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Generalized Sampling Theorem, Generalized Frequency,

and Generalized Band-Limited Spectrum Function

Ei Tti TAKIZAWA™
(Received July 7, 1974)

Abstract

Several remarks are made on the generalized sampling theorem presented
by Takizawa and Isigaki. In relation to the generalized sampling theorem, the
generalized frequency and the generalized band-limited spectrum function are
discussed. The condition for establishing the generalized sampling theorem is
stated in terms of the generalized frequency.

Zusammenfassung

Einige Erweiterungen des von Takizawa und Isigaki abgeleiteten verallgemei-
nerten Abtasttheorems werden in der vorliegenden Arbeit angegeben. Beziiglich
dieses Theorems werden die verallgemeinerte Frequenz und die verallgemeinerte
band-begrenzte Frequenzfunktion diskutiert. Die Bedingung fiir die Herleitung

des verallgemeinerten Abtasttheorems wird in Abhingigkeit von der verallgemei-
nerten Frequenz angegeben.

§0. Preliminaries

In a previous paper” the author presented a generalized sampling theorem,
by which a continuous function can be reconstructed from its sampled values and
sampled derivatives. Here, in the present paper, the author makes several remarks
on his generalized sampling theorem. THe also introduces the notion of the gene-
ralized frequency and the generalized band-limited spectrum function, and dis-
cusses the condition for establishing the generalized sampling theorem in relation
to the generalized frequency and the generalized band-limited spectrum function.
The bound for truncation error of the sampling expansion is also estimated.

§1. Generalized Sampling Theorem

The generalized sampling theorem presented by Takizawa and Isigaki reads
as follows :

Theorem 1-1. Generalized Sampling Theorem

An entire function f{z) is expressed by :

my Mk L) LT . g (z)
’ _ L L _ dh L, FNT —
fR=LFE, & g el e (1)
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34 E. I. TAKIZAWA

My, s 7(r.j) H;Ls—j) . (2 I
R e R 1-1)
My -2, s 4 )
S R = (1-17)

in which the series is uniformly convergent in any finite closed domain of the
complex z-plane, if the following conditions are satisfied :

(1) flz) and ¢(2) are entire, (1-2)

(IL) g¢(2) has zeros of (m,+1)-th order at points 2=z, (n=integers), i. e.

9(2.) = ¢'(z,)=¢"(2,) = -+ = ¢"(2,) =0, and ¢"»*z,)#0, (1-3)
for m, =non-negative integers, which depend on 7, and

Sl

e 12151:1.0 oz =0 (1-4)
Here, for the sake of brevity, we have put®:

£ =|appa| (1-5

o =|voiar| . HE-[aH] (1-6

and

/4
h®) = [ j - h(z)]

>4

dk g(z
ez :[dz’”' (z—-z(,,v))m’”k1 ]z:z ' (1=7)

The function :
h(z)=1/H(2)=g(2)/(z—z,)""", (1-8)

is called a generalized sampling function. The summation over n in (1-1)~(1-1"")
covers the whole set of sampling points z=z, (n=integers).

The proof of Theorem 1-1 is straightforward. Under conditions (I) and
(IT), function f(2)/g(z) is meromorphic in the complex plane. It has poles of
(m, +1)-th order at points z=g, (n=integers). By means of the Cauchy theorem,
we express the function f(z)/g(2) by a contour integration along a circle of radius
R with its centre at the origin, the poles of the function f(2)/g(z) being in the
domain enclosed by the circle |2|=R. We tend the radius R to infinity, then
the contour integral vanishes under condition (III), and we have merely to cal-
culate the residues at the points 2=z, (n=integers). Taking the sum of residues
at z=g, (n=integers) and multiplying g(2) to both sides of the expression thus
obtained, we have Theorem 1-1.

