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     Generalized Sampling Theorem as an Interpolation Formula

                                                          '
                             gi Iti TAKIZAWA*

                             Hirosi ISIGAKI**

                            (Received July 25, 1973)

             t.                                 Abstract

    A generalization of the sampling theorem is presented, taking into account

the sampled values of a function and of its derivatives.

    New examples of sampling formulae are also given, which include, respectively

as specia! cases, the formulae given by Lagrange, Shannon, Someya, Takizawa,

Krol!, Isomiti, Jagerman and Fogel, and Linden and Abramson. Some of the
formulae given here, can be used effectively as interpolation formulae.

                             Zusammenfassung

    Es wird eine Verallgemeinerung des Abtast-theorerns (sampling theorems)
prtisentiert, wobei die abgetasteten Werte einer Funktion und ihrer Ableitungen

berttcksichtigt werden.

    Gegeben wurden neue Beispiele der Abtastformeln, welche beziehungsweise
als Spezielfalle, die Formeln von Lagrange, Shannon, Someya, Takiz.awa, Kroll,

Isomiti, Jagerman-Fogel, und Linden-Abramson, enthalten. Einige von den hier

angegebenen Formeln k6nnen als Interpolationsfolmeln erfolgreich benutzt werden.

                                  R6sum6

    Une g6n6ralisation de la th6ordme a 6chantillonnage (sampling theorem) est

pr6sent6e par la consid6ration des valeurs 6chantillonnees d'une fonction et des ses

d6riv6es.

    Nouveaux exemples des formules at 6chantillonnage sont aussi donn6s, qui

g6n6ralisent respectivement Ies formules de Lagrange, Shannon, Someya, Takiza-

wa, Kroll, Isomiti, Jagerman-Foge!, et Linden-Abramson. 9uelques formules, qui

sont ici donn6es, sont peut-etre utilis6es effectivement comme les formules d'inter-

polation.

                            gl. Preliminaries

    The generalization of the sampling theorem and the reconstruction of a band-

limited function from its sampled values and sampled derivatives were made by
Kohlenberg'), Foge12), Jagerman and Fogel3), Bond and Cahn`), and Linden and

Abramson5). The sampling theorem was also generalized by Balakrishnan6) to the

case of a continuous-parameter stochastic process. On the other hand, it was
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pointed out that the sampling lntervals need not be uniformly distributed7).

    In previous papers8)Ni2), orre of the present authors proposed a generalized

sampling theorem taking into,:-consideratiQn the reciprocity relation of integral

transforms, and gave new samp!ing formulae as examples. Here in this paper,

the authors present another generalization of the sampling theorem, in such a

way as to reconstruct a function from its sampled values and sampled derivatives.

Also presented are some of the new sampling formulae, which lnclude, respec-
tively as special cases, the sampling formulae previously given by several authors.

. The concept of gene7ulizetl f)equenq), is also introduced and it was shown

that the generalized frequency can be effectively applied to express the condition

for establishing the authors' generalized sampling theorem, which corresponds to

the condition of a bancl-limited function in the case of Shannon's theorem.

    Some of the sampling theorems given here, e.g. the generalized Lagrangian
interpolation formulae, are also useful as extrapolation formulae.

                 gZ. Generalization of Sampling Theorem

    Shannon's sampling theorem, which is considered to be an interpolation for-

mula, has the following two important properties: First, his theorem is quite

similar to the expansion formula of a function in a system of orthagonal func-

tions, in the sense that the system of sampling functions (i.e. sinc-functions) is

not orthogonal but almost orthogonal in the interval of the sampled function.

Secondly, his theorem contains the sampled z7alzte (height) of a function at maay

sa"ipling points, and does not contain the sampled derivatives of the function.

In this sense, the sampling formula has an aspect quite similar to Lagrangian

interpolation formula. Shannon's formula, however, can not be effectively used

as an extrapolation formula, because his formula is expanded in a series of sinc-

functions, each of which is quite similar2i) to a S-function.

