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Abstract

Understanding the mechanism of coupling between neuronal events and hemodynamic responses is important
in non-invasive functional imaging of the brain. The stimulus frequency dependence of hemodynamic
responses has been studied using a rat somatosensory cortex model; most results for short stimulus durations
reveal peak frequencies at which the hemodynamic response is maximized. However, such peak frequencies
have not been observed in studies using blood oxygenation level-dependent (BOLD) functional magnetic
resonance imaging (fMRI) signals with long stimulus durations. To clarify whether the stimulus frequency
dependence of BOLD signals depends on the stimulus duration, we measured BOLD signals at 7 T with short
and long stimulus durations for stimulating rat forepaw at 1-10 Hz using spin-echo echo-planar imaging to
enhance changes in activation focus. For both these durations, BOLD signals were significantly higher at
stimulus frequencies of 3 or 5 Hz in agreement with the results of previous studies using optical techniques.
Our results show that stimulus duration has little influence on the stimulus frequency dependence of BOLD
signals in the rat somatosensory model. The discrepant results of most previous fMRI studies using gradient-

echo sequence may be ascribed to the difference of imaging to enhance activation focus or draining vein.
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1. Introduction

In order to map the functional activation of the human brain, neuroimaging techniques such as
functional magnetic resonance imaging (fMRI), intrinsic optical imaging, and positron emission tomography
are used to measure the local variations in hemodynamics and metabolism that accompany neuronal activity.
Since neuroimaging techniques cannot directly assess neural events, it is important to understand the
mechanism of the coupling between neuronal events and hemodynamic responses for the interpretation of
neuroimaging signals. In order to investigate this relationship, several neuroimaging studies have been
conducted by using animal models because such methods of study are more flexible in that (1)
pharmacological perturbations can be used, (2) the animals can be genetically controlled, and (3) less
variations are observed between individual animals.

A large number of studies have been conducted by using electrical stimulations on the rat
somatosensory model by using the blood oxygenation level-dependent (BOLD) fMRI (Brinker et al., 1999;
Gyngell et al., 1996; Huttunen et al., 2008; Keilholz et al., 2004; Kida et al., 2001; Ogawa et al., 2000; Van
Camp et al., 2006), laser Doppler flowmetry (LDF) (Ances et al., 1999; Detre et al., 1998; Matsuura and
Kanno, 2001; Ngai et al., 1999; Ureshi et al., 2004), and optical imaging (Sheth et al., 2004; 2005). Since
BOLD signals correlate with the deoxygenated hemoglobin content (Ogawa et al., 1990), the stimulus
frequency dependence of BOLD signals should correspond to the deoxygenated hemoglobin content assessed
by optical imaging, and a similar dependence is expected with regard to changes in the cerebral blood flow
(CBF) (Hoge et al., 1999; Kida et al., 2000; Silva et al., 2000). However, conflicting results were obtained with
regard to the stimulus frequency dependence of the BOLD signals measured by MRI and the changes in CBF
measured using LDF. The intensity of BOLD signals was observed to decrease with increase in the stimulus
frequency applied to rat forepaw from 1.5 Hz (Brinker et al., 1999; Gyngell et al., 1996), whereas the peak
CBF was recorded by using LDF at a stimulus frequency of 5 Hz during the stimulation of the forepaw (Ances
et al., 1999; Detre et al., 1998) and hindpaw (Matsuura and Kanno, 2001; Ureshi et al., 2004). This
discrepancy in the results of stimulation is probably because of the difference in the stimulus durations. In the

studies that employed rat somatosensory models, the stimulus duration in LDF techniques was relatively short



(2-5 s) (Ances et al., 1999; Detre et al., 1998; Matsuura and Kanno, 2001; Ureshi et al., 2004), whereas that in
BOLD fMRI techniques was relatively long (several tens of seconds) (Brinker et al., 1999; Gyngell et al.,
1996; Huttunen et al., 2008; Keilholz et al., 2004; Kida et al., 2001; Van Camp et al., 2006). However, no
fMRI studies have investigated the stimulus frequency dependence for short stimulus durations in order to
compare the results obtained using the fMRI and LDF techniques in the rat somatosensory model. Therefore,
whether the stimulus frequency dependence of BOLD signals is dependent on the stimulus duration remains
unknown.

