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Abstract. We consider a long-range Ising antiferromagnet (LRIAF) put in a transverse field.
Applying quantum Monte Carlo method, we study the variation of order parameter (spin
correlation in Trotter time direction), susceptibility and average energy of the system for
various values of the transverse field at different temperatures. The antiferromagnetic order
is seen to get immediately broken as soon as the thermal or quantum fluctuations are added.
We also discuss the phase diagram for the Sherrington-Kirkpatrick (SK) model with the same
LRIAF bias, also in presence of a transverse field. We find that while the antiferromagnetic
order is immediately broken as one adds an infinitesimal transverse field or thermal fluctuation
to the system, an infinitesimal SK spin glass disorder is enough to induce a stable glass
order in the antiferromagnet. This glass order eventually gets destroyed as the thermal or
quantum fluctuations increased beyond their threshold values and the transition to para phase
occurs. Indications of this novel phase transition are discussed. Because of the presence of full
frustration, this surrogate property of the LRIAF for incubation of stable spin glass phase in
it (induced by addition of a small disorder) should enable eventually the study of classical and
quantum spin glass phases by using some perturbation theory with respect to the disorder .

1. Introduction
Quantum phases in frustrated systems are being intensively investigated these days; in particular
in the context of quantum spin glass and quantum ANNNI models [1]. Here we study a fully-
frustrated quantum antiferromagnetic model. Specifically, the long-range antiferromagnetic Ising
model put under transverse field. The finite temperature properties of sub-lattice decomposed



version of this model was already considered earlier [3, 4]. The quantum phase transition and
entanglement properties of the full long-range model at zero temperature was studied by Vidal
et al [5]. Here we present some results obtained by applying quantum Monte Carlo technique [6]
to the same full long-range model at finite temperature. We observe indications of a quantum
phase transition in the model, where the antiferromagnetically ordered phase gets destabilized by
both infinitesimal thermal (classical) as well quantum fluctuations (due to tunneling or transverse
field) and the system becomes disordered or goes over to the para phase.

The ordered phase of the long range Ising Antiferromagnet (LRIAF) seems to be extremely
volatile and loses the order (freezing of spin orientations) at any finite fluctuation level; classical
or quantum. However the LRIAF model has the required frustration of the Sherrington-
Kirkpatrick (SK) model, which could support the spin glass order, but for any disorder. To
check if this ‘liquid’-like antiferromagnetic phase of LRIAF can get ‘crystallized’ into spin-glass
phase if a little disorder is added, we study next this LRIAF Hamiltonian with a tunable coupling
with the SK spin glass Hamiltonian and study this entire system’s phase transitions induced by
both thermal and tunneling field. Indeed, the stable SK spin glass phase is observed for thermal
or quantum fluctuations below finite threshold values.

We employ the analytic (mean field) solution of the transverse Ising model with long-range
interactions can be in presence of the special kind of quenched disorder appropriate for the SK
spin glasses. With this, we study the phase diagram for the SK model with LRIAF bias in a
transverse field. We again find that the antiferromagnetic order is immediately broken when
one adds an infinitesimal transverse field or thermal fluctuation to the system. However, an
infinitesimal SK-type disorder is enough to make the system ‘crystallized’ into a glass phase.

This paper is organized in the following manner. In Section 2, we introduce the pure quantum
LRIAF model and then discuss the (finite temperature) quantum Monte Carlo results. In Section
3, we consider the SK model with antiferromagnetic bias in a transverse field, and discuss the
(analytic) mean field phase diagram. In Section 4, we present some discussions on our results.

2. The pure LRIAF model
The Hamiltonian of the infinite-range quantum Ising antiferromagnet (without any spin glass
disorder) is

H ≡ H(C) + H(T ) =
J0

N

N∑
i,j(>i)=1

σz
i σ

z
j − h

N∑
i=1

σz
i − Γ

N∑
i=1

σx
i , (1)

where J0 denotes the long-range antiferromagnetic (J0 > 0) exchange constant; for convenience,
we fix the value J0 = 1 in this section. Here σx and σz denote the x and z component of the N
Pauli spins

σz
i =

(
1 0
0 −1

)
; σx

i =
(

0 1
1 0

)
; i = 1, 2, ....,N.