The explicit expression of H in (1-1)~(1-1") is as follows:

) By f)(z), H&)z), and h(*)(z), we understand d#f(z)/dz*, d*H(z)/dz*, and d*h(z)/dz*, respectively.
While, ¢©z), H®)Xz), and h0(2), are respectively functions g¢(z), H(z), and 7(z) themselves.
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(—1) h, (1-9)
(&) Mn )
Hn h” ]17 > 1 3 0 3 O
hy, hy,
L o 2C1'7;“ 1 s 0 )
hgEY W i
lln, ) k- 1C1 ]n ) k‘lCZ "72:"‘ s ’ 1
hﬁf’ hiED hif— h,
hn s FANS) th s E\2 *hn » Ich~1 Fn_
for positive integers %, with
B0 plimrl)l gt
o T g Lrp—g) g Ba=012, ) (1-10)
(1-11)

2=
2=z,

o0 =|aiar| . =012,

and

d d )
he) = [dz h (z):L:z = [*d—z—," Tzﬁ:g—z%]z:z . (r=0,1,2,-) (1-12)

§ 2. Remarks on the Generalized Sampling Theorem

Here, we shall make several remarks with regard to the generalized sampling

theorem given by Takizawa and Isigaki.
As was seen in the proof mentioned above, we can replace conditions (I) and

1)
(II) by the following one:
(I') The function f{2)/g(2) is meromorphic, with poles of (m,+1)-th order
at points 2=z, (n=integers). (2-1)
2) If we replace condition (III) by the following one:
(2-2)

(1) hg} ]gp((?) =K (=const),

then the contour integral along the circle of infinite radius does not vanish but
remains a finite value K. Thus, we have the following theorem

Theorm 2-1
If conditions {(I), (1), (IH’)} or {(I’), (HI’)}, are satisfied, we have
My, s J) (s—j
f9=13 ;0 i ‘(H'_‘]; s B

3) Condition (HI’) can be further weakened, 7. ¢ e can replace condition (1)

by the following one:
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(1) lim 15 (CL;)C)@ dt =K (=const), (2-4)

where C represents the contour of a closed curve, and lim,.,. means to make the
contour infinitely large. The left-hand side of (2-4) appears in calculating the
value f(2)/g(z) by the Cauchy theorem. Referring to the proof mentioned above,
we see at once that the condition (IIl’) can be replaced by (III"”). Hence, Theorem
2-1 holds under conditions {(I), (IT), (III"")}, or {1, (III')}.

4) If all the m,’s are equal to the same value m, then expressions (1-1)~(1-1"),
(2-3), and (2-3"), can be simplified.

5) For the case m >0 in (2-3) or (2-3’), we can take function g(2) practically as

g(2)=¢""(2), (2-5)

where ¢(z) is an entire function with simple zeros at points 2=z, (n=integers).
Then the sampling formula (2-3) for an entire function f{z) reduces to:

(oo

m s (.}) Hg: A \ m)l(z)

f@=BEE el G Ko, 9
where H{’s are given by (1-9), with

Ty, = g P fom+ 1) = () (2-7)
and

C Ay st (m+1)! gyt slm+1)!

R T N A L A A N (74 T

1 1o\
7)+11+u§‘==m,+1 p' q! wl e '(gb") <2‘ ¢ > <?¢’:> e (2_8)

pr2gt3ut-=mtits—r

6) Some examples of the sampling formula for small ».
a) If all the poles of the function f{2)/g(z) are simple poles (i. e, m=0) at
points z=z, (n=integers), then from (2-3) or (2-3'), we have:

[ =T B Lo s Kgle) = D) (- S K ota),
(29

which, in case K=0, reduces to the formula suggested by van der Pol?.
b) If all the poles of the function f(2)/g(z) are of second order (i. e, m=1)
at points z=g, (n=integers), then expression (2-3) or (2-3') reduces to:

=B fe Bt ez { o B 1} 28 Rt

i

;:[ﬂ J+te=a) Pl g At Ty} | 2 4 K ot

2 qn.
(2-10)
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c¢) If all the poles of the function f(2)/g(z) are of third order (i.e., m=2)
at points z=gz, (n=integers), then from (2-3) or (2-3") we have:

