

HOKKAIDO UNIVERSITY

Title	Preliminary Report on the Join CaMgSi2O6-CaFe^[3+]AISiO6 at Low Oxygen Fugacity
Author(s)	Oba, Takanobu; Onuma, Kosuke
Citation	北海道大学理学部紀要, 18(3), 433-444
Issue Date	1978-03
Doc URL	http://hdl.handle.net/2115/36664
Туре	bulletin (article)
File Information	18_3_p433-444.pdf

Hokkaido University Collection of Scholarly and Academic Papers : HUSCAP

PRELIMINARY REPORT ON THE JOIN CaMgSi₂ O₆-CaFe³⁺AlSiO₆ AT LOW OXYGEN FUGACITY

by

Takanobu Oba and Kosuke Onuma

(with 2 tables and 6 text-figures)

(Contribution from the Department of Geology and Mineralogy, Faculty of Science, Hokkaido University, No. 1546)

Abstract

The join CaMgSi₂O₆-CaFe³⁺AlSiO₆ was studied by the ordinary quenching method at 10^{-9} , 10^{-10} , and 10^{-11} atm f_{O_2} . The solubility limit of CaFe³⁺AlSiO₆ in diopside is 20 mol.% at 1100°C and 10^{-9} atm f_{O_2} , 10 mol.% at 1100°C and 10^{-10} atm f_{O_2} , and 5 mol.% at 1000°C and 10^{-11} atm f_{O_2} . The temperature of upper limit for clinopyroxene(ss) single phase field decrease with decreasing f_{O_2} . The phase assemblages below the solidus temperatures in this join change as follows with increasing CaFe³⁺AlSiO₆; clinopyroxene(ss), clinopyroxene(ss) + melilite, clinopyroxene(ss) + melilite + spinel(ss), clinopyroxene(ss) + melilite + spinel(ss) + anorthite. The composition of clinopyroxene(ss) crystallized from the composition Di(50)FATs(50) at 1100°C, 10^{-10} atm f_{O_2} is Ca_{0.96} (Mg_{0.48}Fe²⁺_{0.12}Fe³⁺_{0.26}Al_{0.14}) (Al_{0.44}Si_{1.56})O₆.

Introduction

 $CaFe^{3+}AlSiO_6$ (FATs), as well as $CaAl_2 SiO_6$ (CaTs) and $CaTiAl_2 O_6$ (Tp), is an important constituent molecule of fassaitic pyroxene. Significance of the experimental work on the system containing this molecule has been pointed out by Onuma and Yagi (1971) and Huchenholz (1973). The join CaMgSi₂ O₆ (Di)-FATs(Hijikata and Onuma, 1969) and the join Di-CaTs-FATs(Onuma and Yagi, 1975) were studied in air. The former join forms continuous solid solution of clinopyroxene between end-members. In the latter, CaTs content in diopside increases with increasing FATs. Oxygen fugacity, however, may give an effect on FATs content in clinopyroxene. The present paper is a brief report on the change of FATs content in clinopyroxene as a function of oxygen fugacity. Detailed discussion and petrological implication will be given elsewhere.

Experimental Results And Discussions

The gas mixture of H_2 and CO_2 was used to control oxygen fugacity. Samples were charged in $Pt_{60} Rh_{40}$ envelope and quenched into mercury. Both

T. Oba & K. Onuma

glasses and clinopyroxenes(ss) were used as starting materials. These starting materials were made in air by Hijikata and Onuma (1969). The experimental results obtained by using these different starting materials are consistent to each other.

The results of quenching experiments are given in Table 1. The phase equilibrium diagrams at 10^{-9} , 10^{-10} , and 10^{-11} atm f_{O₂} are shown in Figs. 1,