In this study, we first investigated the stimulus frequency dependence of the BOLD signal at 7 T in an
a-chloralose-anesthetized rat; the rat forepaw was electrically stimulated at frequencies of 1, 3, 5, and 10 Hz
for 4 s, which is the same duration as that used in LDF. In order to enhance the BOLD signals in the activation
focus, we employed spin-echo echo-planar imaging (EPI) instead of gradient-echo EPI, which was employed
in the previous fMRI studies. Next, to clarify the effect of the stimulus duration on stimulus frequency
dependence, we recorded BOLD fMRI signals at the same stimulus frequencies applied for a longer duration

(329).

2. Materials and Methods

2.1. Animal preparation

The fMRI experiments were conducted using 18 male Sprague-Dawley rats weighing 220-280 g.
These rats were initially anesthetized with 4% isoflurane in 70%:30% N,0:0, and then tracheotomized.
Anesthesia was maintained by administering 1.8%-2.0% isoflurane in 70%:30% N,0O:0, through an artificial
ventilation system throughout the surgical procedures. The femoral artery was cannulated with a polyethylene
catheter (PE-50) to withdraw blood samples for blood gas analysis and to monitor the blood pressure. The
femoral vein was cannulated by using another polyethylene catheter (PE-10) for injecting pancuronium
bromide, a muscle relaxant. PE-50 catheters were inserted for intraperitoneal administration of a-chloralose. In

all the animals, the ventilation parameters were adjusted such that the arterial blood gas tension was



maintained within the normal range throughout the experiment (pH, 7.39 + 0.06; pCO,, 37.4 + 4.9 mmHg; and
pO,, 143 £ 32 mmHg). A pair of copper needle electrodes was inserted underneath the skin of the rat forepaw.
All the whiskers were cut to prevent signal contamination from the whisker region in the somatosensory cortex.
The rat was placed in a home-built holder, and its head was tightly secured in a stereotaxic manner by using a
bite plate and ear bars to minimize head movements. A temperature-controlled water blanket was placed under
the rat to maintain its body temperature (37 + 0.5°C) throughout the experiments. After the completion of all
these procedures, the administration of isoflurane anesthesia was discontinued, and anesthesia was then

L pt

maintained by the intraperitoneal administration of a-chloralose (40 mg-kg ). Pancuronium bromide (1

mg-kg™h™") was administered intravenously as a muscle relaxant throughout the experiment.

2.2 Forepaw stimulation

The forepaw was electrically stimulated using a pair of copper needle electrodes. A signal with a
rectangular pulse width of 0.3 ms and an intensity of 2 mA was applied using a constant current power supply
(Nihon Kohden, Tokyo, Japan). The stimulus frequency dependence was investigated at frequencies of 1, 3, 5,
and 10 Hz. Two stimulation paradigms were employed. The paradigm for the short stimulation was a block
design initiated under a 16-s control condition, followed by 3 alternating cycles of 4-s stimulation with a
stimulus interval of 40 s (n = 12). The paradigm for the long stimulation was a single-stimulation design
initiated under a 16-s control condition, followed by stimulation for 32 s (n = 6). Both stimulation paradigms
were repeated twice at each stimulus frequency. The stimulations at different frequencies were randomly
performed. A total of 72 and 12 BOLD signals were obtained in response to the 4-s and 32-s stimulations,
respectively, from all the animals at each stimulus frequency. Under all the stimulus conditions, no variations

were observed in the mean arterial blood pressure during stimulation (Ureshi et al., 2005).