= 5[ fo Bt ) o Bt e L+ e

Ao mrap g pr | G2 1 o) =

22,

= 2 e+ == {f’<z,,>—-~?f<zn.> I gl
R e e N

g8
3lyg(=)
Te—a)-gw T K9G (2-11)

Detailed examples of the sampling formulae (1-1)~(1-1"), (2-3)~(2-3') with
(2-4), (2-6), and (2-9)~(2-11), will be given in the following papers”®.
7) Truncation error of the sampling expansion (2-3) or (2-3') can be estimated
in a simple manner (¢f. §6). For example, we shall consider the bound for
truncation error of the sampling expansion (2-9) for real 2 and =z, (n=integers).
Let Ry {2) be a truncation error defined by :

RJ\’,J!<z> Ef(z} Z f; e ( )

n=— (z ZH) gIL

—K-g(z ), (for 2_y<lz<zy) (2—12)

with f,=f(z,), 9.=[dg(2)/dz].-.,, and positive integers N and M. The sampling

points %, {n=integers) are arranged in ascending order of magnitude, in such

a way that <z ,<z ,<z<z<2<-, where positive values of 2, correspond

to positive suffixes 7>0, and negative values of z, to negative suffixes 7<0.
From the definition of Ry i (2) in (2-12), it is easily seen that

KN'AN + LJ['BJ[

Vey—z Vz—z_ y

| Ryn(2)] <10(2) [ ]  for pa<z<zy)  (2-13)

where

=V D IAF

n>N

LJ[:¢ Z lf;l,|2 3 le:maXlg;l]-—l’
n<—M n>N
and By = max|g,|™". (2-14)
n<—M

Especially, in case ¢g(z)=sin(fz+7) in (2-12), we have: z,=(nn-—T7)/B,
g,=(—1y" B, (n=integers)
and
lg(=)]- Ay =g(2)|- By = |sin (Bz+7)|/| 8] <1/]8], (2-15)

then expression (2-13) leads to:

Isin (Bz+7) | Ky Ly
Iﬁ} [‘/ Zy—R& +\/ z“zﬂv]
|sin (B2 +7) Ky Ly A
7 1A {¢A&—mz+n*Vﬁz+r+Mm]’<ﬁ*m

‘sz,M(z)l <

(2-16)
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which reduces to the inequality obtained by Jagerman® for the case M=N.
8) The generalization of the sampling theorem 2~1 to the case of many variables
can be made straightforward. A similar analysis as was stated in the proof men-

tioned above, leads to the sampling formula for many variables. For example,
we have:

Theorem 2-2
An entire function fl(z, w) with respect to two complex variables z and 1w,
can be expressed in the following form:

My, s ij 2 A) H,(f"j) G(zc k)
Ly 7 k

flew=BEEREE M e

u 0:(2)" g(w) Aff C O HTY

(w—w, ) (z__zn)m,n—%—l,(.lv_ NG + § SZMZO 5=l
W 2% Bkl) G/](‘”' &)
~ﬁ———<3;<f>;53<;€11 Ko 0e)- a0 (=17
- ey, M, (Z""Zn)s' ('ZU—TUy.)u
—ang:s;wz::o slu! .
aS+’ZL

(R R O W = =

Mg A;Lﬂ H&=9) (= . g( V- go(v)

R R e N e
. Bm G o 0i2) i)
+BEE AT g e i |
+ Ky gi(2)- Qz(w> > (2-17)

if the following conditions (IV), (V), and (VI) are satisfied:
(IV) Function f{z, w) is entire with regard to z and ww, respectively.
(2-18)
(V) @oi(2) and g w) are entire, and ¢i(z) has zeros of (m,+1)-th order at
points z=zg, (n=integers), and gw) has zeros of (M,+1)-th order at

points w=1v, (7=integers). (2-19)
89’
V1) lim bﬁﬂc 77)]’ "y = AP
(VD) tilll 2ni )., (p—w)-gin) oo
1 [ 1 ’7] ) (220
lim o e o = B, )
and
1y NA(S%))
i (e ). e 6 ey = Katconso

o0
‘2
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where ¢ and ¢, represent contours of closed curves in - and 7-planes, respectively,
and lim, ., and lim, ... mean to make the contours infinitely large.
In expression (2-17), we have put:

0 =| sl @) (2-21)
)= L/H(z) = gz,
pl0) = 1G{xw) = gdew)fzo— 0,1+, (2-22)

H = [0 H(z)/o2'] G = [0*G(w)/aw*)

Z=2,, W=,

The summation over n and r» in (2-17) and (2-17'), means to cover all the points
z=g, (n=Integers) and w =1, (r=integers), respectively in z- and w-planes. The
points ==z, (n=integers) are called the sampling points in z-plane, and the points
w=1w, (r=integers) the sampling points in w-plane. Functions h(z)=g,(2)/(z—
—z,)"* and plw)=gfw)/(w—w, )" shall be called the sampling functions,
respectively in 2- and w-planes.

§ 3. Generalized Frequency and Generalized
Spectrum Function

We shall take the integral transform F(s) of a function f(z):
F(s)={ K(s,2)-f2)-dz, (3-1)

with an integral kernel K({s, 2) and the domain of integration A. The inverse
transform, if it exists, shall be written by:

)=, Kz 5)-F(s)-ds, (3-2)

with the integral kernel K(z,s) and the domain of integration B.
When we take in (3-1) and (3-2): flz)eL*(—o0, + o), F(s)€ L{—oco, + c0),

K(5, %)= g exp [ ~iszl, (s s)=5—rexp[+izs], A=(—co, +o0) B=(~o

+ c0), then we have the Fourier transform and its inverse:

F(s)= «—/%751:: exp | —isz] flz) - dz, (3-3)
and
1 (= .
f(z):;/:zjgmexl) [+izs] - F(s)-ds . (3-4)

The function F(s) in (3-3) is called the Fourier spectrum function of f{z), and the
variable s in {3-3) the frequency of f(z).

Corresponding to the Fourier spectrum and the frequency, we shall call the
function F(s) in (3-1) a generalized spectrum function® of f(z) with regard to
the transform (3-1), while the variable s in (3-1) shall be called a generalized
frequency® of f(z) with regard to the transform (3~1).
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For example, if an entire function f{z) satisfies the following condition :
vz flR)e L0, +oo), (3-5)

then we have an integral transform and its inverse transform® :

+oo

F(s) :X 2 J(52)- fl2)- d, (3-6)

and

fz) :S 5 J(z5) F(s)-ds, (3-7)

with Bessel function J,(z)} of order v>—1/2. In this case, we call F(s) a gene-
ralized spectrum function of f{2) with regard to the Hankel transform (3-6), and
the variable s a generalized frequency of f(z) with regard to the Hankel trans-
form (3-6).

Another example of a generalized spectrum F(s) and a generalized frequency
s is as follows” :

Fls) =S:°°z- Tz, s2)-fl2)- d, (3-8)
and

B fte) =[5 Tz, 29)- Flo)-dis, (3-9)
with

B,(z) = Ji(=z)+ Yi(z),
where

T,,(x, ,2’) = ifu (x) ‘]# (z)_‘]» (33) : Y;t (z> ’ (3-—10>

" with Bessel function J.(z) and Neumann function Y, (2), and z-f(2) € L'(p, + o0),

too

i.e., the integral: S z-flz)-de<+ o0, is absolutely convergent, with az=p>0,
P

and vz —1/2.