h and Γ denote respectively the longitudinal and transverse fields. We have denoted the co-
operative term of H (including the external longitudinal field term) by H(C) and the transverse
field part as H(T ). As such the model has a fully frustrated (infinite-range or infinite dimensional)
co-operative term. At zero temperature and at zero longitudinal and transverse fields, the
H(C) would prefer the spins to orient in ±z directions only with zero net magnetization in
the z-direction. This antiferromagnetically ordered state is completely frustrated and highly
degenerate. Switching on the transverse field Γ would immediately induce all the spins to orient
in the x-direction (losing the degeneracy), corresponding to a maximum of the kinetic energy
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Figure 1. Variation of the order parameter r (correlation in the Trotter direction) with transverse field Γ for
T = 0.10, 0.20 and 0.30 (h = 0) for two different system sizes (N = 100 and 200). r = 0 for large Γ. The inset
shows the plot of r against the scaled variable Γ/T .
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Figure 2. Variation of the susceptibility χ with transverse field Γ for T = 0.10, 0.20 and 0.30 (h ≤ 0.1) for
two different system sizes (N = 100 and 200). The corresponding susceptibility χcl for various temperatures for
N = 100 and 200 for the classical system are shown in the inset. χ converges to the classical values χcl for large
Γ.

term and this discontinuous transition to the para phase occurs at Γ = 0. However, at any finite
temperature the entropy term coming from the extreme degeneracy of the antiferromagnetically
ordered state and the close-by excited states does not seem to induce a stability of this phase.

2.1. Monte Carlo simulation
2.1.1. Suzuki-Trotter mapping and simulation This Hamiltonian (1) can be mapped to a
(∞ + 1)-dimensional classical Hamiltonian [6] using the Suzuki-Trotter formula. The effective
Hamiltonian can be written as

H =
1

NP

N∑
i,j(>i)=1

P∑
k=1

σi,kσj,k − h

P

N∑
i=1

P∑
k=1

σi,k − Jp

P

N∑
i=1

P∑
k=1

σi,kσi,k+1,
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Figure 3. Variation of average energy E with transverse field Γ for T = 0.10, 0.20 and 0.30 (h = 0) for two
different values of N(= 100, 200). The corresponding average energy Ecl for various temperatures for N = 100
and 200 for the are shown in the inset. E converges to the classical values Ecl for large Γ .

where

Jp = −(PT/2) ln(tanh(Γ/PT )). (2)

Here P is the number of Trotter replicas and k denotes the k-th row in the Trotter direction. Jp

denotes the nearest-neighbor interaction strength along the Trotter direction. We have studied
the system for N = 100. Because of the diverging growth of interaction Jp for very low values
of Γ and also for high values of P , and the consequent non-ergodicity (the system relaxes to
different states for identical thermal and quantum parameters, due to frustrations, starting from
different initial configurations), we have kept the value of P at a fixed value of 5. This choice
of P value helped satisfying the ergodicity of the system up to very low values of the transverse
field at the different temperatures considered T = 0.10 and 0.20. Starting from a random initial
configurations (including all up or 50-50 up-down configurations) we follow the time variations
of different quantities until they relax and study the various quantities after they relax.

2.1.2. Results We studied results for three different temperatures T = 0.10,0.20 and 0.30 and
all the results are for N = 100 and 200 and P = 5. We estimated the following quantities after
relaxation :

(i) Correlation along Trotter direction (r) : We studied the variation of the order parameter

r =
1

NP

N∑
i=1

P∑
k=1

〈σi,kσi,k+1〉, (3)

which is the first neighbor correlation along Trotter direction. Here, 〈...〉 indicate the average
over initial spin configurations. This quantity r shows a smooth vanishing behavior. We consider
this correlation q as the order parameter for the transition at Γc. A larger transverse field is
needed for the vanishing of the order parameter for larger temperature. The observed values
(see Figure 1) of Γc are � 1.6,2.2 and 3.0 for T = 0.1,0.2 and 0.3 respectively. As shown in
the inset, an unique data collapse occurs when r is plotted against Γ/T and one seems to get



the complete disorder immediately as the scaling dos not involve any finite value Tc. This is
consistent with the observations in the next section.