Comp (mo	oosition ble %)	Starting material	Temp. (°C)	Time (hrs.)	Results
Di	FATs		$f_{O_2} = 10^{-9} a$	tm	
90	10	Gl	1155	2	Cpx only
		XI	1155	2	Cpx only
		XI	1165	3	Cpx+Mel
		Gl	1250	6	Cpx+Mel
80	20	Gl	1110	6	Cpx only
		XI	1110	6	Cpx only
		XI	1125	4	Cpx+Mel
		Gl	1200	91/2	Cpx+Mel
		XI	1220	3	Cpx+trace Gl
		Gl	1250	6	Cpx+Gl
70	30	XI	1165	3	Cpx+Mel
		XI	1180	4	Cpx+Mel+Gl
		XI	1220	3	Cpx+Gl
60	40	XI	1125	4	Cpx+Mel
		Gl	1150	61/2	Cpx+Sp+trace Mel+trace Gl
		Gl	1200	91/2	Cpx+Gl
		XI	1280	1	trace Cpx+Gl
50	50	XI	1125	4	Cpx+Mel
		XI	1180	3	Cpx+Sp+Mel+Gl
		Gl	1200	91/2	trace Cpx+Gl
		Gl	1250	3	Gl
40	60	XI	1125	4	Cpx+Mel
		Gl	1200	91/2	Sp+trace Cpx+Gl
		XI	1220	3	trace Sp+trace Cpx+Gl
		Gl	1250	3	Gl
30	70	Gl	1150	8	Cpx+Sp+An+Mel+Gl
		Gl	1200	81/2	Sp+An+Mel+Gl
		XI	1220	3	Sp+An+Mel+Gl
		Xl	1235	1	Sp+Gl
		XI	1280	1	Sp+Gl
20	80	XI	1125	4	Cpx+Sp+Mel
		XI	1180	3	Cpx+Mel+An+Sp+Gl
		XI	1235	1	Sp+trace Mel+trace An+Gl
		Gl	1250	1	Sp+trace Mel+Gl
		XI	1280	1	Sp+Gl
10	90	XI	1125	6	Cpx+Sp+Mel+An
		XI	1155	2	Sp+An+trace Cpx+trace Mel+Gl
		XI	1260	2	Mel+Sp

Table 1 Results of quenching experiments for the system $CaMgSi_2O_6\text{-}CaFe^{3+}AlSiO_6\text{ at }10^{-9},\,10^{-1.0}\text{ and }10^{-1.1}\text{ atm }f_{O_2}$

434

2, and 3, respectively. Clinopyroxene(ss) (ss: solid solution), melilite, spinel(ss) and anorthite are encountered throughout the experimental conditions. A maximum phase assemblage obtained in the present study is clinopyroxene(ss) + melilite + spinel(ss) + anorthite + liquid + gas showing univariant assemblage

Comp (mg	oosition	Starting material	Temp. (°C)	Time (hrs.)	Results
Di	FATs		$f_{O_2} = 10^{-10}$	atm	
90	10	Gl	1110	10	Cpx only
		XI	1110	10	Cpx only
		Gl	1120	5	Cpx+Mel
		XI	1120	5	Cpx+Mel
		XI	1260	2	fritted cake, Cpx+Mel
		XI	1275	2	Cpx+Gl
80	20	Gl	1065	8	Cpx only
		XI	1065	8	Cpx only
		Xl	1070	8	Cpx+Mel
		X1	1210	3	fritted cake, Cpx+Mel
		XI	1215	2	Cpx+Mel+trace Gl
		Gl	1250	5	Cpx+trace Mel+Gl
		XI	1260	2	Cpx+Gl
75	25	Gl	1240	2	Cpx+trace Gl
70	30	XI	1170	31/2	Cpx+Mel
		X1	1180	6	Cpx+Mel+trace Gl
		X1	1240	2	Cpx+Gl
		XI	1320	11/2	trace Cpx+Gl
60	40	X1	1140	3	Cpx+Mel
		Gl	1150	5	Cpx+Mel+Gl
		X1	1225	3	Cpx+Gl
		Gl	1225	5	Cpx+Gl
		XI	1275	2	trace Cpx+Gl
		X1	1290	2	Gl
50	50	XI	1115	5	well fritted, Cpx+Mel
		Gl	1120	5	Cpx+trace Mel+Gl
		XI	1180	6	Cpx+Mel+Sp+Gl
		Gl	1200	81/2	Cpx+Gl
		XI	1240	2	trace Cpx+Gl
		XI	1245	3	Gl
40	60	XI	1115	5	well fritted, Cpx+Mel+Sp
		X1	1120	5	Cpx+Mel+Sp+trace Gl
		X1	1170	31/2	Sp+trace Cpx+trace Mel+Gl
		Gl	1200	8	Sp+Gl
		XI	1270	2	trace Sp+trace An+Gl
		X1	1275	2	Gl
30	70	Gl	1100	6	Cpx+Mel+Sp
		XI	1190	31/2	Cpx+Sp+trace An+Gl
		XI	1245	3	Sp+trace An+Gl
		XI	1275	2	Sp+An+Gl
		X1	1280	1	trace Sp+Gl
		X1	1300	1	trace Sp+Gl
		XI	1310	2	Gl