2.3. fMRI experiments



All the fMRI data were obtained using a 7-T horizontal bore spectrometer (Varian Inc., CA). This
instrument consists of a shielded gradient coil (diameter: 11 cm) with a maximum gradient field strength of
120 mT/m. Radiofrequency pulses were transmitted, and the MRI signals were received using a 10-mm
surface coil placed over the somatosensory area (i.e., around the bregma). To determine the positions of the
functional images of the somatosensory cortex, eight high-resolution coronal gradient-echo images with a 20-
mm field of view and 0.6-mm slice thickness were acquired as scout images. After positioning, slice shimming
was first performed automatically and then manually.

Single-shot spin-echo EPI images for the BOLD fMRI experiments were acquired under the following
conditions: data matrix, 32 x 32; field of view, 20 x 20 mm; slice thickness, 2 mm; echo time, 40 ms; and

repetition time, 1000 ms.

2.4. Data analysis

The BOLD fMRI data were processed using the MATLAB software (MathWorks, Inc., MA) and an
in-house written software. For each BOLD fMRI experiment, the functional images were obtained as Student’s
t-test statistical images on a pixel-by-pixel basis by using the 4 images obtained before and after the stimulus
onset. The activated regions were defined as pixels that revealed the statistically significant responses (p <
0.05). The time courses of the BOLD signals in the forepaw-related region of the contralateral somatosensory
cortex of the rat were obtained by determining the activated area based on the Student’s t-test values that were
averaged for each stimulus frequency. Images with head-movement artifacts, which were identified by a
center-of-mass analysis, were not considered for further analyses.

The BOLD signals for all frequencies were averaged during stimulus duration and analyzed with the
Kruskall-Wallis test, a non-parametric test for several independent samples. A comparison of the BOLD
signals for each stimulus frequency was performed with the Mann-Whitney U-test, a nonparametric test for

two independent samples. All the data have been represented as mean + standard deviation (S.D.).

3. Results



Figure 1 shows the Student’s t-test statistical images obtained at each stimulus frequency averaged for
3 repeated 4-s stimulations of the right forepaw. During the forepaw stimulation, significant variations were
detected in the left somatosensory area contralateral to the stimulated side. The same area was activated at all
the frequencies; however, the increase in the signal intensity in the activated area differed. For each stimulus
frequency, repeated stimulation-induced BOLD signals were obtained from 5 voxels with the largest
significant differences in the somatosensory area (Figure 1). Since similar signal changes were observed thrice
with a 40-s stimulus interval for each stimulus frequency (Figure 1), the time courses of the signals were first
averaged over 3 repeated stimulations and then across all the animals, as shown in Figure 2a. The BOLD
signals obtained for all the stimulus frequencies revealed similar initial responses after the stimulus onset
(Figure 2). The signal intensity began increasing 1.5 s after the stimulus onset. On the other hand, after the
stimulus offset (4 s), the signal intensity at stimulus frequencies of 1, 3, and 5 Hz increased until 5-6 s,
whereas that at the stimulus frequency of 10 Hz immediately returned to the baseline value. For all the
stimulus frequencies, no initial dip and post-undershoot were observed in the rat somatosensory model. Figure
2b shows the time course of the BOLD signals averaged over all the animals for the 32-s stimulation. At each
stimulus frequency, the initial increases in the BOLD response to the 32-s stimulation are identical to those to
the 4-s stimulation; these responses begin to increase at 1.5 s after the stimulus onset. However, the responses
after attaining the peak value differ across different stimulus frequencies. For the 1-Hz stimulation, the
increased signal intensity remained almost stable at 82 + 13% of the peak intensity during the period from 10 s
till the end of the stimulation. However, for the 10-Hz stimulation, the signal intensity peaked at 4.2 + 1.0 s
and decreased to 36 £+ 25% of the peak intensity during the period from 10 s till the end of the stimulation.
During stimulation, high stimulus frequencies exhibited a greater rate of reduction in the BOLD signal
intensity.