§4. Band-limited Function and Fourier
Spectrum Function

A class of functions which is of particular interest is the class of band-
limited functions defined as follows :

A function f{(z) is called band-limited, if there exists a constant W>0 and
a frequency function G{w) of bounded variation over the interval (— W, W), so that

: +
Az) = 75——& exp [iwz]-dG(o). (4-1)
N 21 Jow
The function G(w) is called the Fourier-Stieltjes spectrum function of f(z), and W
the cut-off frequency, or the mazimum frequency. In case G(w) is absolutely
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continuous over the interval (— W, W), then (4-1) can be written as:

+I7

S2) = 7%—; S_Wexp [iwz] - G'(w)-dw , (4-2)

and GYw) is called the Fourier spectrum function ol f(z) with maximum frequency
W (c¢f. (3-4)). Clearly a band-limited function is entire.
It is convenient to introduce a function 5(y) defined by :

E(y)= max |f(2)|, (with z = x+iy) (4-3)

ooy too

for any entire function f(z).
From (4-1) we have

+ W

¥

t\exp liwx—oyll-dV(e) < 7 L SH’:]exp lloxl|-

—~ W -

1
A< 7|

Texo [onl]-aVio) < = lexw L—onil-aVia), (44

where V(w) is the variation of G{(w) over the interval (— W, 0). Let us take:
+W
v={""avi), (4-5)
o

i.e, Vis the total variation of G(w) over the interval (— W, W), then from (4-4)
and (4-5), we obtain :

AR < e exp [W- 1. (46
Thus we may define the function &(y) in (4-3) as

5(y)= = -exp [W-lul], =
and obtain :

exp [~ |81 1u/]- 80) = = exp (W] lyl]. (4-8)

When |y|— + co, the expression (4-8) approaches zero, provided that W—|g| <0,
i. e

118 <1/W. (4-9)

From (4-6)~(4-8), the left-hand side of condition (III) in (1-4) with g(z)%
=sin (fz+7), is seen to be** : '

tim o< lim g (1B W1 50). (B40) (410

z—00

#)  1/{sinm Y8z +)] = [Wsin2(fx+7)+sinh?(By)l» 1< 1/ | sinh(8y)| #H1<amtleexp[ —(m+1)- | 8]+ |y |],
for large y (i.e., for ]ﬂl-lyl}log’\/Z), with (m+1) positive integers, 5 and 7 real, and
z=x+1y. We shall call the inequality in the first line (4-10).
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Referring to (4-6)~(4-10), we have the following expression :

lim

Z—00

fz)
st =0 (1)

i. e., condition (III)in (1-4) holds, if function f(z) is band-limited with maximum
frequency W, and if condition :

YIBI<y W, (4-12)
is satisfled. Hence, from (1-1) or (2-9) we obtain :

Theorem 4-1
If a function f(2) is band-limited with maximum frequency W, then f{z) is
representable by :

floy= 5 g0t Tomm) g (4-13)

with f,=f(z,), and z,=(r—7)/f (n=integers), provided that the sampling fre-
quency®*® |f| satisfies the following condition :
1/18|<1/W. (4-14)
Referring to the proof above, and taking g(z)=sin™"(B8z+7) in (1-1) or (2-3),
we obtain the following theorems in a similar manner,
Theorem 4-2
An entire function f{z) is given by:

+oo m 8 (4) (s=2) Gt Qs
¢ sin™ " (B2 +7)

fR= B BB (L)l Ty, (B%0) (4-15)

provided that condition :

I1lim exp [—(m+1)-18]-lyl]l-E(y) =0, (for positive integer (m+1))
yj—rtoo
(4-16)
is satisfied. Here we put z,=(nr—7)/8, and f’=FfP(z,). The values HS ¥ are
given by (1-9), (2-5), (2-7), and (2-8), with ¢(2)=sin"* (Bz+7).
Theorem 4-3
A band-limited function f(z) with maximum frequency W is representable
by (4-15), if condition :
1/1Bl<(m+ 1)/ W, (for positive integer (m+1)) (4-17)

is satisfied.
Expression (4-15) is somewhat different {from the expression obtained by
Linden and Abramson®.

##k)  We shall call the distance between successive sampling points, i. e, |2n+1—2n| =a/|8],
a sampling interval, and value |B| =n/|zn+1—2r| a sampling frequency.