    On the other hand, the Taylor series approximates a function, by making use

of the sanzpled 2yalzte (height) as well as the samplea dei'iwatiz,es of the function

at a fixed point.

    In other words, Shannon's sampling theorem involves the sampled value
(height) of a function at many sampling points, and is quite similar to its or-

thogonal expansion in sampling functions (sinc-functions). While, the Taylor series

contains the sampled value (height) and sampled derivatives of a function at a

sampling point. In this sense, Shannon's theorem can be considered to have taken

into account the characters of the function over the whole domain of the sampled

interval, such as in the case of determining the Fourier coefllcients in a Fourier

series. While, the Taylor series takes into accout the characters of a function at

a fixed point in the sampling domain, such as its height, slope, curvature, etc.

    In the present paper the authors have attempted to construct new sampling

theorem, which involves the sampled values (heights) of a function as weil as its

sampled higher derivatives, in such a way that the present theorem unifies the

properties of both Shannon's and Taylor's theorems. The authors' theorem can
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be reduced to Shannon's and Taylor's theorem, respectiveiy as special cases.

Theorem 2-1. Generalized Sampling Theorern

    An entire function f(x) is expressed by:

        f(z)-;,',itlZ,"',i/i,te4tl'･{5.;k'･(2-x.)j"k･(.-g.(;)).,.+i . (2-1)

                            '            =::;l;,]:z'ii:ij.l,!l2･/;"･il,{i!SS･i'!'･(2-ji},)s･(.mgi7)),,,,+i, (2-i')

if the following conditions are satisfied:

(I) g(z)isanentirefunction, (2-2)
(II) g(z)haszerosof(m.+1)-thorderatpoints2=2.(n=integers),i.e.

and 9(Zn)=gt(2n)=9tt(Xn)='''==g("L't)(2n):="O,

        g(mn+i) (z.) ixE O, J
for m.=non-negative integers*), which depend on n,

and

           f( z)

Here, for the sake of brevity, we have put:

                                                                   '
       fS,o-' =-[deCljj f(z)].=.., (2-5)

and

        HSbth)=[cdil:lk (Z-gZ('z'))""'Z+1].t..' (2-6)

The summation over n means the summation over the whole set of sampling
Points z==x., which satisfy condition (II). The function g(z)1(z-2.)Mn" shall be

called a genei'alized sanipli7ag fanction.

Proof.

    We shall take a closed curve C in a complex plane, in such a manner that

the curve C encloses some poles of the function f(z)lg(z) within it, and no pole

lies on the curve C itself (of Fig. 1).

    Accordingly, by conditions (I) and (II), the function f(z)/g(2) is a meromorphic

function in the domain enclosed by the curve C. In this case, the Cauchy theorem

reads:

        f[:i･== 21i (c-f.(g',(e dc

             == ii ia (4-fz(f)g(c) dC-Z Res (ctfi)4)g(c), (2-7)

 *) By g'(2) we understand dg<2Ydz, while g(O)(z) is the function g(2) itself.

N
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for any 2 which lies inside the closed curve g.

In the expression (2-7), the integration is taken

counterc!ockwise along the closed contour C, and

Res F(C) means the residue of function F(C) at ×
the pole 4==z. (q71 Fig. I). The summation in-

tendstotakethesumofresiduesalloverthe ,
                                                  xpoles z. which lie inside the curve C･ zn
    We shal! deform the contour C mto a                                      circle
of radius R, with its centre at the origin. If we