To compare the BOLD signals of the 4- and 32-s stimulations, the BOLD signals were averaged
during stimulus duration (Figure 3). The averaged BOLD signals peaked at intermediate frequencies, i.e., 3
and 5 Hz, for the 4-s stimulations; the BOLD signals at the intermediate frequencies were significantly greater

than those at the lowest (1 Hz) and highest (10 Hz) frequencies (p < 0.05) (Figure 3a). Although the BOLD



signals that were averaged for the 32-s stimulation exhibited a similar stimulus frequency dependence (Figure
3b), the peak frequency tended to shift lower; the significant difference was not detected between the lowest
(1Hz) and 5 Hz frequencies (p > 0.2) and observed between the lowest (1 Hz) and highest (10 Hz) frequencies

(p <0.05).

4. Discussion

In this study, by using the rat somatosensory stimulation model, we investigated the stimulus
frequency dependence of the BOLD signals obtained in response to the short (4 s) and long (32 s) stimulus
durations. We observed that the BOLD signals peaked at the stimulus frequency of 3 or 5 Hz during both 4-
and 32-s stimulations (Figure 3). The stimulus frequency dependence has been reported in previous studies that
employed different techniques such as LDF (Ances et al., 1999; Detre et al., 1998; Matsuura and Kanno, 2001;
Ureshi et al., 2004) for short stimulus durations such as the 4-s stimulus duration in our study. The CBF
responses measured by LDF showed a peak at 5 Hz during the stimulation of the forepaw (Ances et al., 1999;
Detre et al., 1998) and hindpaw (Matsuura and Kanno, 2001; Ureshi et al., 2004). This stimulus frequency
dependence of the CBF response does not vary with stimulus currents, i.e., 1.0 mA (Ances et al., 1999; Detre
et al., 1998), and 1.5 mA (Matsuura and Kanno, 2001; Ureshi et al., 2004). On the other hand, an optical
imaging study conducted by performing hindpaw stimulations reported that no frequency peak was observed in
the deoxygenated hemoglobin response; a monotonic decrease in the response from the lowest frequency (2
Hz) was observed when a current of 0.8 mA was applied during the 2-s stimulation (Sheth et al., 2004).
Another similar study reported no differences between the 2-10 Hz stimuli when a current of 1.2 mA was
applied during the 2-s stimulation (Sheth et al., 2005). These conflicting results, which reveal the absence of
the peak stimulus frequency reported by optical imaging studies conducted by hindpaw stimulation, could be
attributed to the differences in the stimulus pulse width (Van Camp et al., 2006) because the previous optical
imaging used stimulus pulse width of 1.0 ms (Sheth et al., 2004; 2005) instead of 0.3 ms in the present study;

however, the precise reason remains unknown.



Few studies have been conducted on the stimulus frequency dependence of BOLD signals in the rat
somatosensory model. Ogawa et al. (2000) investigated the BOLD signals at 7 T during the forepaw
stimulation at 2 stimulus frequencies—approximately 1.6 Hz (stimulus interval, 620 ms) and 3.2 Hz (stimulus
interval, 310 ms); their results demonstrated that the BOLD signals at low stimulus frequencies (1.6 Hz) were
larger that those at higher frequencies (3.2 Hz) for the same number of stimulus pulses. However, the stimulus
duration of the 1.6-Hz stimulus is twice of the 3.2-Hz stimulus for the same number of stimulus pulses. By re-
plotting the data of Ogawa et al. (2000) for the same stimulus duration, the BOLD signal was observed to be
larger at 3.2 Hz. This frequency dependence of the BOLD signal is consistent with the results of the 4-s
stimulation experiment.

