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Generalized Sampling Theorem as an Interpolation Formula

£i Tti TAKIZAWA*
Hirosi ISIGAKI**
(Received July 25, 1973)

Abstract

A generalization of the sampling theorem is presented, taking into account
the sampled values of a function and of its derivatives.

New examples of sampling formulae are also given, which include, respectively
as special cases, the formulae given by Lagrange, Shannon, Someya, Takizawa,
Kroll, Isomiti, Jagerman and Fogel, and Linden and Abramson. Some of the
formulae given here, can be used effectively as interpolation formulae.

Zusammenfassung

Es wird eine Verallgemeinerung des Abtast-theorems (sampling theorems)
prisentiert, wobei die abgetasteten Werte einer Funktion und ihrer Ableitungen
berticksichtigt werden.

Gegeben wurden neue Beispiele der Abtastformeln, welche beziehungsweise
als Spezielfille, die Formeln von Lagrange, Shannon, Someya, Takizawa, Kroll,
Isomiti, Jagerman-Fogel, und Linden-Abramson, enthalten. Einige von den hier
angegebenen Formeln kénnen als Interpolationsfolmeln erfolgreich benutzt werden.

Résumé

Une généralisation de la théoréme i échantillonnage (sampling theorem) est
présentée par la considération des valeurs échantillonnées d’une fonction et des ses
dérivées.

Nouveaux exemples des formules & échantillonnage sont aussi donnés, qui
généralisent respectivement les formules de Lagrange, Shannon, Someya, Takiza-
wa, Kroll, Isomiti, Jagerman-Fogel, et Linden-Abramson. Quelques formules, qui
sont ici données, sont peut-étre utilisées effectivement comme les formules d’inter-
polation.

§1. Preliminaries

The generalization of the sampling theorem and the reconstruction of a band-

limited function from its sampled values and sampled derivatives were made by
Kohlenberg?, Fogel”, Jagerman and Fogel®, Bond and Cahn®, and Linden and
Abramson”. The sampling theorem was also generalized by Balakrishnan® to the

case of a continuous-parameter stochastic process. On the other hand, it was
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pointed out that the sampling intervals need not be uniformly distributed”.
8~ one of the present authors proposed a generalized
sampling theorem taking into..consideration the reciprocity relation of integral
transforms, and gave new sampling formulae as examples. Here in this paper,
the authors present another generalization of the sampling theorem, in such a
way as to reconstruct a function from its sampled values and sampled derivatives.
Also presented are some of the new sampling formulae, which include, respec-
tively as special cases, the sampling formulae previously given by several authors.
The concept of generalized frequency is also introduced and it was shown
that the generalized frequency can be effectively applied to express the condition
for establishing the authors’ generalized sampling theorem, which corresponds to
the condition of a band-limited function in the case of Shannon’s theorem.
Some of the sampling theorems given here, e.g. the generalized Lagrangian
interpolation formulae, are also useful as extrapolation formulae.

In previous papers

§2. Generalization of Sampling Theorem

Shannon’s sampling theorem, which is considered to be an interpolation for-
mula, has the following two important properties: First, his theorem is quite
sitmilar to the expansion formula of a function in a system of orthogonal func-
tions, in the sense that the system of sampling functions (i.e. sinc-functions) is
not orthogonal but almost orthogonal in the interval of the sampled function.
Secondly, his theorem contains the sampled value (height) of a function at many
sampling points, and does not contain the sampled derivatives of the function.
In this sense, the sampling formula has an aspect quite similar to Lagrangian
interpolation formula. Shannon’s formula, however, can not be effectively used
as an extrapolation formula, because his formula is expanded in a series of sinc-
functions, each of which is quite similar® to a §-function.

On the other hand, the Taylor series approximates a function, by making use
of the sampled value (height) as well as the sampled derivatives of the function
at a fized point.

In other words, Shannon’s sampling theorem involves the sampled value
(height) of a function at many sampling points, and is quite similar to its or-
thogonal expansion in sampling functions (sinc-functions). While, the Taylor series
contains the sampled value (height) and sampled derivatives of a function at a
sampling point. In this sense, Shannon’s theorem can be considered to have taken
into account the characters of the function over the whole domain of the sampled
interval, such as in the case of determining the Fourier coefficients in a Fourier
series. While, the Taylor series takes into accout the characters of a function at
a fixed point in the sampling domain, such as its height, slope, curvature, etc.

