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Integral Transform and Generalized

Sampling Theorem

7/

Ei Iti TAKIZAWA¥*

Jenn-Lin HWANG**
(Received August 15, 1971)

Abstract

A generalization of the sampling theorem is presented under the consideration
of the reciprocity relation of integral transforms.

New sampling formulae, being based on the generalized sampling theorem
presented here, are also given, one of which includes Shannon’s sampling theorem
as a special case.

Zusammenfassung

Unter Beriicksichtigung der Reziprozititsrelation der Integraltransformierten
ist eine Verallgemeinerung des Abtast-theorems (sampling-theorems) angegeben.

Auf Grund des hieran angegebenen verallgemeinerten Abtast-theorems sind
neuen Abtast-formeln auch prisentiert, eine von denen das Shannon’sche Abtast-
theorem als einen besonderen Fall enthilt,

§ 1. Preliminaries

The generalization of the sampling theorem and the reconstruction of a band-
limited function from its sampled values and derivatives were made by Kohlenberg?,
Fogel®, Jagerman and Fogel®, Bond and Cahn®, and Linden and Abramson®.
The sampling theorem was also generalized by Balakrishnan® to the case of
a continuous-parameter stochastic process. On the other hand, it was pointed out
that the sampling intervals need not be uniformly distributed”.

In the previous paper®, the authors presented a generalized sampling theorem
along the line of consideration of the reciprocity relation of integral transforms
and gave some of its examples, which include Someya-Shannon’s sampling theo-
rem”™™ as a special case. There the sampling intervals were not uniformly
distributed. Recently the authors were informed that the sampling theorem was
also generalized by Isomiti® in connection with the generalized frequency domain.
Some of his results agreed with those given by the authors®. Here in the present
paper, the authors wish to discuss the series-expansion of functions in an orthog-
onal set of functions, and also to give some of the new sampling formulae.

§2. Generalization of Sampling Theorem

Let f{2) belong to L,, and let the following reciprocity relations hold :
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Fls)= <, fELK(s, Hf@dt, for seB (1)
and
f(t)=J;I-FESBIZ(t, S Fs)ds. for €A (2)
From (1) and (2), we obtain at once :
SAK@, DR, o) dt = d(s—a), (3)
and
SBK(t, ) K(s, <) ds = 8(t—1), (4)

with delta function §(#).
Further we assume that

F(s)=0. for s¢DCB (5)
Accordingly, from (2) and (5) we obtain the following expression :
f(t)=j;‘-F=S & (z 5) Fls) ds. (6)
D
Let F(s) be expanded in a complete orthogonal set of functions :
{¢n (s)3 SD B (5) $u(5) S =T O (m, m = integerS)] , (7)
in the domain DCB, i.e.
F(s)= 3 a,p,(s). for seDCB (8)

The expression (8), being multiplied by ¢,,(s) and integrated over D, gives:

SD Fls)gn(s) ds = T SD BalO P s = T T b= Tr - (9)
From (6),(7), (8), and (9), we obtain:

f(t): gt_]'FZ Za7L.°%l_1'¢7L

_ Z( Tl SD F(5) 6,(5) ds>- SD R(t,5) 6u(s) ds (10)

If the functions f(2), {¢.(s)}, and the integral kernels K(s, #) and K(z s),
given, then we can construct a series-expansion of f{¢) by means of (10).
If we can take: '

bu(s) = K (2., 5), for seD (11)

with constants 1, i.e. if the kernel K(i,, s) can be put equal to ¢,(s), then
expression (10) is simplified into :

=3 < Tln SD Fis) B2, ) ds)-SD R(t, ) K3, 5) ds

7

are

the
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=2 Tln f(xn)-gp K(t, ) K(4,, 5) ds, (12)

by means of (6). The expression (12) gives a generalized sampling theorem®.
The points at the variable z:

t=2,, (n == integers) (13)
are called sampling points, and the function g¢,(¢), defined by :
(D)= M;l-gbn:g R4, 5) 6,(s) ds = S R, )R, s)ds , (n = integers)
D D
(14)
is the sampling function.