With regard to the longer forepaw stimulation, previous fMRI studies on stimulus frequency
dependence conducted by Gyngell et al. (1996) (40-s duration) and Brinker et al. (1999) (50-s duration)
indicated that BOLD signals measured using the gradient-echo sequence at 4.7 T decreased with increase in
the stimulus frequency from 1.5 Hz. On the other hand, studies conducted by using the spin-echo EPI sequence
(Huttunen et al., 2008; Keilholz et al., 2004) showed that the BOLD signal measured at 4.7 and 11.7 T peaked
at 3 Hz during the forepaw stimulation (30 to 45-s duration). These results and ours using the spin-echo
sequence contradict those using the gradient-echo sequence (Gyngell et al., 1996; Brinker et al., 1999). Several
studies have reported that spin-echo sequences with high magnetic field strengths have an advantage over
gradient-echo sequences, that is, they allow the observation of local activation (Duong et al., 2003; Kida et al.,
2000; Lee et al., 2002). The BOLD signals obtained using spin-echo sequences represent the following 3
components: (1) extravascular effect of the capillary bed, (2) intravascular effect of both the large and small
blood vessels, and (3) absence of the transverse relaxation time (T,) effect such as the inflow effect (Duong et
al., 2003; Lee et al., 2002). At high magnetic field strengths, the T, value of blood is extremely low (e.g., 7 ms
at 7 T, but 180 ms at 1.5 T). Hence, the intravascular effect is negligible for long echo time and at high
magnetic field strengths. Studies on the echo time dependence of BOLD signals and the utilization of a
diffusion gradient have revealed that the non-T, effect is very low at high magnetic field strengths (Duong et
al., 2003; Lee et al., 2002). Therefore, BOLD signals obtained using spin-echo sequences at high magnetic

field strengths mainly originate from the extravascular effect of the capillary bed, which provides a highly



accurate estimate of the activation area. On the other hand, the signals obtained using the gradient-echo
sequences include the intravascular and extravascular effects of large draining veins or downstream venules at
low magnetic field strengths such as 1.5 T or even at 4 T (Duong et al., 2003; Yacoub et al., 2005). Since the
extravascular effect cannot be suppressed by gradient-echo sequences because of the absence of a refocus
radiofrequency pulse, large venous vessels induce larger BOLD signals as compared to smaller vessels (Duong
et al., 2003; Lee et al., 2002). The vascular responses in the activated capillary bed are regulated rapidly by
smooth muscle bands at the branching points in the capillaries (Harrison et al., 2002; Vanzetta et al., 2005).
However, the responses in the downstream venules and veins are slow (Vanzetta et al., 2005) since they are
contaminated by the flow from the surrounding non-activated area; this flow is referred to as the watering-the-
garden effect (Turner and Ordidge, 2000). Therefore, the stimulus frequency dependence of the vascular
response in the capillary bed may differ from that in the downstream venules and veins. Since we obtained the
BOLD signals by using spin-echo sequences at high magnetic field strengths, our results reflect the stimulus
frequency dependence in the activation focus in the capillary bed. On the other hand, the extravascular effects
of draining veins is dominant in gradient-echo EPI experiments at low magnetic field strengths; moreover,
with a decrease in the signal-to-noise ratio, it becomes difficult to observe the effects of small vessels that
reflect the activation focus. Therefore, the stimulus frequency dependence of the BOLD signals may vary with
the magnetic field strength, particularly in gradient-echo EPI experiments. However, the BOLD signal peaked
at an intermediate stimulus frequency during forepaw stimulation even in the gradient-echo EPI experiments at
7 T with a longer stimulus pulse width (i.e., 10 ms) (Van Camp et al., 2006). This stimulus frequency
dependence may be explained on the basis of evidence suggesting that at high magnetic field strengths (>7 T),
the contribution of large blood vessels decreases relative to the effect of small vessels (Duong et al., 2003;
Yacoub et al. 2003); another explanation may be that neuronal responses vary according to the stimulus pulse
width (Ahissar et al., 2001), which affects BOLD signals (Logothetis et al., 2001; Smith et al., 2002).