Generalized Sampling Theorem, Generalized Frequency, and Spectrum Function 43

Let 2-f(z) be band-limited with maximum frequency W and lim,., z-f{2)=0,
then f(z) is entire. Referring to inequality (4-6), we have

NS g exp W Iyl < g por-exp LW o] (419

Accordingly®™®, from (4-10') we obtain :

[0 | oy
sin®*(fz+7) | ¥ 2x |y|

-exp [(W—(m+1)-18])- |yl], (4-19)

with V the total variation of Fourier-Stieltjes spectrum function of z-f{2) over
(—W, W). We refer to expressions (4-18) and (4-19), and obtain the following
theorem :

Theorem. 4-4

If z-f(z) is band-limited with maximum frequency W and lim,., z-f{2)=0,
then f(z) is representable by (4-15) provided that 1/|8|<(m-+1)/W.

Let f(z) be band-limited over the interval (— W, W) with a Fourier spectrum
function G(w) of bounded variation, i.e.

1 (7 _
flz)= T Siwexp liwz] - G(w)-dw . (4-20)
Define G(w) to be zero outside the interval (— W, W), then
+oo
flz)= 7%—;5‘ exp [ivz] Glw)-dw . (4-21)
Integration by parts shows that
1: +W .
2z flz) = T—;;Sﬁwexp [{wz] - dG (), (4-22)

i. e, z f(z) is band-limited. Also, from (4-20), we can see that lim,., 2-f{z)=0.
Hence, the function f(z) is entire. Accordingly we have:

Theorem 4-5

If f(z) is band-limited with maximum frequency W and its Fourier spectrum
function is of bounded variation over the interval (— W, W), then f{(2) is repre-
sentable by (4-15), provided that 1/|8]<(m+1)/W.

Theorems 4-2~4-5 for the case m<1 and Theorem 4-1, were given by
Jagerman and Fogel”. Their theorems assert that the use of both f, and f7
allows exact representation using a sampling domain twice that requires for repre-
sentation of the same function when using f, alone. While the present theorems
4-2~4-5 give an interpolation series applicable to the general case where the
values of function f, and derivatives of higher order /P (j=1,2,3, -, m) are
available.
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§ 5. Hankel Transform and Generalized Frequency

A similar analysis can be carried out, when we take ¢(2)=J,(82) in (1-1),
where J,(2) is Bessel function of integral order p. In this case, we have:

= 5 S iy s B, (80 5-1)
SRR & (CRR) J,
Q=8 Bl e i, 60 (5-1)
with
J(Bz,) =0, (g=integer, n=integers) (51"

where f§7=fP(z)=/(0), and H{¥ P =H" (2)=H" 9(0) is given by (1-9), with
g{z)=J,(Bz). In case p#=0, E(2) reduces to a null function.

We shall consider the case, where function vz -f(z) is expressed by the
Hankel-Stieltjes transform (3-7) with a generalized mazimum frequency M :

E e = | s aegang. (=) 5-2)

If function F(s) is absolutely continuous over the interval (0, M), we have:

VEfle)= SMS- . (zs) P'(s)- s . <v > —%> (5-3)

0

In expression (5-3), function F'(s) is assumed to be zero outside the interval
0, M), i.e, F'(s)=0 for sz=M. The function [’(s) shall be called the Hankel
spectrum of f(z), and M a generalized maximum frequency with regard to the
Hankel transform (3-7).

Let us take U(s) the variation of F(s) over the interval (0, s) and U the total
variation of F(s) over the interval (0, M), i.e.

