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A Successive Integration Method
for The Analysis of
the Thermal Environment of Building

N, Aratani, N. Sasaki, M. Enai 1

The Department of Architecture
Faculty of Engineering
Hokkaido University
Sapporo, Japan

This method is to calculate the room air temperature or the
heating (cooling) load variations for each At step with repe-
tition of simple multiplications and additions by utilizing
both the nature of an exponential function which decreases by
equal ratio for each At step and the fact the indicial response
of the room, wall and/or the heating equipment to a thermal
input of unit step function is approximate to the sunm of ex-
ponential functions.

The method is effective not only for the ordinal transi-
ent heating (cooling) load calculations but for the simu-
lations of such cases as ; when the system has multiple rooms
of different conditions, when the ventilation rate of the
room or the heat transfer coefficient of the wall varies, etc..

As another distinctive feature of this method, it is easy
to change At in the way of calculation whenever it is necessary,
therefore when the heat capacity of the building is quite large
and the actual outdoor conditions (including solar radiation)
should be considered, it is possible to calculate with fewer
times of calculations with high accuracy by this method.

In the report the authors deal with the principle of this
method, method +to change At ,some considerations for setting
the initial conditions to minimize the time of calculations and
some examples of calculations.

Key Words : Thermal environment, Successive integration
method, Indicial response, Temperature excitation,
Heat flow response, Duhamel's integration formula,
Heating load, Non-linear factor, Heat transfer coef-
ficient, Radiation, Ventilation, Change of At .

1, Introduction

The factors related to precise analysis of the thermal environment of a building
are numerous as follows. : '

o Outside conditions ; fluctuations of temperature, solar radiation,
atmospheric radiation, wind velocity, movement of sunlit and shaded area,
ete.

* Inside conditions ; regulation of temperature and zoning, intermittent
heat supply, effect of unconditioned space, distribution of air tempera-
ture and radiant heat transfer in a room, rate of ventilation or infile
tration and its change, etc.

1l Associate Prof. (M.E.), M.E. (Takasago Netsugaku Co.) and Research Assistant
(M.E.) respectively
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Others ; two or three dimensional heat flow &t the beams, columns or wall
corners, thermal capacity of furnitures and room furnlshlngs, dynamic per-
formance of heating equipment, ete.

Detailed studies on the weighting function for the analysis of thermal environment
have been carried on for a long time by Dr. T. Maeda, Dr. S. Fujii, Dr. F. Hasegawa
and others.

This successive 1ntegraflon méthod is one appllcatlon of thnese earlier investi-
gations, the intention is to make analysis more flexible and make calculation easier.
This method would be applicable for many kinds of problems in which the factors listed
above are concerned and depending on the purpose or the requisit accuracy of the analy-
sis various conbinations and simplifications would be possible.

2, Duhamel's iﬁtegration formula

Consider a system (such as a room, a wall or a piece of equipment) as illus-
trated in figure 1 and assume the heat flow response of the system to a unit step
function of temperature Ouw(t) is given by Hf(t) , then the neat flow response conse-
quent on the arbitrary temperature excitation @¢t) is obtained by the use of

Duhamel's integration formula as follows ;

t < . . .
Hey = J Bty R (t-7) dT + Octmod - R(t) S 1)
o

where T : variable of integration
" @'y : the first derivative of 6(+)
ey ihdicial response of,heat‘fiow to a unit step function
) of temperature
however when t<o 6 =0
Ry = O }

]

For example, heat flow at the inner surface of the wall under the conditions of
arbitrary inside and outside air temperature variations 64(t) and 68.(t) are expressed
by the sum of the responses which are excited by both excitation of @c(t) and @Goc¢t)
as follows ;

Hit) = Hi®) = Hoctd

t, A ot : .
j 0ty - Ri(t~T) AT + Bictaoy-hitt —l 80T Folt~1) AT — Buttaoy - Bultd (2)
[] o

where Hi@) : heat flow at the inner surface of the wall when the inside air
temperature is 6«t) and the outside air temperature is kept at
0°C

