

(3) ForBYig,i} (K==2,3,･･･,S-i;T=1,2,･･･,K-1):
    a) in the case where 2K:f{s-2J+1

2=2b T==y=2i-2(9.2K"i-3.2K-7.22i-2+1)13,
x:=2i-2(7.22J-'-9.2i+i+1)13, r=2i-2(3.2i-'-1).

    b) in the case where s-2imi;)2K2s-2i+2
2=22, T=zl=2r-2(9.2K'T-i-3･2K-7･22i-2+1)13-Pb(2K+i-2i+s)16,
J=2J-2(7.22i-i-9･2i-i+i)!3-Ph(s-2"+2i'i)16,

r=22frm2+(s-2K-2J-i+1)(2K+3.2irm'-s-2)12,

where Pb=(2K+2J-s-2)(2K+2i-s-1).
    c) in the case where 2rr2s-2irmi+1
2==2,, T=y=Pi(2K-3.2r-i+s+1), x=Il(3.2i-i-1), r==2L,
where Pi=2i-2(s-2K+1).
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(4) For CY}S,ik (K=1,2,･･-,S-2;I=K+1, K+2,･･･,S-1):
   a) in the case where 2iE{gs-2K+1
2=2K+i-2=-24,T=y==2K-2(9.2K-i-7.22K-i+9.2K+i-2-3.2H-1)13=-T2,
t==2K-2(7.22K-2-9.2K'i'i+9.22i-2+3.2r-i-1)!3=-c,,r=2K-2(2i-3.2K-i+1)=-r2.

   b) in the case where s-2K-i;)2i;}ls-2"+2
2=2K-2(2i-2K-i+1)+(s-2i-2K-i+1)(3･2K-i+2i-s-2)12=-2s,
T=::y== T2, x=xb r= r2.

   c) in the case where 2i;}lls-2K"i+1
2=2K-2(2s-3.2K-1-2f+3) =-26, T=y=T2, x==xl, r==r2-

(5) ForDYIg,i.' (K=1,2,･･･,S-2;I=K+1,K+2,･･･,S-1):
   a) in the case where 2Tgs-2K+1
2=24, T=y=2K-2(7.22K-i-9.2K-i+1)13, c=2K-2(9.2K+i'i-7.22KH2-3.2i+1)!3,
r=:2K-2(3.2KHi-1).

   b) in the case where s-2K-'})2f2s-2K+2
z=2s, T=y=:2"-2(7.22"-i-9･2K-'+1)13-R,(s+2K"-2i)!6,
c=2K-2(9.2K"i-2-3.2i-7.22K-2+1)13-P3(s-2K+2J'i)!6,
r=::22K-2+(s-2K"i-2f+1)(3･2"m'+2i-s-2)12.

   c) in the case where 2i;}ls-2K-i+1

2-26, T=Y=Ps(3.2KMi-1), x=P,(s-3.2K-i+2i+1),
r= 2.Ps, where Ps=2Krm2(s-2T+1).

(6) For A;2,X (K=:=S;I=1,2,･･-,K-1):
   a) in the case where 2T-<s-2K-i
2=r:::2i-2(2s-2K-3.2J-i+3),

T=:=2f-2 (3.2K-'-9.2K'T-2-7.22i-'+9.2i-i(s+2)-3s-4]/3,

zl=2fur2 (3(s-2"-i-2i-i+1)(s+2K-i-2i-i)-(2imi-1)(3s-2i"+2))/3.

   b) in the case where s-2rrnt'+IE{2rf{ 2s-2K+1

2=r=P612, T=x=P6(s-2Krm'+2i)f6, y=P,(s+2K-2i-i)16,
where P6 = (s - 2K-' - 2i-i + 1) (s - 2K-i - 2X-i + 2).

   c) in the case where 2i22s-2K+2

T=x=y=O.
(7) ForBYi5P} (K==l,2,･･･,S-1):
   a) in the case where 2Kfgs-2S-i
2=r=2Km2(2s-2S-3.2Kmi+3),
T=y::=2K-2 (3.2Srmi-9.2K'S-2-7.22K-'+9.2K-i(s+2)-3s-4)]/3,

c=2K-2 (3(s-2S-i-2K-i+1)(s+2S-'-2K-i)-(2K-'-1)(3s-2K"+2))/3.

   b) in the case where s-2S-i+l:fg2K:f{g2s-2S+1

2=r=P712, T=y==P7(s-2S-i+2")16, i;=P,(s+2S-2K-i)16,
whereP7=(s-2S-'-2Km'+1)(s-2S-i-2K-i+2).
   c) in the case where 2K;}l2s-2S+2
T==x=:=y==O.

(8) For A..{?}-, (K==2,3,･-･,S):

   a) in the case where 3･2"E{l3(s+1)
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2=2r==22K-3, T=:=2x=2y=22K-4(3.2K-2-1).
    b) in the case where 3s+4s{l3.2Ks{g4s

2=2r=(s-3･2Kny2+1)(5.2K-2-s-2)+2K-2(2"-2+1),
T=2Jt]=:2zl=22"-`(3･2K-2+1)-(s+2K-')(2K-s-1)(2"-s-1)(2"-s-2)13.
    c) in the case where 3.2K2il4s+1

2=2r =Pk, T==2t=2y==Ps(s+2KH2)13,. where I)b=(s-2K-'+1) (s-2K-'+2).

(9) ForAY,f?} (K=1,2,･･-,S-1):
    a) in the case where 3.2K'is{l3(s+1)

2=r=22KH2, T=x=::y=22KL3(3.2Kri1-1).
    b) in the case where 3s+4sg3.2K-'s{4s

2=r=2K-2(2"-'+1)+(s-3･2K-'+1)(5.2K"-s-2)12,
T=t=y=22K-3(3.2K-i-1)-(2K"-s-1)(2K'i-s-2)(s+2K)!6.
    c) in the case where 3.2K"24s+1
2=r=jPb12, T--a::::y=I]b(s+2K-')/6, where 1]b==(s-2K+1)(s-2K+2).
   (II) If the coeflicients DE`.), and ES2) in Eq. (8) are denoted together as

         cG' v        bnedih ' L. (L7vf-1),

the values of w and l are calculated as follows.

(1) For Di`.', (K=1,2,･･･,S-1):

    a) in the case where lgKgS-2
v=3(2K-1)12, l=K+1.
    b) in the case where K2S-1
v=(2K+s)12, l=K+1.
(2> ForEft" (K--2,3,･･･,S>:

    a) in the case where 2gKgS-1
w==1- LK, l= K.

    b) in the case where K=S and s¥2K-1
v=-LK, l= K.
    c) in the case where K=:S and s:=2K-1
w=(1 - LK), l=:: K
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