If the set of functions {K(1, s); n=integers} is not necessarily orthogonal,
but complete and linearly independent, we can find normalized biorthogonal set
{¢.(s); m=integers}, in such a way that

S K(lﬂl, S) ¢7Y- (S) ds = 67”4,72 ki (15)
D

is to be satisfied. From the completeness of the set {K (1,,s); m=integers), we
have :

b K (2, ) ¢,(0) = 0(s—0). (16)
Isomiti'® expanded F(s) in {¢,(s); n=integers}, and obtained :
F(s)= ; b, (s) for seDCB (17)
with
b, =SD R(x,, 5) F(s) ds. (18)

From (6) and (18), we obtain at once:
b, =SD Rk 5) F(s) ds = f(4). (19)
Operating ;' on (17), we obtain, by means of (6):
)= £t F = 2o | R 50l ds
= T Rt ds. (20)

The expression (18) or (19) becomes to:

F) = SD ds-R(1,, 5)- SA de-K(s, ) £(£)

_ S e fe) gb ds- R, $) K (s, 2), (21)

by means of (1). The expression (20) is the generalized sampling theorem obtained
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12)

by Isomiti®®, and the expression

0.(2) =S K¢, 5) da(s) ds, (n=integers) (22)
D
is the sampling function, with sampling points #=2, (n=integers) and with

gn (Zm) = S.D K<2m7 S) ¢n(s) dS = 5711,,71 .

The idea of the generalized sampling theorem was also given by one of the
present authors, Takizawa, in his book'™ of information theory.
If we take {K (2, s)} to be orthogonal, then we have at once

{(rl)n(s)} = {¢n(s)} :{K(zm S)} ’ (28)

as was given in (11), the expression (20) reduces to the sampling theorem (12),
the dual vector {¢,(s)} for {K(A,, s)} reducing to {K(2,, s)} itself.
The corresponding expressions of F(#) for (20) and (21) are as follows :

)= 2 Fl)- | Kt ) 9050 s, 24
and
F@%{;ﬁﬂﬁL@dm%gK@@, (25)

with the sampling function :

pule)=| (6,9 ) ds, (26)

and the sampling points Z=p, (n=integers), under the condition that for the
complete set {K(p,, t); n=Iintegers} we have a set of biorthogonal functions {¢,(s);
n=integers} in the domain ECA, i.e.

SK@m@@@ﬁ:%w for teECA 27)
B

From the completeness of the set {K(u,,s); m=integers}, it follows that the
expression :

; K(/lm S) ‘Zn(g) = 5(5— ‘7) > » (28)
holds.

§ 3. Properties of Sampling Functions and Related Integrals

Now, let us take sampling functions {g,(#); n=integers}, {h,(f); n=integers},
{pa(t); n=integers}, and {q,(¢); n=integers}, defined as follows :

%@ELK@Q%@ﬁ, (29)

mmELK@®%®$=LK@@fwmﬁ, (30)



Integral Transform and Generalized Sampling Theorem 115

o= K9 7.0)ds, 1)

and
a(f) = gE (s, ) K(p,, 5) ds. (32)

From (3) and (4), we have:

) 0 st [0, for oeD
[[Keno@de={ g o0=ds= """ " @9
B . MIIA{V(RM G), for o€D
L Rz, o) ho () dt #S .05 dlo—s)ds = - o en  ©9
— {5t 8(e— SJJ,L(U), for geE
|, Ro0p.0d={ s.yoo—sds= " 0" @)
and
g _ o B JK(/J,,, ), for o€E
SB Kz ) q,(2) d —SEK(;;,L, ) do—s)ds =" C
By means of (3) and (15), we obtain:
L (&) () dt = SD ds- SD do- () Gola)- 5a—s)
= SD (obm (S) 915,1(8) ds = SD I?um S) ¢71L(s> ds = 5m,n ’ (87)

for any integers m and 7z This expression (37) shows that any function of
{9,.(t) ; n=integers} and any function of {&,(#); n=integers} are mutually orthog-
onal in the domain D. Similarly, we obtain, from (4) and (27):

[ 2ol @@y dt={ 5.6 K5 ds = . (38)

We shall return to the expressions (20), (21), (24), and (25). They are written
as follows :

£ = SF10) 0,10, (39)
o) = £ hate)de, (10)
F() = 5 () pld), (41)
and
i) ={ FO)q.)de, (42)

in terms of (29)~(32).
Let &(z) be any function which can be expanded in {g,(¢); n=integers}, i e.