Hot) : heat flow at the inner surface of the wall when the outside air
temperature is 8o(t) and the inside air temperature is kept at
0°C

{¢«511Lu): indicial response of heat flow at the inner surface of the wall
as seen in figure 2  (Wath deg™)

%. Approximation of an .ndicial response of heat flow

- The .indicial response of heat flow of the system to a unit step function of
temperature can be obtained by several ways, and in so far as the linear character~
istics of the system are kept, it would be expressed by the sum of the infinite series
of exponential functions. And in actual use it can be sufficiently approximated by

several terms as follows ;

i -
Aty = Bo + :L“.‘Bm-ep'"'t + g S (3
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Bo : the term for steady state heat flow (Watr- deg™')

Stty: delta function

¢ : imaginary thermal cavacity of the system ( Wm--ﬁ-deg")
P s pm becomes larger in order of suffix m

The imaginary thermal capacity 4 1is the amount of heat to be supplied to the
system instantly when the temperature of excitation is raised suddenly from 0°C to 1
°C at t = 0. However, for the approximation of the indicial response of heat flow at
the inner surface f.¢t), it would be advisable to approach it so as to satisfy the
following conditions from the nature of thermal response to an outside excitation.

o (tmo) =

1
(o]

i
j.:o R Bo+mZg.le=o

There are many studies coucerning the approximation and simplification of tne indi-
¢ial response as shown in the reference. 425,86

4. Approximation of temperature variation by linear
equation and the successive calculation metaod
of heat flow

By substituting eq.. (3) for (1), the heat flow response of the system H() to an

arbitrary temperature excitation @¢t) is exvessed as ;

+
He = S 0ty - ht-T) AT+ Bty - Retd

°

+ e 2~ - +
Bo 0y + %[ 0% Bm €™ Vdt 4 0o Bu €]+ [0lnr: g Sty (4
Yty

EZm> Dy

The heat flow H«&) is expressed as the sum of steady state term Y& , transient terms
Zw ¢ty and impulsive term Dy .

Now, let's assume the temperature variation &¢t) is approximated by a linear

equation within the time of th & t < t,+at as seen in figure 3% and expressed as ;

6t = Bty + Ba(d) (5
where 6y = Bty
t ¢ tn
6ty = 0

81ty = 6n = const,

} th ¢t € ty+at
B2(2) = A(rm) (T—Tn)

Awws 1 temperature gradient ( deg - h'

Substituting eq. (5) for (4) the heat flow at the time ( tu +at ) will be

H

tntat B ( tn - -
oy = Bo Octeraty + 5 [ (7 0/ces  Bmoe” TFT 0 4 Biemay - B @ Pt ]
ta+at , B (Ttnr 4t~
LU ey B e
ta+ot , s .
-1-5 felcr+oienl g Schvat-1y dr (6

defined as follows ;
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By = 0 th €t € to +at
Bi®) = O20) =0 T < tn
K fery- Set-T dT = * >0

Equation (6) becomes

] i" 7 | "(’t - ) mAn =P t
Hetnsaty = Bof@(n)"‘ﬂ(m-rzjt} + }% [ L 6,¢xy Bm £ Pt AT + Bt=o) Bm Q\F‘ 4 ] QF ‘
' +u B (bt st~ N Zracny
+ Zm'[ ET ’QtA(h-r«)'Bm"eP (st Z)al’t] + A(VH“)' } ) (7)

In equation (7) the underlined portion is the same as the transient term %m at the
time of tn . Thus the following simple calculation method is obtained ;

Hawaty= Hows = Yoy + % Zwesn + Dewsns
= Bo'Bm + Ames B,fdi‘L + 7 { ety Em + Acrey - X | =+ Acnsn F ‘ - (8
where L = P4t = const., o o " )]
Xom = __;_:__.(,_ et ) = const, o (10)

If we take the time interval of each section At to be the same as seen in figure 4
then the coefficient of Em and X. becomes constant and the calculation .of eq. (8)
becomes very simple. It is also easy to change 4t by only changing Fw and X
whenever necessary. : . . .