In the present paper the authors have attempted to construct new sampling
theorem, which involves the sampled values (heights) of a function as well as its
sampled higher derivatives, in such a way that the present theorem unifies the
properties of both Shannon’s and Taylor’s theorems. The authors’ theorem can
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be reduced to Shannon’s and Taylor’s theorem, respectively as special cases.
Theorem 2-1. Generalized Sampling Theorem
An entire function f(2) is expressed by :

My Mgyl 7(Lj) H;/C)
FR=ny S L I e 0B (2-1)

ol v s S (2—2,)
w9 HED gl ,
- ; sgo JE) ]/ ) W . (z———zn> . (z_zn)mn+1 > (2_1 )
if the following conditions are satisfied :
(1) g(z) is an entire function, (2-2)
(II) g (2) has zeros of (m,+1)-th order at points z=z, (n=integers), i.e.
9 (=) =0'(2,) = ¢"(z,) = - =g (2,) =0,
and (2-3)
g<mn+1) (zn) i O ,
for m,=non-negative integers®), which depend on =,
and
. Sflz) -
@n  lim =0, (2-4)
Here, for the sake of brevity, we have put:
, o’
& :[ d=? (z>]z=zn, (2-5)
and
dlc ( o—z )mn-&—l
() — n _
Hn - [ dz* g(z) :|z~zn‘ (2 6)

The summation over 7 means the summation over the whole set of sampling
points z=g,, which satisfy condition (II). The function g¢(2)/(z—=,)*"" shall be
called a generalized sampling function.

Proof.

We shall take a closed curve C in a complex plane, in such a manner that
the curve C encloses some poles of the function f(2)/g(2) within it, and no pole
lies on the curve C itself (¢f. Fig. 1).

Accordingly, by conditions (I) and (II), the function f(z)/g(z) is a meromorphic
function in the domain enclosed by the curve C. In this case, the Cauchy theorem
reads :

AN R (M

9(2) = 2ni £—=2)g(£)
10 fo i< 3
=5 S €2y g(e) =2 Res 5y s (27)

*) By ¢’(z) we understand dg(z)/dz, while ¢g(®(2) is the function g(z) itself.
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for any z which lies inside the closed curve €. -
In the expression (2-7), the integration is taken
counterclockwise along the closed contour C, and
Res F({) means the residue of function F({) at
the pole {=z, (¢f. Fig. 1). The summation in-
tends to take the sum of residues all over the
poles z, which lie inside the curve C.

We shall deform the contour C into a circle
of radius R, with its centre at the origin. If we
tend R to infinity and take condition (III) into
account, the first term of (2-7):

S S N (S I
= e X e
is seen to approach zero (¢f. Appendix A). That

is, C

lim I=0.

Je—roo

In the second term of (2-7), if we take the
limiting process: R-»oo, the summation covers
all the poles at {=z, of the meromorphic function
Ff(2)/g(z) in the whole complex plane. In this
sense, we shall write the summation as J,.

ka3

We shall calculate the value of residue at
the point {=z,, as follows:

a) If f(z,)#0, under conditions (I) and (II),
the function f(0)/(€—=2)g(l) is seen to have a
pole of (m,+1)-th order at the point =z, In Ii& L Poles (=2, and integra-
this case, the residue of F({)/C—=z)g({) at the ELOZXIC)?:;;&S(Z(Z; ¢
point {=g, is given by the m,-th coefficient in
the Taylor expansion of ({—=z, )" f({)/({—=)¢({) around the point {=z,. Thus,
we obtain :

S 1 Tdm L= D)
Res 1021010 = m.! [dc C=2 90 LG' (2-9)
Taking
0= g |
and (2-10)

1 L=zt
(S 1 (S T

in the expression (2-9), we obtain:
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B ;RGS(C__J%;_(@: _y 1! [C;ZC” f(g)i(@l z
B W

o mn!