                                                         ×tendRtoinfinityandtakecondition(III)into x
                                                        Z2account, the first term of (2-7):
                                                  Zl
        IE21.iS.(c-f.()Cg)(odc, (2-s)

is seen' to approach zero (qfl Appendix A). That
is,

        R-co

    Inthesecondtermof(2-7),ifwetakethe .
Iimitingprocess:R.oo,thesummationcovers ×                                                      Znall the poles at C :=2. of the meromorphic function

f(2)lg(z) in the whole complex plane. In this

sense,weshallwritethesummationas;,. × ×
                                                          Z2    We shall calculate the value of residue at                                                    Zl
the point C=2., as follows:

    a) If f(x.)7kO, under conditions (I) and (II),

the function f(4)1(C-z)g(C) is seen to have a
pole of (m.+1)-th order at the point C=z,. In Fig' i' .
                                                   tlonthiscase,theresidueoff(4)f(4-2)g(C)atthe i.
point 4=z. is given by the m.-th coefficient in

the Taylor expansion of (C-z,,)Mn'i. f(4)1(4-2) g(4) around

we obtain:

        Res (4-fz()4g) (4) = ml.![zi(IL'!in (4iiill)i'ie'i',i('cf)(4)],=..'

Taking

                 g(C)
        h(C)= (4-z.)"'n+b

and

                1 ({;-l,,)Mn'}'1
      -'H(4)==h(c):== g(C) '

in the expression (2-9), we obtain:

×

esitr

×

c

Poles C=:xn and integra-

    contours Q and C
  expression (2-7).

thepoint4=z,,. Thus,

            (2-9)

(2-10)
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       ' lil,] Res (q-fi)C,) (c) = -;, .1.i [ddi' li. f(Cc)-Hz<C) ],=.,,

           '         = - lll] iS.i t ,E.llli e,b..Ck [( cfh(41 )("`'`-k)'H(k)(4)]c=..

         = m II, ml.! ,ii.lili e,b.Ck Mt".-i,k ,n.-kCj [( < IIL z )(M"-kVj)'f(j)(C)'H(k)(C)],=..

                     '               en,n"bn-k 1                                   (-1)'ibnnth-j'(mn-k-1')I
         ="-E,lL¥oJZ'=om.!'"bnCk'"'n-kCj' (2."z)m.-k-d+i 'fY)'HSk)

         - ;;I,] :xl'i' ")i/ik 4･¥'･!l{i,ik'･(S"iS)t),I,;.k, . (2-n)

         =?l,],ii'iltib,S.,ltL,j''il,l{!'8;')ji,'(2(li.kk)?l"'' (2hll')

where

       fY' =" [ ddcjj' f(4)]c-z.'

and

       H£k)==[aldi4" H(C)]c....

         =(-hl.)h'2i,' 1' O'' ' ''' (2-12)

                  k"il, ,c,Zk, i, o, O

                  --                  -i                  --                                        hSk-3)                             h£(-2)                 h5,k-i)
                              hn ' kHIC2 h. ''''' 1                        k-ICI                   hn '
                 hh'(:k,), kcihSii), kC2hSii2), ''','kCk.i2n.'

for positive integers k, with

          h5,""q) p!(m.+1).t gS"bn'i+p-q)
       i'Cd h. =gf(m.-1+phg)t' gaave.+i) , (P,q=O,1,2,''')

                                               '       g5;"=[ddc';g(4)],=.., (r=O,1,,2,''')

and

       h$:"==[ddi'"h(4)],=..' ('"=O'1'2'''')

In Appendix B, the expression (2-12) is given explicitly in terms of g. and

derivatives gS:'). ･
                                                            tt   b) If the function f(4) has a zero of p.-th order (m.-p.)O), at the pomt,

4="z., i. e.