(ii) Susceptibility (χ) : The longitudinal susceptibility χ = (1/NP )∂[
∑

i,k〈σi,k〉]/∂h, where
h (→ 0) is the applied longitudinal field, has also been measured. We went up to h = 0.1 and
estimated the χ values. As we increase the value of the transverse field Γ from a suitably chosen
low value, χ initially starts with a value almost equal to unity and then gradually saturates at
lower values (corresponding to the classical system where Jp = 0 in Eq.(2)) as Γ is increased.
Also at Γ = 0, the classical values are indicated in Figure 2. This saturation value of χ decreases
with temperature. Again the field at which the susceptibility saturates are the same as for the
vanishing of the order parameter for each temperature.

(iii) Average energy (E) : We have measured the value of the co-operative energy for each
Trotter index and then take its average E i.e. E = 〈H(C)〉 of Eq. (1) with J0 = 1. It initially
begins with −1.0 and after a sharp rise the average energy saturates, at large values of Γ, to
values corresponding to the classical equilibrium energy (Ecl for Jp = 0 in Eq.(2)) at those
temperatures. Again it takes larger values of Γ at higher temperatures to achieve the classical
equilibrium energy. At Γ = 0, the corresponding classical values of E are plotted in Figure
3. The variations of all these quantities indicate that the ‘quantum order’ disappears and the
quantities reduce to their classical values (corresponding to Jp = 0 in for large values of the
transverse field Γ.

2.2. A mean field analysis
First, Let us consider the case of pure LRIAF model and rewrite our Hamiltonian H in Eq.(1)
for J̃ = 0 as

H =
1

2N

(
N∑

i=1

σz
i

)2

− 1
N

N∑
i=1

(σz
i )2 − h

N∑
i=1

σz
i − Γ

N∑
i=1

σx
i (4)

If we now denote the total spin by �σtot i.e. �σtot = 1
N

∑N
i=1 �σi (where N |�σ| = 0, 1, 2, ....,N), then

the Hamiltonian H can be expressed as

H

N
=

1
2
(σz

tot)
2 − hσz

tot − Γσx
tot −

1
N

. (5)

Let us assume the average total spin 〈�σ〉 to be oriented at an angle θ with the z-direction :
〈σz

tot〉 = m cos θ and 〈σx
tot〉 = m sin θ. Hence the average total energy Etot = 〈H〉 can be written

as

Etot

N
=

1
2
m2cos2θ − hmcos θ − Γm sin θ − 1

N
. (6)

At the zero temperature and at Γ = 0, for h = 0, the energy Etot is minimised when θ = 0
and m = 0 (complete antiferromagnetic order in z-direction). As soon as Γ �= 0 (h = 0) the
minimisation of Etot requires θ = π/2 and m = 1 (the maximum possible value); driving the
system to paramagnetic phase. This discontinuous transition at T = 0 was also seen in [5].
As observed in our Monte Carlo study in the previous section, Γc(T ) → 0 as T → 0. This
is consistent with this exact result Γc = 0 at T = 0. For T = 0 (and h = 0), therefore, the
transition from antiferromagnetic (θ = 0 = m) to para (θ = π/2,m = 1) phase, driven by the
transverse field Γ, occurs at Γ = 0 itself.

One can also estimate the susceptibility χ at Γ = 0 = T . Here Etot/N = 1
2m2cos2θ −

hmcos θ − 1
N and the minimisation of this energy gives m cos θ = h giving the (longitudinal)



susceptibility χ = m cos θ/h = 1. This is consistent with the observed behaviour of χ shown in
Figure 2 where the extrapolated value of χ at Γ = 0 increases with decreasing T and approaches
χ = 1 as T → 0.