L=z,

-3, 2 &5 c|() " o E)|
PR~ AN ‘ 4

i M=k ( 1)1nn—lc g(m k )
=_§;l§ ]ZO mn, 10, Cim - 1C (B T D H®
My, Mgy — K ;’_7) Hgf) (Z z )j+lc
:72»:/5;:) jg"o 7! k! (z 2, )"t (2—11)
My f(f}) H'(ns_‘?) (z zn ‘ ’
- §320 jzj:) (S—_])/ (z Py )m ,F1 (2 11)
where
4
f’(n.i) —= [ dCJ f(C):IK:z >
and
dk
o2 =| e 10|
_ (=1 | A
h, | hy’ L, 0, : ) (2-12)
4 hl,
R O
R 2 D
T, k-1 IT, k_1CZT,...’ 1
AP A1 Bl i,
h, o T T ”‘C"lk
for positive integers k, with
hip® plim, +1)! g1t p-0)
Ol = G i pgT g (2a=01,2)

d,.
() — = e
gn [dCr g(C)]C=zn > (T 0’ 1" 2> )

and

o=l =012

=2,
In Appendix B, the expression (2-12) is given explicitly in terms of ¢, and
derivatives g3’ , o
b) If the function f({) has a zero of p,-th order (m,—p,>0), at the point.
{=z,, i.e
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if , ,
L) =F()=f"(m) = - =P (z,) =0,
and o o (2-13)

S (z,)#0, (p,=positive inte\:gers; which depend on 7)
then the function FO)C—2) g(0) has a pole of (m, —pn+1)-th order at the point

{==z,. And the expression (2-9). needs modification. In this case, the residue at
¢=gz, is given by:

--Res J(&) 1 [ drn e (L —z, Pt (L)

T~ T a2 e

Putting N
Fo= (@ f (zcj)p , (2-15)
and considering that ‘ ‘
fo=|f0] =[] o, (2-16)
=2y P" =2y
by means of (2-13), we have the following expression from (2-11):
© ke et FOHE (et

~ % Res | . (2-17)

o eyt
00 =% B B Gk e—mye
Now we have, from (2~13) and (2_15>.

(5 &
Fo=ldriol =gl
Putting (2-18) into (2~17), we obtain :

Mgy = Dy Moy =Dy = K f(]+p”) H(/c) (Z—Z )J’—HJ,;HC

0 HE :
TIRSEIHO T B A Ul B emayet G

f<j+pn> (G=0,1,2,+, mu—p,) (2-18)

Mgy = Dy, Moy— /Lf(j) H(k) (Z P )jJrk

=L kZo AR ey (2-19")
If we refer to the condition (2-13) in (2—19’),\ we obtain :

=2 kZO ”;nZ:J;(f)~Ii(k) (——(z . ))Hfl (2-21)

_r R RSO HEY ey (221

o m 8=04=0 .7 ( .7) (z_zn) )

because all the f{s vanish for j=0,1,2, ---,p,—1. Refering to (2-11), (2-11"),
(2-21), and (2-21’), it can be seen that the expressions (2-11) and (2-11') hold for
the®case b) as well as for the case a).
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Multiplying ¢(2) to both sides of (2-7), and taking the calculations in Ap-
pendices A and B into account, we finally obtain the generalized sampling theorem
(2-1).

Remarks.

Further, it should be mentioned that condition (II) can be replaced by the

following condition (II'):
(II"y  The function f{(2)/g(z) has poles of finite positive integral order
(m,—p,+1) at points z=g, (with n=integers and m,=0, 1, 2,
and the function f(z) has zeros of p,-th order (m,—p,>0) at the
same points z=z, (p,=non-negative integers, which depend on 7).  (2-22)
This condition (II') comes directly from proof given in cases a) and b).
In Theorem 2-1, if all the m,’s are set equal to m, we have:
Corollary 2-1.

An entire function f(z) is represented by :

n (7) (54}
O s S (2-29)

if the following conditions are satisfied :
(I) g¢(2) is an entire function,
(II) ¢(2) has zeros of (m+1)-th order at points 2=z, (n=integers), i.e.

g, = g;:g;: — e e ggzm) :0,
and (2-24)
s £0,
for m a non-negative integer, which does not depend on 7,
Al
e = (2—25>

If we take m=0 in (2-23), we obtain the sampling formula :

f@) =2 fur B L oz 1E

222,
_ o) ‘
R AT (2-26)

which is nothing but the expression suggested by van der Pol® for the entire
function ¢(2) with simple roots at 2=z,, f(2) being a band-limited function with

a cut-off frequency, and the functions f(2) and g¢(2) are assumed to have no com-
mon root.