285
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                          '
        f(Xn) == f'(Zn) =f"(Xn) = ''' =f`"n-i>(z.) = O,

                                      t t-        f("n)(z.)l O, (P.= positive intggers, which depend on n)

then the fuhction f(4')!(4iz)g(4) has a pole of (m.-p.+1)-th order at the point

E:.:r,'isAgnivd.enthbey9.XPreSSiOn'(2h9) needs modification･ In this case, the residue at

      ''Res (4-f2()C3(e = (m.lp.)![2SE'll::';tn (C-(I}/2".'t)-",i'6f(C)l=. ･ (2-i4)

                                                          n

                                                                  '        f(C)==(Ckef(S.))"n' ' (2-i5)

and considering that ,                                              ./
        '        ii iEi[f(C)]c=..=i.' [f(2"`'(4)]c=.. i` O' (2-16)

by means of (2-13), we have the following expression from (2-11):

                                        A        - Jll,: Res (c -f.()4g) (c) = ;,;M'.zi-=:" Mn]ii.ll',`Tk fj.S/,'-' : ¥ifk' ･(.(-Zlii,;.',?,'-'"."..,. (2-i7)

              'Now we have, from (2-13) and (2-15):

              1 ･･1                                        t.        f£j" E!! [ 2SZ" f (4)],=.. == (7' +1'p! .)!'Aj'P"" .(7' -- O, 1, 2, ''', M?t mP7t) (2-18)

Putting(2-18)into(2-17),weobtain: '

        -i;;Res(c-f.(51(c)-;iM'111.lji"t"b"1',b-k(j,(il.ill;":j.,･7i'f'･({li-Z;;}'l3':ilk (2-ig)

                        -l,;IM:.:""l.Z-.fi.f7.S/i'･:!iii,S'･((.Ztlli.l,")¥,;,.k,. (2-lg,)

If we refer to the condition (2-13) in (2-19'), We obtain:
                                       1 ''
                                                                  '        -l;,Res(c-f.(2(4)-:l],MLE.l'"1')i]H,kec･{i,k'･((sf.;l:3).l;,f,. (2-2o)

                        =41£i"V,':-,k{]･li.l"!{lrtk"((.Zi.k,))/e';i (2-21)

                        =-;,;zl'itfi,fflzl'･i?,{Zi'i,･,Si,gals,.,, ,,-,,･,

      '
because all the fEj)'s vanish for 7'=O, 1, 2, ･t･,p.-1. Refering to (2-11), (2-11'),

(2-21), and (2-21'), it. can be seen that the expressions (2-11) and (2-11') hold for

the!'caseb)aswellasforthecasea). '
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    Multiplying g(z) to both sides of (2-7), and taking the calcuiations in Ap-

pendices A and B into account, we finaily obtain 'the generalized sampling theorem

(2-1).

Remarks.

    Further, it should be mentioned that condition (II) can be replaced by the

following condition (II'):

(II') The function f(2)!g(x) has poles of finite posltive integrai order

     <m.-P.+1) at points z== z. (with n=integers and m.==O, 1, 2,･･･)

     and the function f(z) has zeros of p.-th order (m.-p,,)O) at the

     samepoints'z=2.(p,,=non-negativeintegers,whichdependonn). (2-22)

This condition (II') comes directly from proof given in cases a) and b).

    In Theorem 2-1, if all the m.'s are set equal to m, we have:

Corollary 2-1.

    An entire function f(2) is represented by:

        f(z) =;, ,g.,,.l,f,･if'･(H,21il,･(z-2.)s･(.-g.( 3..,, (2-23)

if the following conditions are satisfied:

(I) g(2) is an entire function,

(II) g(x) has zeros of (m+1)-th order at points z==2. (n=integers), i.e.

        g. = g;, = g;: = ... = g£"b) = O,

        g5:"+i) "tE O,

  for m a non-negative integer, which does not depend on n,

           f(2)
(III) l!I:lg(z)=O'                                                              (2-25)

                                              . 1･ ,,                                                              '    If we take m=O in (2-23), we obtain the sampling formula:

                        9(z)                                       g(z)
        f(2) = 4, A'He'z-2. = ;, iZ' (2-2n)'hn