This eq. (8) gives the rate of heat flow at the end of each interval so that we
are able to analyze the heating load or the temperature variations by substituting
this for eq. (16) and it may be somewhat easier to understand but the following method
(which uses the quantity of heat flow during the interval ‘instead of the rate of ‘heat
flow at the end of the interval) would be more accurate in calculation.?

5. Integration of heat flow in each interval
The quantity of heat flow during an interval of In ~ (twn+ at ) can be obtained
by integrating eq. (7) with respect to 4% as follows (by using a variable of inte-

gration % instead of 4t ) ;

tntalt T
dHowy = gt Hepy At = Yn(tﬁ\;)-olg '
L] o

1

E:ts,, {Bur Ay 5} A5 + T [me "gz?e_‘a"" A%+ Aoy %:‘ rz|-e"°"5) Ag]fmm.) 7 »g:xdg

= BeBonat é[z“‘""”f;‘m("ﬂwt)] + Ao | a;~4¢=+%% {At_'ﬁ—i-u(l—e'P” Y+ pat]
= BB at + 2 BZmen * Aoy AN, : (11)
where 4o = [—B;T-A‘t=+ L % {At-l_a': (,; ooty } ¥ goat ] "~ const.’ (12

If the time interval 4t 1is invariable arter the time of In as seen in figure 4 then

eq. (12) becomes constant and from eqs.(13) and (8) the following equation results 3
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AZmmery = Zmensry L [ e-”"'"* )

P
= { Zmemy " Bw + Agny - Xin } . _# (1- Pt N
= 4Zmed  Ew + A - DX (14)
where AXm = ::"“ (1= Fmet ¥ -
= const.
If the temperatnre gradients Amn , Ame , oo are known, each AZmma) + AZmmizy

can be easily calculated in succession by eq. (14), and each 4Hw+sr 4 ANcnea) s
. is also obtained from eq. (11) by the repetition of simple calculations.

6. Equation of heat balance
( when the heat transfer coefficients of the room do not change )
Consider room k which is adjacent to rooms X = 1, 2, 3, ----- where room air

temperatures are different from each other as seen in fipure 5. The following

equation of heat balance can he given ;

A Bty

Qe 3 Wers = Heyr + % [Heey + & Wity - { Brer —Bkenr } ] (16 )
where Qr : thermal capacity of the air of room k (Watt-& - deg™")
including that of furnishings of which the temperature change
is considered the same as that of the air temp.
Ortd , Okty ¢ temperature of the room and adjacent rooms
W) : heating rate supplied to room air (Watt)
including auxiliary heat from human bodies and equipment
Hi(t) : heatloss through the surrounding walls of the room, where the
alr temp., is 6k@) and the adjacent room air temp. 18 Okct) = O
Hi (1) : inflow of the heat from the inside surface of the partitions

adjacent to the room k under the condition of Bww= O
adjacent room @K(t)

. . K
Vi) :  air volume infiltrated from room,(outflow air is not related)

¢ : specific heat of the air for unit volume ( Watt--hideg™ - m™)

Assume the divisions of time are the same as in figure 4 and assume the temperature

variations within the time interval ta ~(tu+4t ) are as follows ;

0wy = Boo + Amay - (t-7n)

9(1-@!): Oy = Oy + Amen -4t h (17)

And assume the heating rate Wity and the infiltration rate Vity are constant during
the time interval of 4t . Then by integrating eq. (16) with respect to *t from %n to
( ta+ot ) and substituting eq. (11 s the following relation is obtained ; :

+at

tatat .
46 ; . -
L.. [Ow———-“:m]dt= L.. [ Wieets ~ Hiery + é[ Hith + G Vieety { Ouecey — Brct)f]] 4t

Q- AL Artnny = Wienen, -4t = Base: Qreny - 4t ~ Z AZmieeny — Aot Ak ey (continue)
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+ T [Bok “Oreins 4t + I A Zimicom AXow - Prctar 4 Cp-Viewry -at-f Brtny .~ Bjeem + —‘;(_Ak(m,) ‘Ak(nm)}]
(18)

6.1 W¥hen the temperature is known

In eq. (18) the temperature gradients Akwn) and Ak(»r) are known so the total
heating load Wkm) is obtained easily. By subtracting the auxiliary heat from this
result, the net heating load is obtained.