Table 1 (continued)

Com	position ole %)	Starting material	Temp. (°C)	Time (hrs.)	Results
Di	FATs		$f_{O_2} = 10^{-10}$ a	ıtm	
20	00	C1	-		
20	80	GI	1100	6	Cpx+Mel+Sp+An
		XI	1110	5	Sp+An+Mel+trace Cpx+Gl
		XI	1170	31/2	Sp+An+Mel+Gl
		XI	1290	2	Sp+trace An+trace Mel+Gl
		XI	1300	1	Sp+trace Mel+Gl
6825	1270	XI	1320	11/2	Sp+trace Mel+Gl
10	90	XI	1120	5	Sp+An+Mel+trace Cpx+Gl
		XI	1130	5	Sp+An+Mel+trace Cpx+Gl
		XI	1140	5	Sp+Mel+trace An+Gl
		XI	1290	2	Mel+An+trace Sp+Gl
		XI	1300	1	trace Sp+trace Mel+Gl
125.0	W-227	14575	$f_{O_2} = 10^{-11}$ a	ıtm	
90	10	Gl	1040	6	Cpx only
		XI	1040	6	Cpx only
		Gl	1045	5	Cpx+Mel
		X1	1045	5	Cpx+Mel
		Xl	1260	2	Cpx+Mel
		Xl	1270	2	Cpx+Mel+trace Gl
80	20	Gl	1000	8	Cpx+Mel
		Gl	1200	7	fritted, Cpx+Mel
		XI	1210	3	Cpx+Mel+trace Gl
80	20	XI	1260	2	Cpx+Mel+trace Gl
		XI	1270	2	Cpx+trace Gl
70	30	Gl	1150	71/2	fritted, Cpx+Mel
		Gl	1160	3	Cpx+Mel+trace Gl
		XI	1160	3	Cpx+Mel+trace Gl
		XI	1240	1	Cpx+Mel+Gl
		Gl	1250	9	Cpx+Gl
60	40	Gl	1100	171/2	Cpx+Mel
		XI	1225	5	Cpx+Mel+Gl
		XI	1270	2	Cpx+Gl
50	50	XI	1060	5	Cpx+Mel
(20)	089080	Gl	1075	12	Cpx+Sp+Mel+Gl
		XI	1160	3	Cpx+Mel+trace Sp+Gl
		Gl	1170	8	Cpx+Mel+Gl
		XI	1170	8	Cpx+Mel+Gl
		XI	1210	3	Cnx+Mel+Gl
		XI	1220	3	Cnx+Gl
		XI	1220	1	trace Cnx+Gl
		GI	1250	4	Cl
40	60	VI	1060	5	Cnx+Mal
40	00	CI	1200	01/	Cnyttrace Melttrace SntCl
		VI	1200	372	Spt Apt Mal+Cl
		NI VI	1210	2	Spt Ant Cl
			1220	5	troop Spittman Ani Cl
			1250	4	trace Sprilace All+GI
		AI VI	1200	2	
		XI	1270	2	GI

in the six-component system Fe-O-CaO-MgO-Al₂ O_3 -SiO₂. It is surrounded by four five-phase assemblages; clinopyroxene(ss) + melilite + spinel(ss) + an-Table 1 (continued)