U= S:[dU(s) . (5-4)
Then, we have:
WE 1 LARI s a9l dF(5)< M- Urexp [M- o],

(for any real x and an integer v) (5-5)

with z=x+1iy. Inequality (5-5) is obtained from the following expressions :
oo o0 _
[T (zs)l = | (s +iys)| < 20 |op(as)l - T Giys)l < 20 1 Lys)l <
+o0
<,z Iyl =expllyl-s)

(for any real x and an integer v) (5-6)

by means of the addition theorem of Bessel functions, and because of |J.(x)|<1,
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for any real x and integer ». Modified Bessel function I.(y) of non-negative
integral order s is positive and monotonously increasing function of increasing
positive v, so we obtain, from (5-4), (5-5), and (5-6), the following inequality :

Wzl A< | sl dr) < [ s exp ] 51 dB()<
<M-U-exp[M-}y]]. (for any integer v) (6-5")

The left-hand side of condition (ITI) in (1-4) for g(2)=J.(B2), is written, by
means of (5-5’), as follows:

fz) ! lexp[M-|y|]

/) < lim M- U\/L%Jl cexp [(M—18)- |y]],

|yl oo
(5-7)

lim

z—ro0

LlimM-U- «/;J(,Bz)

200

with z=x+iy. Here, Bessel function J,(Bz) for large argument was expanded
in the asymptotic expansion: J,(fz)~¥ 2/(z8z2) -cos [Bz—2u+1) /4] —---.
Accordingly, condition (III) is satisfied, provided that M<C|g], i.e.

1/|B| < 1/M . (5-8)

For g(2)=J7"(fz), we have a sampling formula (1-1)~(1-1"), and by a similar
analysis as in (5-7) and (5-8), we can find that condition (III) is satisfied, provided
that 2”972 f(z) is expressed by the Hankel transform (3-7) and that M<
<(m-+1)-18], i. e

1/18)| <(m+1)/M . (for positive integer (m-+1)) (5-9)
Hence, we obtain the following theorems :

Theorem 5-1

If ¥z f(2) is entire and band-limited in the sense of the generalized maxi-
mum frequency M with regard to the Hankel transform (3-7), then f{z) is repre-
sentable by the interpolation series (5-1), provided that

1gl<1/M. (5-10)

Theorem 5-2

If 292, £(2) is entire and band-limited in the sense of the generalized maxi-
mum frequency M with regard to the Hankel transform (3-7), then f(z} if repre-
sentable by the interpolation series :

+oo m s 7(11) Hfzsfj) i JZ:,+1( [82) .
= B LG gl e e+ ) (B0) (611
provided that 1/|8| <(m+1)/M, with
fele@n+1)—-1 s f(()j) H(()S“'J') . JZL-H(‘Bz)

(8=0) (5-117)

Glz)=

b S A CEe ) gl th



46 E. I. TAKIZAWA

where J,(Bz,)=0 (p=integer, n=integers), f’=/P(z,), f§"'=1P(2,)=,?(0), and
HE=9 are given by (1-9), with g(z)}=J7*"(8=).

Here we shall note that Bessel function J,(2) has a zero of |u|-th order, and
Jo 1 (2) has a zero of |p|-(m+1)-th order, respectively at the origin. In case
1=0, G(z) reduces to a null function.

§ 6. Truncation Error of the Sampling Expansion

The truncation error of the sampling expansion {2-3)~(2-3') can be easily
estimated. For the sake of simplicity, we shall concern ourselves merely with
cases of m,=0,1, and 2.

For the sake of convenience in printing, all the formulae and expressions in

§ 6 shall be placed in the Appendix. This was done, in accordance with the
suggestions by the editorial committee of this Memoirs.
a) As for the case m,=0, we shall consider the bound for truncation error of
the sampling expansion (2-9) for real 2z and 2z, (n=integers). Let Ry y(2) be
a truncation error defined by (6-1), with f,=f{(z.), ¢.=¢'(z.), and positive integers
N and M. The sampling points 2, (n=integers) are arranged in ascending order
of magnitude in such a way that - <z ,<z_,<z,<2 <z, where positive values
of =, correspond to positive suffixes 7>>0, and negative values of 2, to negative
suffixes 7 <0.