6.2 When the temperature is not known

As for unconditioned space or when intermittent heating or cooling is a factor,
the temverature gradient Ar(s#) is obtained from the following equation.

Ak(ﬂ*l) = [Wk(nﬂ) At - Bah‘ek(n)‘At - 5'_:; Ay + 2;1 { Bow ' Bkeny 4t + ; AZ..,K(.‘) +Ak(n+n‘AXnk

+ Cr‘xﬁ-”(ek(n) ~ Biny +{Z—‘t—'Ak(n+|))}*Vklw)] - [dt’@k + AXok + E%A‘t'év;r(nﬂ)} (19)

¥
6,% When the temperatures of adjoining rooms are not known

When the building has many rooms or spaces of which temperature variations are
not given, we have to solve equation (19) as a simultaneous equation of unknown temper-
ature gradients.

However, from the nature of the thermal response to a outside excitation, the
influence of the temperature variation of the adjoining room is gradual as seen in.
figure 2. Therefore the accuracy of the temperature gradient of the adjoining room
Ak is not too important for the calculation of Akm+) and this is a very fortunate
characteristic of this calculation method.

In this case it would be good to assume that Lthe temperature variation of the
adjoining room is the same as that at the time At before. That is to use Awcwy which
was already calculated instead of the unknown quantity Akmey in eq. (19).

7. ¥hen the heat transfer coefficient varies with time or tewperaiure

Actually a fairly large part of the heat from a human body, electricity, radiators
and window sunlight, transfers by radiation to the surrounding walls and moreover the
convection heat transfer coefficient varies with the wind velocity or with the temper-
ature difference between the wall surface and the air, so that for the precise analysis
of the problem it is necessary to treat the heat transfer coefficient as a variable.

In this case, 1t is alse possible to use fhe same method as above by considering
each surface of the wall, of which the heat transfer coefficient is a variable, as a
kind of a room where the temperature is not known. The order of the calculation is as
follows ;

Step 1. heat balance of the surface of the wall

An equation of heat balance of the surface of the wall at time + and during the
time interval of 4t would be written as follows ;

Okt () { Ok = Bractd f— Hea (1) + Hie () + Tea () = o (20)
tut+ dt
L“ Krp (nory - {Gk(ﬂ—- Bre )} At — AHke owny + AHir ey + Traonery -4t = o (21)
where Nrpney @ heat transfer coefficient of wall "2 " of room k and which is
constant during the time of .~ (h+at)
Jea(wsy 3 effective radiation to the surface of wall " gV
Br(t) : air temperature of room k
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. Bratt) ;. temperature of wall surface "£" of room +

t , ’ twrat

Heath) = j Oka (7Y Rkt (t-T) AT , AHrewey = L “Her(r) dt
o n
o, ’ - tniat

Hiety = j Okt oy Rrt(t-T) dT s BHkd(my = KT Hizcty dt
o . . o L. L n

Rre) : indicial response of heat flow of ‘the inside surface of

wall "2 "™ to a unit step function of temperature of the
same surface

Rty :  indicial Fesponce of heat flow of the inside surface of
wall "4 " . to a unit step functlon of temperature of the
outside surface . .

Bis®) : temperature of outside surface of wall " g™

By substituting the following relations to the eq. (21)

Brst) = Bhotny + Arg ey (t-tw)
Brit) = Bry  + Ak(nﬂ)'(t“tn3
Bty =  Bkpmy t+ Akacnrn (t-tn)

WherEby “kk(rm) . [{ek('\) = Bratny }'At + { Ak(m«) - Ahl(m-l) }%t‘ ]

- Ougeny - Boka 4t = T, Ziamemy — Aokt - Akacner>

+ Ol Bog 4t 40y Zigmm + AXowt ~ Awecors + Traonenydt = 0 (22)

If the temperature gradients Akms , Ak are not known, assuning that Ak is
Akcny 4 and Akerey is Akt , the temperautre gradient of the wall surface Ar2eu) is
obtained from eq. (22).