Composition (mole %)		Starting material	Temp.	Time (hrs.)	Results	
Di	FATs			()	1000000	
30	70	Gl	1075	12	Cpx+Mel+Sp	
		XI	1190	3	Sp+Mel+trace An+Gl	
		XI	1220	3	Sp+An+trace Mel+Gl	
		Gl	1225	5	Sp+An+Gl	
30	70	XI	1270	2	trace Sp+Gl	
20	80	XI	1060	5	Cpx+Mel+Sp	
		XI	1160	3	Sp+Mel+trace An+trace Cpx+Gl	
		XI	1170	3	Sp+Mel+An+Gl	
		Gl	1260	2	Mel+trace Sp+trace An+Gl	
		XI	1260	2	Mel+trace Sp+trace An+Gl	
		XI	1270	2	Sp+trace An+Gl	
10	90	XI	1050	5	Cpx+Sp+Mel+An	
		XI	1120	3	Cpx+Sp+Mel+An+Gl	
		reve	rsal runs in a	ir		
80	20	Cpx+Gl	1200	336	Gpx only	
70	30	Cpx+Mel	1200	168	Cpx only	
		Cpx+Mel+Gl	1200	336	Cpx only	
60	40	Cpx+Mel	1200	168	Cpx only	
50	50	Cpx+Mel+Gl	1200	336	Cpx only	
40	60	Cpx+Mel+Sp+Gl	1200	336	Cpx only	
20	80	Cpx+Mel+Sp+An	1200	672	Cpx only	

Table 1 (continued)

Cpx = clinopyroxene, Mel = melilite, An = anorthite, Sp = spinel, Gl = glass.

Fig. 1 Phase diagram of the join CaMgSi₂O₆-CaFe³⁺AlSiO₆ at 10⁻⁹ atm f_{O₂}. Abbreviations are the same as in Table 1.

orthite + gas, clinopyroxene(ss) + melilite + spinel(ss) + liquid + gas, melilite + spinel(ss) + anorthite + liquid + gas, and clinopyroxene(ss) + spinel(ss) + anorthite + liquid + gas. When FATs content in this join increases, the phase assemblage at subsolidus temperatures changes as follows: clinopyroxene(ss), clinopyroxene(ss) + melilite, clinopyroxene(ss) + melilite + spinel(ss), clinpyro-xene(ss) + melilite + spinel(ss) + anorthite. Di and FATs form a complete solid solution in air at 1 atm (Hijikata and Onuma, 1969), but the solubility of FATs in diopside has limit at low oxygen fugacity. The solubility of FATs in diopside decreases with increasing temperature as shown in Figs. 1, 2, and 3. At higher temperature clinopyroxene(ss) breaks down by the following reaction: $CaMgSi_2O_6 + CaFe^{3+}AlSiO_6 = CaFe^{2+}Si_2O_7 + MgSiO_3 + \frac{1}{2}Al_2O_3 + \frac{1}{4}O_2$ iron-akermanite

Melilite including iron-akermanite molecule appears and $MgSiO_3$ and Al_2O_3 enter into clinopyroxene(ss) as probably Mg-Tschermak's molecule.

Fig. 2 Phase diagram of the system $CaMgSi_2O_6$ - $CaFe^{3+}AlSiO_6$ at 10^{-10} atm f_{O_2} . Abbrevations are the same as in Table 1.

JOIN CaMgSi₂O₆-CaFe³⁺AlSi₂O₆ AT LOW f_{O_2}

Fig. 3 Phase diagram of the join CaMgSi₂O₆-CaFe³⁺AlSiO₆ at 10⁻¹¹. Abbrevations are the same as in Table 1.

Fig. 4 Log f_{O_2} -T diagram for the Di₉₀ FATs₁₀ bulk composition. M = magnetite, W = wüstite.

439

The solubility limit of FATs in diopside is as follows: 20 mol.% at 1100°C, 10^{-9} atm; 10 mol.% at 1100°C, 10^{-10} atm; and 5 mol.% at 1050°C, 10^{-11} . The temperature of upper limit for clinopyroxene(ss) single phase field decreases with decreasing oxygen fugacity and the relationship between this temperature and oxygen fugacity is shown in Fig. 4.