E<t) = ; Cngn(t) ’ (43>
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with constants c¢,, then the integral operator :

7={ de Do hie)={ de-o—), (44)
applied to (43), is the identical operator, in the sense that
T-E(r)=£(). (45)
The proof of (45) is qulte obvious, if we put (43) into (45) and refer (37).
Considering (4) and (44), we shall take
y R, 5) f (46)
with
£0 = Ko Fs)ds, (47)
and
= a0 fod, (48)
with
FO = T hald). | (49)
Then we obtain, from (2), (3), (47), (39), (49), and (37), the following expressions :
1A= ae-{ ds-Kis, 7% | do- Rt 0) Flo)
=§E ds- F*(s S -F(a)~5(s—o)=SBF*(s)F(s) ds, (50)
and :
1A= e B ) hnl0)-F(0) 000
SPIDIFLLIRVIERIDINED WAlCAVICE 51
with the norm | f]| of function f{z):
1A= Lo, 52

The expressions (37), (45), and the generalized Parseval equalities (50) and (51), were
given by Isomiti'®,
Now we shall differentiate (39) with regard to #, then we have

SO = T fn) 0:(0). (53

On the other hand, we apply the generalized sampling theorem (39) to f’(#), then
we obtain :

S8 =21 (%) 0a(2) (54)

with
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ra=| G

From (563) and (54), we have

PO= TS 0) 0.0 = T Ah) ohld). (55)
Accordingly, from the m-th derivative of f{¢), we obtain :

S = zf = () 037 (8) = Zf =B (2) 958 (2) s . (56)
for any integers 7 and %2 (0<r<m, 0<i<m), and with

FOE =T, = integers)
and

d/c
g (=) = v 2 ga(2) . (k = integers)

Here, we shall mention an expansion-formula, which contains both Taylor’s
and sampling formulae. If a function f{#) is expressed in (39), i.e

A= 5 F) 0.0, 57
and if we can expand f(z+¢) in a Taylor series, as
ferg)= 5 e o, | (59
then we have an expansion-formula :
Fre)= 5 B & 0 60 (0 (59
= S ST ) e, (60

m=0 n

for any integers 7 and k (O<r<<m, 0<<h<m).
For the special case of £=0, the expressions (59) and (60) reduce to (57).
While, for the special case of =2, (with s fixed) in (59) and (60), we have

S, +8) = Z )

m=0 n

P& SR 0 (4)

= Z Z Em f(m)( n) gn( s) Z Z o 1 Sm f(m)( n) n,s

m n m n

=§m@ﬂw> (61)
and
FO= T 5yt 62 o0 621, (62)

for any integers » (0<r<{m).
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The expression (61) is nothing but the usual Taylor expansion of f{,+£), while
the expression (62) gives f(¢) in terms of the derivatives of sampling functions
g.(%s) at a fixed point A,

§4. Examples of the Sampling Formulae derived from the Generalized
Sampling Theorem.

Example 1

We shall take the Fourier transforms in (1)} and (2):

Kis, ) = ——explist],  A=(—oo, +00),

2r
K(t,s)zexp [—its]> B:(—OO, +OO),
¢n(s) = K(zna S) = €Xp [———Z‘/an], D= (—‘B: :B) »
A = n;/z T, n=integers, k=real number given arbitrarily,

8
) S exp [—ilﬂbs] ¢ exp [ + Z'27ls] CZS = TWL * 57’L,‘7L b
-8
Vo= 218 >

then the sampling theorem (12) reads as follows:

fty= “_2%7L§mf<— n‘—B—/e n)- 2 sin (‘3;—}-_(7]’:-—/8) 7)
t+~—-—ﬁ T
T n-tk sin (ft—(n+ k) )
:7t§wf< 18 e ﬂ>. ‘Bt—(n'i'/é)n' ) (63)

The expression is nothing but Someya’s sampling theorem® given in 1949. The
expression (63) gives f{#) in terms of the sampling function sin(fz—(n+ k&) x)/(fL
—(n+kyx), with values of f((nr+ kn)/B) at sampling points ¢=(n+k)x/8 (n
=integers). If we put 2=0 in (63), we have Shannon’s sampling theorem'® ™,

Example 2
We shall take the Fourier cosine-transforms for (1) and (2):

z

K(s, )= - cos (st), A=(0, + o),

K(t,s)= cos(ts), B=(0, +c0),

B, (5) = K(4,, 5) = cos (1,5), D=(0,p),
B in (22,8)

=g e

where 1,’s are the roots (arranged in ascending order of magnitude) of the equa-
tion :

2, tan (2,8) = M, (64)

with a constant M. Then the expression (12) for an even function f{z), takes form :
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St = % > ——Sl—nl(Z—mGﬁ F(s) cos (1,5) dS)-S:cos (#5) cos (4,5) ds

0

22,5
2 cos (%) ttan(Bt)—M
= _[B« - f(2n) 1 M : e tz_zgl CcOs (‘@t) y (65)

22,8
with sampling points #=1, (n=integers), and the sampling function :