            =;,ib'(zm92(,li.g;',･ ' (2-26)
                                                          'which is nothing but the expression suggested by van,der Po122)'  for the entire

function g(z) with simple roots at x=x., f(2) being a band-limited function with

a cut-off frequency, and the functions f(z) and g(2) are assumed to have no com-

mon root.
    For the case m)1 in (2-23), we take the function g(2,) practically as

        g(2)=gb"b"(z), (2-27)
where ip(2) is an entire function with simple zeros at points x=2m 'Then the

samplingformula(2-23)reads: . .. '
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        f(2)=i},,#,,z..i,!(i`i"･g,Ili'S･)j'i,･(z-2.)s･(.ttb'.l,()2.).,l ' (2-2s)

where Hff)'s are given by (B-11) in Appendix B, with

               1
        h.=("z+1)!g£M'i)=(gb;,)M'i, .･. (2-29)
                                                    'and

           h5,S"'") s!(nz+1)! g£o,e+1+s-r)        Sq' h. =" r!(m+1+s-7D!' g;;'b'i)

          =::S.rr(Zt9h+)ml+)ir' ,.,..4...., prqi,,! '(gbA)"･(-SZr,gbA')q･('g:r,gb;,")U

                    p+2g+3za+･･･=:m+1+s-r
                                                              (2-30)
    From theorem (2-23), we find the following corollary:

Corollary 2-2.

    If the entire function g(2) can be expanded in the Taylor series at the points

z=2. in the following form:

                           co(IV) g(2)=Am+i(2-2.)"e+i+ZA2,n+i+s(2-x.)2"e+i+S)
                           s=1                                                              (2-31)with

       Ane+i # O,

and if the conditions (I), (II), and (III) in Coroliary 2-1, are satisfied, then the

expression (2-23) can be reduced to:

       f(2)-4, ,g.,fs,s)･(Zi.2,:'t)S･ ,s,.l.,, ･(.m9.(3..,. (2-32)

                               (m + 1)l
Proof.

    From (2-31) and (B-6)r-v(B-10) in Appendix B, we have

        h5,k)

        h.=O, (fork=1,2,3,･･･,m) (2-33)
with

       hn =[(c img.( 5,im+i ],=.,,=A"b+i#o･ (2-34)

The expressions (2-33), (2-34), and (Brll) in Appendix B, lead to

        H5,k'-O, (fork=1,2,3,-･･,nz) (2-35)
and

        HSg)-HI,- i,, - A.1,., = (';Z,(,.+,.l,)!;o. (2-36)

We put (2-35) and (2-36) into (2-23), and obtain the sampling theorem (2-32).

    This theorem (2-32) is a generalization of the formulae given by Foge12),

t"
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Jagerman-Foge13), and Linden-Abramson5). The example of theorem (2-32) will be

given in the following paper.

    The formulae (2-1), (2-1'), (2-23), (2-26), (2-28), and (2-32), are giene7ulixed

sampling theo7enzs, in the sense that they give the function f(x) in terms of the

sampled values .f;, and sampled derivatives jCS,j) (]'=1, 2, 3, ･･･) of an entire function

.f<z). The reconstruction of an entire function from its sampled values and sam-

pled derivatives is also mentioned by Jagerman and Foge13), and Linden and
Abramson5). The present theorems (2-1), (2-1'), (2-23), (2-26), (2-28), and (2-32),

are shown to inelude the results obtained by these authors, respectively as special

cases. Shannon's'4)'i5) and Someya'si3) sampling theorems as well as other sampling

formulaei)Ni2)'i6)'i') are included as special cases of the present theorem (2-26).

These will be shown in the following paper in the form of various examples.