Comp (mc	position ble %)	Temp. (°C)	f _{O2} atm	a(Å)	b(Å)	c(Å)	β(°)	V(Å ³)
Di	FATs							
90	10	1100	10-10	9.746(3)	8.917(3)	5.262(3)	105.95(3)	439.7(3)
		1100	10-11	9.751(3)	8.920(3)	5.253(3)	105.92(3)	439.3(3)
80	20	1100	10-10	9.743(3)	8.906(3)	5.272(2)	105.92(3)	439.8(3)
		1100	10-11	9.739(3)	8.905(3)	5.273(3)	105.93(3)	439.6(3)
70	30	1100	10-10	9.470(3)	8.894(3)	5.280(3)	105.95(3)	439.7(3)
		1100	10-1 1	9.738(3)	8.893(3)	5.284(3)	105.96(3)	440.0(3)
60	40	1100	10-10	9.470(3)	8.881(3)	5.293(3)	105.95(3)	440.3(3)
		1100	10-11	9.736(3)	8.883(3)	5.282(3)	105.97(3)	439.2(3)
50	50	1100	10-10	9.729(3)	8.878(3)	5.290(3)	105.95(3)	439.3(3)
		1100	10-1 1	9.724(3)	8.884(3)	5.276(3)	106.00(3)	438.2(3)
40	60	1100	10-11	9.714(3)	8.881(3)	5.276(3)	105.96(3)	437.8(3)
70	30	1200	in air	9.752(3)	8.889(3)	5.288(3)	106.03(3)	440.8(3)
60	40	1200	in air	9.750(3)	8.868(3)	5.313(3)	106.00(4)	441.6(3)
50	50	1200	in air	9.745(3)	8.855(3)	5.315(3)	106.01(3)	441.2(3)
40	60	1200	in air	9.754(3)	8.867(3)	5.303(3)	106.00(3)	441.7(3)
20	80	1200	in air	9.764(3)	8.811(3)	5.344(4)	105.96(3)	442.3(3)

Table 2 Unit-cell dimensions of clinopyroxene solid solutions

The unit-cell dimensions of clinopyroxene(ss) in the present join are given in Table 2 and the variation against compositions is shown in Figs. 5 and 6. The dashed lines show the variation of the unit-cell dimensions of the clinopyroxene(ss) crystallized in air (Hijikata, 1968). The variation trend of the clinopyroxene(ss) in the single phase field agrees with that obtained in air. However, when clinopyroxene(ss) coexists with other phases, variation trends of *a* and *V* leave the dashed line and become to coincide with the variation of solid solution between Di and CaTs or MgSiO₃ molecule. This phenomenon means that FATs is no more stable and the nature of clinopyroxene(ss) changes. MgSiO₃ as well as Fe²⁺SiO₃ is probably formed by the following reaction: In the wüstite stability field,

 $2CaMgSi_{2}O_{6} + 6CaFe^{3+}AlSiO_{6} = 4Ca_{2}Fe^{2+}Si_{2}O_{7} + MgSiO_{3} + Fe^{2+}SiO_{3} + Al_{2}O_{3}$ iron-akermanite clinopyroxene(ss) + MgAl_{2}O_{4} + FeAl_{2}O_{4} + \frac{3}{2}O_{2} \dots \dots \dots \dots \dots \dots (2) spinel

Fig. 5 Unit-cell dimensions of the clinopyroxene crystallized at 1100°C and 10⁻¹⁰ atm f_{O2}. The dashed lines: the variation of unit-cell dimensions of the clinopyroxene(ss) crystallized in air (Hijikata, 1968). Bar: the present data of clinopyroxenes. open ellipse: the data of clinopyroxene obtained in a reversal experiment at 1200°C in air.

In the magnetite stability field, in additition to the above reaction, $3CaFe^{3+}AlSiO_6 = Ca_2 Fe^{2+}Si_2 O_7 + CaSiO_3 + \frac{3}{2}FeAl_2 O_4 + \frac{1}{6}Fe_3 O_4$ iron-akermanite spinel(ss)

Fig. 6 Unit-cell dimensions of the clinopyroxene crystallized at 1100°C and 10⁻¹¹ atm f_{O2}. The dashed lines: the variation of the unit-cell dimensions of the clinopyro-xene(ss) crystallized in air (Hijikata, 1968).

akermanite up to 73 wt.% under suitable condition of oxygen fugacity. However, the melilite obtained in the present study is assumed to be a complicate solid solution involving gehlenite ($Ca_2 Al_2 SiO_7$) and iron gehlenite ($Ca_2 Fe^{3+}AlSiO_7$), in addition to iron akermanite. In the wüstite stability field iron gehlenite can not be expected.

Color of spinel(ss) varies from green in subliquidus region to dark green in subsolidus region. Unit-cell dimension of spinel(ss) is 8.123Å in wüstite stability field and 8.312Å in magnetite stability field. These observations indicate that the spinel(ss) contains considerable amount of hercynite

 $(Fe^{2+}Al_2O_4)$ and magnetite molecules as expected from the equations of (2) and (3).