2 cos (1,8) ttan (B)— M

gn(t) ="n" : ' 7__ 2 Ccos (ﬁt) . (66)
B 1450 (24,8) ©#—2
22,8

Example 3
We shall take the Fourier sine-transforms for (1) and (2):

K(s, )="2 sin (sf), A=(0, +o0),

K(z,s)= sin(zs), B=(0, + o0},

¢n(5> = Z‘f('{m S) == sin (Z,LS) ’ D= (O: .8) s

B sin (24,,8) }
Tn="3 {1_ 2.8 §°

where 2,’s are the roots (arranged in ascending order of magnitude) of the equa-
tion :

A, cot(1,8)=N, (67)

with a constant N. Then the expression (12) for an odd function f{z), becomes to:

2 1 # . L .
S = ¥ Z—m—G F(s) sin (2,5) ds>~g sin (¢s) sin (4,,5) ds

n 1 anﬁ 0 0
= _%_ %: f('%b) 1 _S% ' ’ Cottz(ftzi——N sin ([Bt) s (68)

22.B
with sampling points z=2, (n==integers), and the sampling function :

g.(t) = _%-. S’SIIIE’I(ZQ - tcottz(f’?{N sin (B¢). (69)
- 22,8

The formulae (65) and (68) were obtained by Kroll' in connection with the
solution of an integral equation.

Example 4
Let us take the Hankel transforms of order v>—1/2 for (1) and (2), and take
the Fourier-Bessel series'® for F(s):
\/_tf(t) € Ll (07 + OO> ’
Kis, t)=tJ,(st), A=(0, +o0),
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K(z, s)=sJ,(zs), B=(0, +o0),
Pu(s) = L(Jns) 5 D=(0,8),
with the orthogonality relation :
sﬂ SJ» (jms) Jv(jns> ds= Tm' am,n P
0

and

‘82
Tn = 7 J%'H(jnﬁ) >

where j,8 (n=1,2,3, ) are the positive zeros of J,(z), being arranged in ascend-
ing order of magnitude, i e.

Ju)=0. (70)
The expression (12) takes form :
boo #
110 =5 5 e (| 500 1G9y )| 5009 7. )
2% Jn J.(B)

=T ESU T GE )

n=1

2 jz »
with sampling points =7, (n=rpositive integers), and the sampling function :

0u(2) = _%' Jﬁf{}m) ' 2]@ ‘ (72)

The formula (71) was already given by the present authors®.

Example 5

We shall take the Hankel trasforms for (1) and (2) just as in Example 4.
The function F(s) is assumed to be expanded in the Deni expansion' in the
domain D=(0, f). We shall take

K(s, £) = tJ,(st), A =(0, + o),
Kz, s)= sJ,(ts), B=(0, +o0),
¢n( ) - (Zn‘g) D (O’ 18> >

with the orthogonality relation :
#
S SJu(/zmS) Jv(/zns) ds = Tm * amm. 3
0

and

1
="z {(zi + 1) ,Bz—uz}Jﬁ(,sz) :

where 2,’s (n=1,2,3,...) are the positive roots (arranged in ascending order of
magnitude) of the following equation :

2t S8+ hJ (2.8 =0, (73)

with a constant A.
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Then the expression (12) becomes :

f(t) = ZE:Q (Xfl-l-h /{EvZ} Jz 2,“8) <S SF(S) (Z S) ds> S sJ,(ts) J,(Zns) ds

e A ¢J,(Bt)+ hJ,(B1)
R A (v ey o /) R

(74)

with sampling points =24, (n=positive integers), and the sampling function:

2 ¢ (Be)+ hd . (BY)
‘ g.(t) = —28 {2+ h?) B—1?} J,(4,P) ‘-tz——li—’

(75)

The formula (74) was already given by Kroll'¥,
Let us tend A to infinity in the expressions (73) and (74), then we see that
they reduce to the following expressions, respectively :

T(uf) =0, (76)
and
)= =55 ) e (77)

The expressions (76) and (77) are nothing but the expressions (70) and (71),
respectively. Accordingly, the expression (71) is a limiting case of (74).
If we put v=1/2 in the expression (74), then we obtain

B2, t cos (Bt)+ ( )sm (B)

G5+ ) B fsin ) VT (P—2)

2

SO =—2p 3 fl) |

(78)

where 1,’s are positive roots of the following equations, being arranged in ascending
order of magnitude :