For the case mz=1 in (2-23), we take the function g(z) practically as
g(z)=¢"(2), (2-27)

where ¢(2) is an entire function with simple zeros at points z=g,. ~Then the
sampling formula (2-23) reads:
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m W HD . ¢"(R)

SRO= D DRG0 sy E) e (2-28)

where H{¥”s are given by (B-11) in Appendix B, with
1 £ N

o= g7 94 =0 5.29)
and

C ]‘LS;PT) . S!(ﬁl+ 1)’ g£Lm+1+s-7~)

e hn o 7! (m+ 1+ s—r)_/ : gglm-{-l)

sl (m+1)! 1 o (1N (1 e
7! (¢;)m+l ) 21+q+u§~:m+1 Pl (], ul--- ’ (¢")1 ’ <2/ n> : (8/ ﬂbn > e

p+2g+3u+--=mtlis—r
(2-30)
From theorem (2-23), we find the following corollary :
Corollary 2-2.

If the entire function g(z) can be expanded in the Taylor series at the points
2=z, in the following form:

(IV) g (z) = Am+1 (Z‘— zn)m+1 + Z A271L+1+s(z'__ 271)27,L+1-)-s >

s=1
with (2-31)
Am+1 # O H

and if the conditions (I), (II), and (III) in Corollary 2-1, are satisfied, then the
expression (2-23) can be reduced to:

m e (B 2) 1 9(2)
Slz)= ; s;) IR 5! EPICEE (r—z, " (2-32)
(m-+1)!
Proof.
From (2-31) and (B-6)~(B-10) in Appendix B, we have
hP
]: =0, (for £=1,2,3, -+, m) (2-33)
with
g(&
The expressions (2-33), (2-34), and (B-11) in Appendix B, lead to
HP=0, (for k=1,2,3, -+, m) (2-35)
and
1 1 (m+1)!

We put (2-35) and (2-36) into (2-23), and obtain the sampling theorem (2-32).
This theorem (2-32) is a generalization of the formulae given by Fogel?,
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Jagerman-Fogel®, and Linden-Abramson®. The example of theorem (2-32) will be
given in the following paper.

The formulae (2-1), (2-1'), (2-23), (2-26), (2-28), and (2-32), are generalized
sampling theorems, in the sense that they give the function f(2) in terms of the
sampled values £, and sampled derivatives f$” (j=1,2, 3, ---) of an entire function
f(2). The reconstruction of an entire functlon from its sampled values and sam-
pled derivatives is also mentioned by Jagerman and Fogel®, and Linden and
Abramson®. The present theorems (2-1), (2-17), (2-23), (2-26), (2-28), and (2-32),
are shown to include the results obtained by these authors, respectively as special
cases. Shannon’s®"'® and Someya’s'® sampling theorems as well as other sampling
formulae? 1" are included as special cases of the present theorem (2-26).
These will be shown in the following paper in the form of various examples.

It should be mentioned here that expression (2-23) has somewhat different
features as was given by Linden and Abramson”, who took essentially as g¢{z)
=sin"* (xz/h) and z,=nh, |h|<(m+1)2W, with a constant W. ' The expression
(2-32) holds only under the condition (IV) in (2--31). :

§3. The properties of the Expansion-Formula of
the Generalized Sampling Theorem

We shall take @(2) as the expansion-formula of the generalized sampling
theorem (2-17):

D(z)= 21 4u(2) (3-1)

my 8 L) H = (z zn)

= Z Z Z . (S—j)! . (z 2, )m L g( ) (3—2)

n 8=0 j=0

and consider the properties of the function ®(z). The function
O(z) is of the following characters:

i) The generalized sampling function :

z 1
h(z)= (z_gz(”;nnth = H(z) (3-3)
has a finite value at 2=g,, ‘e
. 1 dmn-{—l
llrzrx h(z) = RS [ e e g(z)]z: < +o0, (3-4)

This is seen directly from condition (II) in (2-3).

it) From (3-1) and (3-2), we have:

b Hlz) = 55250 5 o p prges (55

with
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S S ) ) B

Hz ~ hiz)= (r—z, )T -
Accordingly, the function ¢,(z) H(z) is considered to be expressed in a #runcated
Taylor series (i.e. with finite initial terms) of the function f(z) H{z) around the
point 2=g2,.