The effect of stimulus duration on the frequency dependence of the BOLD signals could be attributed
to neuronal responses because responses in CBF and BOLD signal are correlated with the local field potential
(Logothetis et al., 2001; Ngai et al., 1999, Ureshi et al., 2004). We postulate that "total neuronal response" is

represented by the product of the averaged amplitude and the number of the neuronal responses during



stimulus duration. The averaged amplitude of neuronal response decreases with an increase in stimulus
frequency due to the influence of adaptation (Sheth et al., 2003; 2004; Ureshi et al., 2004) (left chart in Fig. 4).
On the other hand, the number of neuronal responses during stimulus duration proportionally increases with
the stimulus frequency and duration (middle chart in Fig. 4). Therefore, the "total neuronal responses” have a
peak in frequencies (right chart in Fig. 4). When the stimulus duration becomes longer, the number of neuronal
responses increases and the averaged amplitude of neuronal responses during the stimulus duration rapidly
decreases with stimulus frequency because the influence of adaptation becomes larger for longer stimulus
duration. Consequently, a peak frequency of the "total neuronal responses” slightly shifts to a lower frequency
for longer stimulus duration. Actually in the present study, the BOLD signals had a peak at intermediate
frequencies, i.e., 3 and 5 Hz, for the 4-s stimulations, whereas the peak of the stimulus frequency for 32-s
stimulation slightly shifted to the lower frequency (Fig. 3). It is noted that the frequency dependence of the
"total neuronal response" and BOLD signal could be attributed to the variations in the resting baseline
condition because the neuronal adaptation during stimulation is depended on the variations in anesthetic agents
(Masamoto et al., 2007; Sheth et al., 2003; 2004).

In conclusion, BOLD signals obtained by spin-echo EPI at a magnetic field strength of 7 T peaked at
an intermediate stimulus frequency. The stimulus duration showed little influence on the stimulus frequency

dependence of the BOLD signals.
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FIGURE LEGENDS

Figure 1

Blood oxygenation level-dependent (BOLD) functional magnetic resonance imaging (fMRI) maps (left
column) and time courses (right column) of the BOLD signals detected in the activation area of the rat
somatosensory cortex during the short stimulus duration (4-s stimulation). The BOLD fMRI maps are obtained
by Student’s t-test performed on a pixel-by-pixel basis with the threshold (p < 0.05) by using the 4 images
obtained before and after the stimulus onset; the maps are overlaid on the corresponding anatomical image.
The time courses of the BOLD signals detected in the activation area of each rat brain at each stimulus

frequency are averaged across 3 trials. The black bars in the time course indicate the stimulation period.

Figure 2

Time course of the blood oxygenation level-dependent (BOLD) signals at frequencies of 1, 3, 5, and 10 Hz
during (a) 4-s and (b) 32-s stimulation. The time courses of the averaged BOLD signal in the somatosensory
cortex at different stimulus frequencies during 4-s stimulation are obtained for a total of 72 responses from all
the animals (n = 12). The time courses of the averaged BOLD signal during 32-s stimulation are obtained for a

total of 12 responses from all the animals (n = 6). The stimulation period is marked in gray.

Figure 3

Stimulus frequency dependence of the blood oxygenation level-dependent (BOLD) signals. BOLD signals for
(a) 4-s and (b) 32-s stimulations are averaged for the entire stimulation period. The BOLD signals for the 4-
and 32-s stimulations were statistically different for all frequencies (Kruskal-Wallis, p<0.01). The error bars
indicate the standard deviation (S.D.). Significant differences (p < 0.05) performed with the Mann-Whitney U-

test are indicated by the asterisk symbol.

Figure 4
Model of stimulus frequency dependence of neuronal response. The averaged amplitude of neuronal response

is adapted for repetitive stimuli to result in a decrease of neuronal response with an increase in stimulus



frequency (left chart). This tendency becomes large for longer stimulus duration, e.g. 32-sec stimulus duration
(blue line) compared to shorter stimulus duration, e.g. 4-sec stimulus duration (red line). The number of
neuronal response proportionally increases with increasing stimulus frequency and duration (middle chart).

"Total neuronal response” during stimulus duration is represented by the product of the averaged amplitude

and the number of the neuronal responses (right chart).
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