    It should be mentioned here that expression (2-23) has somewhat different

features as was given by Linden and Abramson5), who took essentially as g(2)
==sinM"(Tzlh) and z,,=nh, Ihl$(m+1)!2iPVI with a constant Wl 'The expression

(2-32) holds only under the condition (IV) in (2-31).

            g3. The properties of the Expansion.Formula of
                   the Generalized Sampling Theorem

    We shall take ¢(2) as the expansion-formula of the generalized sampling
theorem (2-1'):

        ¢(2) EEiZgz5,,(z) (3-1)              n
           =: ;;,l ,ii.li,` ,#, 4'l,''il,lilllSi;'i''(2(iiE,geZ'li'i g(z)' (3-2)

and consider the properties of the function di(z). The function

di(2) is of the fo!lowing characters:

    i) The generalized sampling function:

        h(2)= (. -g.(:))m.+i=Hl(.), (3-3)

has a finite value at z=z., i. e.

                        '        ILII,},h(z)==(m.ll1).t'[2SliLbliiig(z)].=..<+oo･ . (3-4)

This is seen directly from condition (II) in (2-3).

    ii) From (3-1) and (3-2), we have:

                                                                '
        ip.(z) H(z)-£li (Zi.Z, ")S t9.,,Cj･f5y''･HSf-j' (3-5)

                =gz//"[ (Zii ")S ･[ 2ZS, (f(x) H(z)1].=.., (3ny6)

with
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                        g(z)          1
        H(2) = h(Z) == (2-2n)Obn+1 '

Accordingly, the function ¢.(x)H(z) is considered to be expressed in a truncated
Taylor series (i. e. with finite initial terms) of the function f(z) H(x) around the

POMt 2==fX},.

in thi gi )expWteessSi.hoanll(3C-06n)iider the Iimiting cases: zr'x. and 2->x.(t 2.), respectively

Diffefg"ti/r',",g{¢b.o(L?21i(d;)I=Oi¥.;i3(-.21t.:.)1･;,kh7ie.,s,{f(.)H(x)}].=.,,, (3-7)

for O(fe(M.･
    For x`->z., we have H(z},)*O, and obtain from (3-7):

        [2SIIi (di"(z) H(z)]].....'=[i!Iikk (f(x) H(z)]].=..' ' (3-8)

The expression (3-8) leads to:

        ¢£k'(Zn)==-1(ISLk), (fOrO(k(Mn) ' (3-9)
with

        .7c£k) = [ 21ia .7C<x)].=..･

On the･other hand, we have, from (3-6):

        ,ip,,(x)-h(z)･tYi(Zi.Z,'`)S･[2ZiS,(f(2)H(x)]].=...' (3-10)

            --H h(.or.)-2(2), (3-10,)
and

        dk k                =Z,C.･h(P)(x)･2(k-P)(2). (3-11)        clzk ip?t(2)

                 p--o

we oFbOtar
ii'f'rii)th7E(:lz:')illl7]iere i4 are ZerOs (of (m7 +1)-th order) of the function g(2),

        ip5,k'(i;)==O,forO<k(7n.andforallriEn. (3-12)
with

        h(P)(z.)=O,forO(p<k(m.andforal}r#n (3-13)
because the function h(z) has a zero of (nz,.+l)-th order at the sampling point
z==z,,(42,,).

    From (3-9) and (3-12), we have

       ¢5ek'(Z,-)=:flS3''6n," fOr O(k(Mn (3-14)
withKronecker'sdelta6.,.･ ''
    From (3-14), we obtain:
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        di(k)(j;;.) = Z szsS,k)(Erb.) = Z-ESk)･6,,,,.

                 ?l 7Z .                                              '              --fS."). for O<k(m,., afid for any sampling'points z=x,.

                                                                 (3-15)
                                               '    iv) If 2 lies in the convergence domain around the point 2=z. of the
Taylor series (3-6), when m. goes to infinity, we have '

        ip.(2)H(z)""H2)H(z). .' (3-16)
In this case, we have

        ¢,L(2)=f(z), (form,,->oo) (3-17)
in the convergence domain (around the point z=2.) of the Taylor series (3-6).