1ii) We shall consider the limiting cases: =z->z, and 2—>z,(# 2,), respectively

in the expression (3-6).
Differentiating both sides of (3-6), we have

Lo maf= 3 L E] 5-1)

n

for 0Lk<m,,.
For =z—z,, we have H(z,)#0, and obtain from (3-7):

dk &
[ lpomaf] =|a{rwne)] 3-8
The expression (3-8) leads to:
(=) =S4, (for 0<<k<m,) (3-9)
with
o= e 0]
On the-other hand, we have, from (3-6):
2, _ s ds )
s =n) 5 EE L E o | (8-10)
= h(2)- Qz), (3-10)
and
dt k .
qun(z):pzzio Cp - RPN (2) - Q¥ 7 (z), (3-11)

For z—2,(+#=%,), where =z, are zeros (of (m,+1)-th order> of the function ¢(=z),
we obtain from (3-11): ,

o (2)=0, for 0<k<m, and for all r#n (3-12)
with '

AP(z,)=0, for 0<p<k<m, and for all r+#un (3-13)
because the function A(z) has a zero of (m,+1)-th order at the sampling point
2=z, (#£z2,).

From (3-9) and (3-12), we have
(=) =f06,,, for 0K<k<m, (3-14)

with Kronecker’s delta 4,,,.
From (3-14), we obtain :
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PO (=)= L g (z) = L [1F - O,
=f®. for 0<k<m,, and for any sampling points z=g,
(3-15)

iv) If 2 lies in the convergence domain around the point z=g, of the
Taylor series (3-6), when m, goes to infinity, we have

pu(2) Hz) =(2) H(z). (319

In this case, we have
$u(2)=S(2),  (for m,—o0) (3-17)

in the convergence domain (around the point z=z,) of the Taylor series (3-6).

§4. Remarks on Some Examples of the
Generalized Sampling Formulae

A) TFor the case m=0 in (2-23), we obtain the sampling formulae (2-26)
which were suggested by van der pol®.

a) If we take g(z) as a polynomial of degree s, then the expression (2-26)
is nothing but Lagrange’s interpolation formula. If f{2) is a polynomial of degree
(s—1), then the right-hand side of (2-26) expresses exactly f{(z). Even if the
function f(2) is a polynomial of a higher degree, the expression (2-26) can be
used as an approximation formula®.

b) If we take g¢(2) in (2-26) as sin{az+f), with two constants a and B,
then we obtain Someya’s sampling formula®, which reduces to Shannon’s sam-
pling formula*”'® for the case f=0.

c) If the function g{z) in (2-26) is selected to be equal to'®~20:2)2 .

i) g()=cos{acos™fBz), aB+0
ii) glg)==z=sinfz—Acosfz, B+0

iii) g(2)==cosPfz—Bsin Pz, B+0

iv) g(z)=JBz), B+#0

v) g(=2)==J)(fz)+nh],(Bz), B+O0 _
vi) g(2)=7Y.(az) J.(Bz)—J,(az) Y,(Bz), aB+#0

and
vii) g(2)=Re exp[ilaz®+f)], a#0
respectively, with Bessel function J,(z), Neumann function Y,(2), and constants
a, B, A, B, and h, then we obtain the sampling formulae previously given by
several authors?~®N~12:16.10
B) For the case m>1 in (2-23), the function g¢{z) is practically taken to be

g(z)=¢""(2), (4-1)

where ¢(z) is an entire function with simple zeros at points z=z,. Then the
sampling formula (2-23) is slightly simplified, with H$’s given by (B-11) and with
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1

o= G Ty O = P (4-2)
and
C A _ s! ('}72 +1)! ' glmis=r
o h’n B 7‘.’ (771 -+ 1 + §5— 7-)! gg;m+1)
_slm+1)! 1

’ l 1t _1_ 1" u
o 7'!(¢;L)m+1 . p+q+u§v=m+1 P’q’u’ (('bN)p(Z/ 7z> . (3/ n>

p+2q+3ut--=mtlts—»
(4-3)

It is also convenient, for example, to take the function ¢(2) in (4-1) as:
a) ¢(2)=an orthogonal polynomial of degree s,
b) ¢(z)=sin(az+p), with two constants a0 and B,

and ‘

c) ¢(2) will be taken respectively as the function ¢(z) given in i)~ vii) of
- ¢) in the case A).