2, €08 (2,,5) +<h 26 ) sin (1,8) = (79)
In the expression (78), if we replace f{¢) and f(1,) by fl&)/d¢ and fA)/W 2

respectively, then we obtain :

e 2 ¢ cot (ﬂt)+<h—~2%>
SO =—28 2 ) T : sin (6z).
et {(22 +h?) g _Z} sin (2,8) 4
(80)
Further, if we put
1
h—pg=—N, (81)

in the expressions (79) and (80), then the expressions (79) and' (80) reduce to (67)
and (68), respectively.
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If we put
1
h= 25 N=0, (82)
in the expressions (80) and (79), then we obtain :
2 e 1 tcos (Bt
FO== 55 o)ty Lo )
with
cos (1,8)=0, (84)
i.e.
2n—1
2= ’;B T, (n=1,2,3, ) (85)
and
sin ('znﬁ) ( )n+1 (7’1 = 1) 2a 3> ) (86)
Then the expression (83) reduces to:
2n—1 " . Bt cos (i) '
fo=25 {25t x) (-1 iy 87)
4

The expression (87) corresponds to Someya’s sampling theorem (63) for an odd
function f(z), if we take k= +1/2.
If we put v=-—1/2 in (74), we obtain:

+oo Bk, £sin (.Bt)“< 28 ) cos (Bz)
£O =283 12 i - - ,
{(X?L—l— A5 [32—?} cos (1,8) JE(2=2)
(88)
with
Ay, SIn (lnﬁ)—<h—2iﬁ> cos (1,8)=0. (89)

In the expression (88), if we replace f(¢) and f(4,) by fH/W¢ and flA)/W.,

respectively, then we obtain :

e 4 ¢ tan (Bz)— <h — —2%>
J) =28 2 fa.)- 1 : cos (ft) .
e {(zi + 1) BZ_Z} cos (1,8) r£—2
(90)
Further, if we put
h—fz% — M, (91)

in the expressions (89) and (90), then the expfessions (89) and (90) reduce to (64)
and (65), respectively.
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If we put
1

h= ﬁ s M= 0 N (92)

in the expressions (90) and (89), then we obtain the following expressions :
2t 1 £ sin (B2)

f( ) ﬁ nZ:1 f( n) cos (ln‘B) ’ tZ_zi ’ (93>
with

sin (1,8) =0, (94)
ie.

=g, (n=123) (95)
and

cos (ZMB) = (__1)71, - (7’1 = 1: 2’ 3, . ) (96)

Then the expression (93) reduces to:
nx .. Btsin (Bt)
CF ) gt

The expression (97) corresponds to Shannon’s sampling theorem for an even
function f(z).

=23 f

n=1

(97)

Example 6

We shall take other Hankel transforms due to Weber™ for (1) and (2)
namely :

>

tf(t) €L, (p, + o0), azp>0,

F(s)= SA K(s, &) f(t) de, for v>= —%- (98)
and

G.(at) f() = SB R, 5) Fls) ds, for teA (99)
with

K{(s, t) =T ,(ta, sz, A =(p, +co),

K, s)=sT,(ta, t5), B =(a, +o00)

Tu(x, 2) =Y, (z) J.(z)—J.(2) Y,.(2), (100)
and

G.(z)= Ji(z)+ Yi(2), (101)

under the condition that the integral:

S+mzt]"(t) dt< + o0,

»

is absolutely convergent.
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We shall take another Fourier-Bessel expansion'” for F(s) of the form :

F(S)::Zjlan%(s), for se DCB
with

buls)= Tl &), D=l B),

[ STt 205) Tt 205) d5 = T O (102)
and
where 2,’s are the positive roots of the equation :

T\(Zuet, 2,8) =0, (104)

Yv<27la) Jvum@) = J,,(X,La) Y,,(Z,lﬁ) .
From (99), the expression (12) becomes to:

7’ L S (2.B) d T (az, B)
H0="2 B = Jiap G S By 10 2B a0y 6 ey

_ too BG,(20) J,(A,0) J,(2.8) T, (at, Bt)
R = A e N R R AT el I
with sampling points ¢=2, (n=1,2,3, --+), and the sampling function :
. G () J,(2ut) J,(20) T (at, Bt)
o= - BB (PR Glad (106)

In the expression (105), if we replace f{¢) and f(4,) by f(£)/G.(at) and f(4,)/
G, (aA,) respectively, then we obtain

g 2 J, T,
== 5 fon) Gl JEL LI P - aom

n=1

with sampling points #=2, and the sampling function :

o B TE) Tt )
gm.( ) -0 J%(X,&Y)““J%(Zn‘g) ’ tz_xi ’

The expressions (63), (65), (68), (71), (74), (78), (80), (87), (88), (90), (97), (105),
and (107), are examples of the sampling formulae derived from our generalized
sampling theorem (12).

(108)
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