From the Cauchy inequality applied to (6-1), we have (6-2). Accordingly,
we obtain (6-3) with (6-4), K, and L, being assumed to be bounded. Function
1/(z—=,f is a monotonic decreasing function of z, for increasing z,>z, hence
we obtain (6-5). Similarly we have (6-6). '

From (6-3), (6-5), and (6-6), we obtain the bound for truncation error (6-1)
as in (6-7).

In case g(z)=sin{Bz+7) with B#0, inequality (6-7) reduces to (6-8), making
use of the expressions (6-9) and (6-10), with zy=(Na—7)/8 and z_,={—Mzx—T1)/B.

If we take |Bz-+7|<<.Sr with S<N and S<M, inequality (6-8) implies (6-11),
because of the relations: Nr—(fz-+7)2Ng—Sr, and Bz+7+ Mr > Mzr—Sr.

Inequalities (6-8) and (6—11) reduce to the inequalities obtained by Jagerman®

for the case ¥=0 and M=N. In case S=1/2, (6-11) is more simplified as was
shown by him.
b) As for the case m,=1, we shall consider the bound for truncation error of
the sampling expansion (2-10) for real z and z, (n=integers). Let Ry ,(2) be
a truncation error defined by (6-12), with f¥=F"%(z,), ¢P=¢"{(z,), and positive
integers N and M. The sampling points z, (n=integers), i.e., zeros of second
order of ¢(z), are arranged in ascending order of magnitude with increasing =,
in such a way that -z ,<z ,<z,<2<z;<:-, where positive values of z, cor-
respond to positive suffixes #>>0, and negative values of 2, to negative suffixes
n<0. We shall write 2,=0, either 2, is a zero of ¢(z) or not.

From the Cauchy inequality applied to (6-12), we obtain (6-13). Inequality
(6-13) implies (6-14), with (6-15) and (6-16).
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Functions 1/(z—=z,) and 1/(z—=z,)* are monotonic decreasing functions of 2,
for increasing z,>=z, hence we have (6-17) and (6-18). Similarly we obtain (6-19)
and (6-20).

From (6-14) and (6-17)~(6-20), we have the bound for truncation error (6-12)
as in (6-21).

In case g(z)=sin?(B8z+7) with f+#0, inequality (6-21) reduces to (6-22), making
use of expressions (6-23) and (6-24), with zy=(Nr—7)/B, and z_,=(—M=z—7)/B.

If we take |Bz+7]<Sr with S<N and S<M, inequality (6-22) reduces to
(6-25), because of the relations : Nr—(fz+7)=Nr—Sr, and pz+7+ Mz > Mn—Sx.

In case N=DM in (6-25), we have (6-26).

Inequalities (6-21), (6-22), and (6-25), are of some interest, if we compare
them with expressions (6-7), (6~8), and (6-11). The latters express the bound
for truncation error of the sampling expansion, making use of zero-th order
derivatives of the sampled function. While, inequalities (6-21), (6-22) and (6-25),
are available for the case of sampling expansion, which takes into account the
sampled first order derivatives of an entire function.

c) A similar analysis leads to the expression for estimating the bound for
truncation error of the sampling expansion (2-3)~(2-3') with m,>2.

As an example of the expressions for truncation error, let us consider the
bound for truncation error of the sampling expansion (2-11) for real z and
z, (n=integers). Let Ry,(2) be a truncation error defined by (6-27), with
S = z,) and ¢,2=¢"(z,).

Similar calculations as in (6-12)~(6-20) lead to inequality (6-28) with (6-29)
~(6-32), to express the bound for truncation error (6-27).

In concluding the paper, the author wishes to express his sincere thanks to Prof. Dr. J.
Meixner, Institut fiir Theoretische Physik, Technische Hochschule Aachen, for his constructive
suggestions and hospitality during the author’s stay in Aachen. Author’s acknowledgements are
also due to the Alexander von Humboldt-Stiftung, which made it possible for him by giving him
financial support to carry out the present investigation in Aachen in the early summer of 1972,
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