In concluding the paper, the authors wish to express their sincere thanks to Prof.
Dr. J. Meixner, Institut ftir Theoretische Physik, Technische Hochschule Aachen, for
his constructive suggestions and hospitality during one of the authors’ (Takizawa’s) stay
in Aachen. The authors’ acknowledgements are also due to the Alexander von Hum-
boldt-Stiftung, which made it possible for Takizawa by giving him financial support to

carry out the present investigation in Aachen.

Appendix A
The evaluation of the contour integral (2-8) is made as follows :
We put

LA
AN T L I WA

and deform the curve C into a circle of radius R with its centre at the origin,
then we obtain: :

1 SRE)  iRev.dp. (A-2)

I=55 SE (R&"—2)- g (R

Making the radius R infinitely large in the expression (A-2), we obtain :

1) K

lim|7] < lim L max

Reo Rooo AT teRe™ Q(C) ' R_lzl ) 0=0
—1; S ] R
= e ) | Rl - (A-8)
From condition (III), we have:
lim 7] <0. (A-4)
Te—o0

Thus, the integral (2-8) is proved to vanish as R becomes infinitely large:
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im I=0. (A-5)
oo

Appendix B

We shall calculate the expression (2-12) by making use of ¢(z,) and its
derivatives. From the expression (2-10), we have the identity :

A HE=1, SR (B-1)
with

mo =L

Differentiating both sides of this expression with respect to {, we obtain

successively :
€ HE)+ () -H' () =0,
R1E)- H(L)+,C 0 (€) H' (€)+ h(E)- H" (8) =0,
and : : (B-2)

RB(C)- H(Q) + 2 CL R Q) H' (C)+ 1 Co i (€)- H (€)
+,Ciaa K/ (£)- H* (L) + R(C)- H®()=0.
A system of the above (k--1) equations (B-1) and (B-2) can be solved with
respect to (k+1) unkno'wn functions :  H(L), H'(£), H"({), -, and H®(£).
We have:

H(S)(C) = AS(C) 5 (S:O, 1’ 2’ ) k) (B_S)
with
‘ 4,@)=|h(C), 0, =h" (L),
ZA(9 N (9}
: P O (B-4)
h(s«l)(c), s—lcl (S 2)( ) (C)> O
h(S) (C>> sCl h(s D(C), "ty s s 1]7', (C) h’(C)
and
D,(&)=|h(D), 0, , 1.
(g, h(C), 0, ,0
@ o o O .

Re(), 1c R, o) B(E), 0
h(S)(C)? sCl h(s 1)(C)> s sCs 1]1,(C) 0

We shall refer to the expression (2-10) and the condition (II) in (2-3), i.e.,
g(€) can be expanded in Taylor series around the point {=z,, as follows:

3

g (C) = ZlAmn"'j ) (C '_zh)m"-l-j ’ ) (B“6)

i=
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with’

sl

" r!

[?ic%g(c)] . (r=positive integers)

=2,
Then we can see at once:'

k — fik_ - ar 9(%)
R (L) = dc* h(l) = dC* (=, )™t

(k+s)!

- Z0147]Ln+1+k+s ) S.’ ' (C_zn)s >
and
hﬁf) _ k! (mn—|— 1)! - ggznn+1+k)
h” N (7/’7'77. + 1 -+ k)/ g;:”n"’l) 3
with
dk .
w |2
]7/71, - [dc/c ]1 (C)]Ckz”’
and o

.
SRS [ ;ick g (C)] I (k=rpositive integers)

From (B-3), (B-4), (B-5), and (B-9), we obtain:

H® = 1
" 1’ O> 07 ]
1’714
h,
z 1 O O
hn ’ ) H
 hy, C hy, 1 0
R : .
B Ny R U
h’n > At ‘,1 hn > ko hn ’ ’ ’
AP B N N
hn ) &1 hn b 52 hn > s ENEk-l ]ln ]
1] ) ,
h, h,’ ? , O
I3
ha C h, 1
h, ? h,’ ’,
i1 7 (k=2 7 (- .
Ry C hiF=® e L
hn 3 k-1l hn > k-1%2 hn ’ b
R A A o
]Zn ’ &\l ]Z” > k2 h’n ’ s kN k-1 h’n

(B-10)

(B-11)
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with
d/c
e =[eme| -
]7»5;;#7.) s! (mn + 1)/ ggzmn'!-1+s—7<)

< b, ol (m,Lls=n) T gl (B~13)
and

o= G D 5 =, = HD (B-14)
for positive integers &, s, and .
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