Reversal experiments were carried out. For example, the composition of Di(50)FATs(50) crystallized into the assemblage of clinopyroxene(ss) + melilite + spinel(ss) at 1100° C, 10^{-10} atm f_{O_2} . The chemical composition of the clinopyroxene(ss) in this assemblage is $Ca_{0.96}(Mg_{0.48}Fe_{0.12}^{2+}Fe_{0.26}^{3+}Al_{0.14})$ ($Al_{0.44}Si_{1.56}$)O₆. Then, this crystalline mixture was heated at 1200° C for 336 hours in air. Only clinopyroxene(ss) was obtained without any other phases. The unit-cell dimensions of this clinopyroxene(ss) fall very close to the dashed line in Fig. 5, indicating that equilibrium is attained.

Yagi (1966) suggested that when f_{O_2} in the magma is higher pyroxene becomes more acmitic, whereas when f_{O_2} is lower pyroxene includes more hedenbergite molecule. The present study indicates that clinopyroxene crystallized in the magnetite stability field contains CaTs as well as hedenbergite molecule.

Ohashi and Hariya (1975) reported that FATs pyroxene is stable at $1100 - 1500^{\circ}$ C, 41 - 43 kb in the hematite stability field. They (1975) also showed that FATs pyroxene becomes unstable above 6 kb under the MnO - Mn₃O₄ and Fe₂O₃ - Fe₂O₄ buffer conditions.

These observations and the results of present study imply that the entering of FATs into diopside is influenced by oxygen fugacity rather than pressure.

Acknowledgement

We wish to express our sincere gratitude to Prof. Kenzo Yagi of Hokkaido University. Under his guidance we have performed the experimental studies of silicate minerals. He encouraged us and gave valuable advice. Thanks are also due to Mr. S. Terada of Hokkaido University for his assistance in laboratory. Part of the cost for the present study was defrayed by the grant for Scientific Research from the Ministry of Japan, No. 25468.

References

Hijikata, K., 1968. Unit-cell dimensions of the clinopyroxenes along the join CaMgSi₂O₆-CaFe³⁺AlSiO₆. Jour. Fac. Sci. Hokkaido Univ., Ser., IV, 14: 149-157.

- Hijikata, K. and K. Onuma, 1969. Phase equilibria of the system CaMgSi₂O₆-CaFe³⁺AlSiO₆ in air. Jour. Japan. Assoc. Min. Petr. Econ. Geol., 62: 209-219.
- Huckenholz, H.G., 1973. The origin fassaitic augite in the alkali basalt in suite of the Hocheifel area, West Germany. Contr. Mineral. Petrol., 40: 315-326.

- Ohashi, H. and Y. Hariya, 1975. Phase relation of CaFe³⁺AlSiO₆ at high pressure and temperatures. Jour. Japan. Assoc. Min. Petr. Econ. Geol., 70: 93-95.
- Ohashi, H. and Y. Hariya, 1975. Decomposition of CaFe³⁺AlSiO₆ pyroxene at high pressure and low oxygen partial pressure. *Jour. Japan. Assoc. Min. Petr. Econ. Geol.*, 70: 347-351.
- Onuma, K. and K. Yagi, 1971. The join CaMgSi₂O₆-Ca₂MgSi₂O₇-CaTiAl₂O₆ in the system CaO-MgO-Al₂O₃-TiO₂-SiO₂ and its bearing on the titan pyroxene. *Mineral. Mag.*, 38: 471-480.
- Onuma, K. and K. Yagi, 1975. The join CaMgSi₂O₆-CaAl₂SiO₆-CaFe³⁺AlSiO₆ in air and its bearing on fassaitic pyroxene. *Jour. Fac. Sci.*, *Hokkaido Univ. Ser.*, *IV*, 16: 343-356.
- Seifert, F., 1973. The join akermanite-ferroakermanite. Carnegie Inst. Wash. Year Book, 73: 436-440.
- Yagi, K., 1966. The system acmite-diopside and its bearing on the stability relations of natural pyroxenes of the acmite-hedenbergite-diopside. Am. Mineral., 51: 976-1000.

(Received on Oct. 31, 1977)