Step 2. Equation of heat balance of the Toom air

After the temperature gradients of the surrounding wall surfaces Akfoniy are

obtained the heat balance of the room air will be expressed as follows ;

Tutal
Qu-Arensoy 4t = T Srj Ko (1) - [ Oret) ~ Oty } At
z

, L]
tarat .
+ Z-f ¢ Tie { oty =Ry } At + Wieena 4t
K Jt,
= ;: S;j Nre ney At { Br2(m) ~ Oreny + 5121 (Akﬁ(nﬂ) - AR(MD)}
+ Z [Cr Vietnsy 4L { Ok — Okmy + '—ﬂz—t ( Ak ~Amu«.n)ﬂ + Wi neiy 4t (23)

.From eq. (23) the unknown value of the temperature gradlent Akcnsery or the heating load
Wknsty 15 Obtained.
8, Initial conditions of calculation
Figure © shows an example of the room air temperature variation of a flat house

which is built with reinforced concrete and. is heated intermittently. As seen in the
example, if the thermal cavacity of the system is large it will take many calculations
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to eliminate the influence of inadequate initial conditions. Therefore, to minimize
the number of calculations, the setting of initial condition is imporbtant and the
following methods can be used.

8.1 To assume a steady state condition

One of a simple method is to make the initial condition of temperature of each
room as close to the mean daily temperature of each room as possible and assume a
steady state as in case 2 in figure 6,then the initial value of A4AZm( becomes O.

8,2 To assume periodical variation of btemuerature

#hen the temperature variation is aprroximated to a sine function as seen in

figure 7 then the value of AZwem becomes as follows ;

tn
’ —pm (Lt —-T
Zuom = S G(T)-BM-QP )JT
b0

ﬁmr‘Bm'ea‘[Pm-usw>Tn+W'M win] (2u)
- Borat ,
AZw(n='#(‘“'eF )'?Z%‘Bm'etx-[ﬁm~cosw-fn+W-M"‘w«1‘n] (25)

By using eq. (25) for the initial value of 47w at the time of . , high accuracy
of analysis can be obtained with fewer calculations.

8.3 To change the time interval of calculation
One of the distinctive features of this method is the easiness of changing 4t .
Thus by at first using a large At and rough calculations, much detailed analysis

can be done later as seen in figure 8.

, To change the time interval At to at' , we have to recalcuiate the new constants
AXe , Ef and Xm and replace the terms AZmon with 4Zwem as follows

-pr st ~pm-at!
o (1-e ) Em (1~-e ) 1 |
AZH(N)— Azm‘")xm'?{ + A(h)‘{Xm *W—Xm}x Er’n (26)
Figure 9 shows a comparison of two cases A and B.
A : calculated by 4t = 0.25(f) from the bigining to the end
(adotted line)
B : calculated by 4t = 1.0 till the 13th day and change to 4t = 0.25 (&)

thereafter (a broken line)

The results agree perfectly after the 14th day. It will be also seen that if there
is a sudden change in heat supply and the time interval 4t is large then the calcu-~
lated temperature fluctuates for a while. However, from the nature of this inte-
gration method the calculated temperature approaches an accurate value rapidly and
even when it is fluctuating +the average value or the integrated value of the results
over the several intervals is always accurate. And of course when the variation of
excitation is contenuous or when an interval 4t is short there is no trouple like
that.

For the system in which thermal capacitv is guite large, such as for the under-
ground structure, or when a synthetic effect of the systems is in consideration, such
as a heating system and a room in which time constants are very dirferent for each
other, the considerations of this sub-section are very ipportant.
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