At finite temperatures T �= 0, for h = 0, we have to consider also the entropy term and
minimise the free energy F = Etot − TS rather than Etot where S denotes the entropy of the
state. This entropy term will also take part in fixing the value of θ and m at which the free
energy F is minimised. As soon as the temperature T becomes non-zero, the extensive entropy
of the system for antiferromagnetically ordered state with m � 0 (around and close-by excited
states with θ = 0) helps stabilisation near θ = 0 and m = 0 rather than near the para phase
with θ = π/2 and m = 1, where the entropy drops to zero. While the transverse field tends to
align the spins along x direction (inducing θ = π/2 and m = 1), the entropy factor prohibits
that and the system adjusts θ and m values accordingly and they do not take the disordered
or para state values (θ = π/2 and m = 1) for any non-zero value of Γ (like at T = 0). For
very large values of Γ, of course, the free energy F is practically dominated by the transverse
field term in H and again θ = π/2 and m = 1, beyond Γ = Γc(T ) > 0 for T > 0. However,
this continuous transition-like behaviour may be argued [7] to correspond to a crossover type
property of the model at finite temperatures (suggesting that the observed finite values of Γc(T )
are only effective numerical values). In fact, for h = 0 one adds the entropy term −T ln Ds to
Etot in Eq.(7) to get F and one can then get [7], after minimising the F with respect to m and
θ, m = tanh(Γ/2T ), which indicates an analytic variation of m and no phase transition at any
finite temperature for J̃ = 0 (antiferromagnetic phase occurs only at Γ = T = 0 as shown in
Figure 4.

3. LRIAF with SK disorder: ‘Liquid’ phase of the SK spin glasses gets frozen
In the last part of this paper, we discuss the phase diagram for the Sherrington-Kirkpatrick model
with antiferromagnetic bias in a transverse field. We find that the antiferromagnetic order is
immediately broken when one adds an infinitesimal transverse field or thermal fluctuation to
the system, whereas an infinitesimal SK-type disorder is enough to get the system ‘crystallized’
into the glass phase.

The model we discuss here is given by the following Hamiltonian

H =
1
N

∑
ij(j>i)

(J0 − J̃τij)σz
i σz

j − Γ
∑

i

σx
i (7)

where J0 is a parameter which controls the strength of the antiferromagnetic bias and J̃
is an amplitude of the disorder τij in each pair interaction. The Γ controls the quantum-
mechanical fluctuation. When we assume that the disorder τij obeys a Gaussian with mean
zero and variance unity, the new variable Jij ≡ −J0 + J̃τij follows the following distribution.
P (Jij) = exp[−(Jij + J0)2/2J̃2]/

√
2πJ̃ . Therefore, we obtain the ‘pure’ antiferromagnetic Ising

model with infinite range interactions when we consider the limit J̃ → 0 keeping J0 > 0. On
the other hand, for J0 < 0 with Γ = 0 is identical to the classical SK model. In this paper, we
investigate the condition for which the antiferromagnetic order survives.

For the Hamiltonian (7), we immediately obtain the saddle point equations under the static
and replica symmetric approximations as follows (see e.g. [2, 8]).

m =
∫ ∞

−∞
Dz

(J̃
√

qz + K0m)√
(J̃

√
qz + K0m)2 + Γ2

tanhβ

√
(J̃

√
qz + K0m)2 + Γ2 (8)

q =
∫ ∞

−∞
Dz

⎧⎨
⎩ (J̃

√
qz + K0m)√

(J̃
√

qz + K0m)2 + Γ2

⎫⎬
⎭

2

tanh2 β

√
(J̃

√
qz + K0m)2 + Γ2, (9)



where K0 ≡ −sgn(J0)|J0| and m ≡ N−1
∑

i σ
z
i is a magnetization and q ≡ N−1

∑
i〈σz

i 〉2 is a
spin glass order parameter. We defined Dz ≡ dz e−z2/2/

√
2π. The bracket 〈· · · 〉 denotes an

expectation over the density matrix: ρ = e−βH/tr e−βH . When J0 is negative, (8) has the only
solution m = 0. The general phase boundaries (see Figure 4) between the ferro (F), spin glass
(SG), antiferro (AF) and para (P) phases can be obtained by solving the the above two equations
in the limit m → o; q �= 0 for the F-SG boundary, q → 0 for SG-P boundary and m → 0 for the
F-P boundary. In these limits, the P-SG boundary equations become (see e.g. [8])

Γ = J̃ tanh
(

Γ
T

)
. (10)

3.1. Classical system
In the classical limit, the equations of state are simplified as m =

∫∞
−∞ Dz tanhβ(J̃

√
qz − J0m),

q =
∫∞
−∞ Dz tanh2 β(J̃

√
qz − J0m). For J0 > 0 (K0 < 0), we find that m = 0 is only physical

solution for all temperature regimes. This fact means that there are three possible phases,
namely, the antiferromagnetic phase, the paramagnetic phase and the spin glass phase. In these
three phases, the magnetization m is zero. To determine the critical point TSG at which the
spin glass transition takes place, we expand the equation with respect to q for q � 0 and m = 0.
Then, we have TSG = J̃ and the critical point is independent of the antiferromagnetic bias J0.