                 S4. Remarks on Some Examptes of the
                      Generalized Sampling Formulae

    A) For the case m=O !n (2-23), we obtain the sampling formulae (2-26)
which were suggested by van der po122).

    a) If we take g(z) as a polynomial of degree s, then the expression (2-26)

is nothing but Lagrange's interpolation formula. If f(2) is a polynomial of degree

<s-1), then the right-hand side of (2-26) expresses exactly f(x). Even if the

function f(2) is a polynomial of a higher degree, the expression (2-26) can be

used as an approximation formula23).

    b) If we take g(2) in (2-26) as sin(cr2+P), with two constants cr and P,

then we obtain Someya's sampling formulai3), which reduces to Shannon's sam-
pling formulai`)'i5) for the case P=::O.

    c) If the function g(2) in (2-26) is selected to be equal toi8)N20),23),2`):'

       i) g(z)== cos(crcos-iPz), crP*O

      ii) g(2) =2sinP2-AcosP2, P4O

      iii) g(z)=zcosPz-BsinPz, P±O
      iv) g(2)-JL(P2), P,eO

      v) g(x) === z.7;(P2)+h4(P2), P 7LO

      vi) g(z)-YL(crz).]L(Pz)-.];(evz) YL(Pz), evP 7EO

    and

     vii)g(z)=Reexp[i(cr22+P)], ev40 ,
respectively, with Bessel function .JL(4), Neumann function YL(2),' tind constants

cr, P, A, B, and h, then we obtain the sampling formulae previously given by
several authorsi)N5),7)Ni2),i6),i7).

    B) For the case m)1 in (2-23), the function g(z) is practically taken to be

                                                '              g(z) =:: gbM+i(z), (4-1)
where ¢(x) is an entire function with simple zeros at points 2==zi,. Then the

sampling formula (2-23) is slightly simplified, with H},k)'s given by (B-11) and with
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                                                  tt        h,,=(.ll)!g5,M'i)==(sb;,)"b"', 1'''''''' (4-2)

                                                      'and

           h5,SM") sl(m+1)! gS:'b+i+s-,')
        Sq' h. =r!(m+1+s-7bl' g5,onb'i)

          =:ll.S(lg)li)"bi+)it' ..,.,,lll.l,...,.., piqii,,!,..'(gb;z)p'(i, gb;:)q'(3i.t gba")ma''t'.

                    p+2Q+3ee+･･･=en+1+s-r
                                                                  (4-3)

    It is also convenient, for example, to take the function ip(z) in (4-1) as:

    a) ¢(x) =an orthogonal polynomial of degree s,

    b) ¢(z)=sin(az+P), with two constants a)EO and P,

and

    c) ip(2) will be taken resipectively as the function g(2) given in i)t･Jvii) of

c) in the case A).
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in Aachen. The authors' acknowledgements are also due to the Alexander von Hum-
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                               Appendix A

    The evaluation of the contour integral (2-8) is made as fo!lows:

We put

        J=2i.iS.(c-fE)4,)(c)dC, ･. (A-i)

and deform the curve C into a circle of radius R with its centre at the origin,

        I=2i.iS.(R,ief"(.R)4'ge)(R.ie)･iReae･de. ' (A.2)

Making the radius R infinitely large in the expression (A-2), we obtain:

        IL".Iil `iki-". 2i.'2,.a,>, f[ii ''R-Rs.1 'ji:,cie ,

        ' ' =limmax f(4). R
                               R- Izl' (A-3)                R-,oo cER,ie g((i)

From condition (III), we have:
                                                                 '
      '        limlli<O. ' (A-4)        R-,co

Thus, the integral (2-8) is proved to vanish as R becomes infinitely large:
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                limJ=- O. (A-5)                R-,oo

                               Appendix B

    We shall calculate the expression (2-12) by making use of g(2.) and its
derivatives. From the expression (2-10), we have the identity:

        h(C)･H(C)-1, '-, (B-1)
with

                 g(4)
        h(4) = (q-z.)"'n+i '

Differentiating both sides of this expression with respect to 4, we obtain

        h,(C)･H(C)+h(4)･H'(4) -O,
        h"(()･H(C)+,C,ht(C)･Ht(4)+h(4)･H"(C) -O,

        h(k)(4)･H(4)+,C,h(te-i)(C)･H,(4)+.qh(k-2)(4)･H7t(C)

             + ･･･ +,C,-,h'(C)･H(k-i)(4)+ h(c)･H(k)(c)= o.