Figure 4. The phase diagram of classical SK model [9] extended for antiferromagnetic bias. For J0 > 0 (K0 <
0), there exist spin glass phase below T/J̃ = 1 and the critical temperature is independent of the strength of the
antiferromagnetic bias J0. For finite temperature T > 0, the anti-ferromagnetic order disappears and the system
changes to the paramagnetic phase. When we add an infinitesimal disorder J̃ > 0, the antiferromagnetic order is
broken down and the system suddenly gets ‘crystallized’ into a spin glass (SG) phase.

This result means that the antiferromagnetic order can appear if and only if we set J0 > 0 and
T/J̃ = 0, J0/J̃ = ∞ (K0/J̃ = −∞). On the other hand, for 0 < J0 < ∞ at low temperature
regime T < TSG, the spin glass phase appears. We plot the phase diagram in Figure 4. We
also conclude that the system described by the Hamiltonian (7) with Γ = 0 is immediately
‘crystallized’ when we add any infinitesimal disorder J̃ > 0.

From the view point of the degeneracy of the spin configurations, we easily estimate the
number of solution for the antiferromagnetic phase as 2N/2 = e0.346N , which is larger than the
number of the SK model e0.199N [9]. However, for the infinite range antiferromagnetic model,
the energy barrier between arbitrary configurations which gives the same lowest energy states
is of order 1 and there is no ergodicity breaking.



3.2. Quantum system
We next consider the case of presence of transverse field Γ �= 0 for J0 > 0 (K0 < 0). In this case,
we also find that the saddle point equation (8) has a solution m = 0 and the phase boundary
between the spin glass and paramagnetic phases is given by setting m = 0 and q � 0 and we get
(10). Obviously, the boundary at T = 0 gives ΓSG = J̃ . On the other hand, when we consider
the case of Γ � 0, we have TSG = J̃ . These fact means that there is no antiferromagnetic nor
the spin glass phase when we consider the pure case J̃ = 0 because the critical point leads to
TSG = ΓSG = 0. Therefore, we conclude that the antiferromagnetic phase can exist if and only
if T = Γ = 0.

Figure 5. Phase diagram for the quantum system. The antiferromagnetic order exists if and only if we set
T = Γ = 0. As the J̃ decreases, the spin glass phase gradually shrinks to zero and eventually ends up at an
antiferromagnetic phase at its vertex (for Γ = 0 = T = J̃) as discussed in Section 2.

4. Discussion
We considered here a long-range Ising antiferromagnet at a finite temperature and put in a
transverse field. The antiferromagnetic order is seen to get immediately broken as soon as the
thermal or quantum fluctuations are added. However, when we add the Sherrington-Kirkpatrick
Hamiltonian as perturbation we find that an infinitesimal SK spin glass disorder is enough
to induce a stable glass order in this LRIAF antiferromagnet. This glass order eventually
gets destroyed as the thermal or quantum fluctuations increased beyond their threshold values
and the transition to para phase occurs. As shown in the phase diagram in Figure 5, the
antiferromagnetic phase of the LRIAF (occurring only at J̃ = 0 = Γ = T ), can get ‘crystallized’
into spin-glass phase if a little SK-type disorder is added (J̃ �= 0); the only missing element in the
LRIAF (which is fully frustrated, but lacks disorder) to induce stable order (freezing of random
spin orientations) in it. As mentioned already, the degeneracy factor e0.346N of the ground state
of the LRIAF is much larger than that e0.199N for the SK model. Hence, (because of the presence
of full frustration) the LRIAF posses a surrogate incubation property of stable spin glass phase
in it when induced by addition of a small disorder. This observation should enable eventually
the study of classical and quantum spin glass phases by using some perturbation theory with
respect to the disorder.
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