    A system of the above (k+1) equations (B-1) and (B-2) can be solved with

respect to (k+1) unknown functions: H(C), H'(C), H"(C), ･･･, and H(ts)(4).

We have:

                 Ds(4)
        H(S'(4)=ti,(c), (s=O,1,2,''',k) (B-3)
with

         A,(C)-h(C), O, -hs+i(c),
                h,le,'h[c)･. O

                 , ., .. (B-4)                hCs-i)(4),,-,C,h(S-2)(4),･･･,h(4), O

                h(s)(e, ,q h(s-i)(c), ･･･, ,q-,h'(O, h(c)

and

        D,(4)=-h(C), O, ,1.               h,ge, hcc)･.o･ O ･9

                 ::･. :- (B-5)                h(S-i)(4),,-,C,h(S-2)(C),･･･,h(4), O -

               h(s)(c),,C,h(smi)(C),･･･,,q-,h'(4), O

    We shall refer to the expression (2-10) and the condition (II) in (2-3), i.e.,

g(g) can be expanded in Taylor series around the point C=x., as fo11ows:

              oo        g(C)=XAon.+o''(4-f:}t)M""", (B-"6)
              oL-1
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with,

Ao' = -j}'Fl

Theh we''can see

h(k) (C)

[ dr
 dc7i

at

dk
d4k

g(C)]c==gn'

once :'l

h(4) -
dk

(r=positive

g(4)

dCk (C-z,,)Mn+1

. (k ?/s)! .(4-2.)s,

integers)

and

h5z"'

h7v

  co
== Z Amn+i+k+s
 s=o

k! (Mn + 1)l g5,Mn+i+k)

with

and

h5,") = [

(Mn+1+k)!

dk
d4k

h (4)]c-x.'

   g5,k' - [ ddckk

From (B-3), (B-4),

9(4)]c-x.'

g,(,"bn+i) ,

H(it) =
 7e

(- 1)k

hn

1,

h;,

h,, )

h"
 ?b
hov )

i
h5,k-i)

(k = positive

(B-5), and

k-ICI

o,

(B-9),

  1,

   hi
2Clruc1,

  i
  h5,th-2)

integers)

we obtain:

 hn

h(k)
 71
 hn '

 h;z

 h,, '

 h;z'

 hn '

 I
hS,k-i)

'

k-1C2

o,

o,

1,

i . -
h;,k-3)

/t

-i-

o

. -.t/

kCl

 hn '
h5,k-i)

kC2

 h,, '
h5,k-2)

hn )
h5,k)

h,, '

'

1

',k-ICI

h
 7L

.,･
, thCk-1

1

hn

o

?

-21ri-i, o

o

E

o

hn '

  1,

   ht
2Cl -tt1 ,

  i
  h?(,k-2)

k-1C2

1,,

--:
h5,th-3)

,

kCl

  h,  7b
h5,k-2)

0

 hn )
h5,k-i)

h
 n

'

i--

.

,

,

kC2
hn ) ,

1

kCk-1
h;,

h,,

,

(B-7)

(B-8)

(B-9)

(B-10)

(B-11)
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with

         H5zk'==[ddih H(4)],...,,, (B-12)

             h5,S-'-) s! (m.+1)l g£"bn+i+S-")         Sq' h. =rt'(m.+1+s-7)!' gsmn+i) , (Bm13)
and

         hn = (.,, 1+ 1)t g5tM't") = Izllii,, = .HIJ,so) , (B-14)

for positive integers k, s, and r.
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