Title	Linkages in forested watershed environments
Author(s)	YOSHIOKA, Takahito
Citation	国際会議「持続可能な農業と環境」.平成20年7月2日~平成20年7月6日.札幌市
Issue Date	2008-07-03
Doc URL	http://hdl.handle.net/2115/34416
Туре	conference presentation
File Information	31-O15.pdf

Instructions for use

Linkages in forested watershed environments

Takahito YOSHIOKA

The International Conference On Sustainable Agriculture For Food, Energy And Industry 2008 "Sustainability on Food Feed, Fiber, Water, Energy: Science, Technologies, and Global Strategies" 2008/7/3, Sapporo, Japan

Three types of biogeochemical linkages in forested watershed environments

Relationship between stream DOC and NO₃⁻

(Konohira and Yoshioka 2005)

Relationship between stream DOC and NO₃⁻

Nationwide survey on stream hydrochemistry

(Shindo et al. 2005)

Nationwide survey on stream hydrochemistry

Linkage from aquatic to forest environments

From the isotopic analyses, more than 20% of terrestrial nitrogen was originally derived from salmon in the North Pacific (Helfield & Naiman 2002, Hocking & Reimchen 2002).

3 Humans ⇔ Nature

Interaction between humanosphere and environment

(Modified from the Research Initiatives Subcommittee of the LTER Planning Process Conference Committee and the Cyberinfrastructure Core Team 2007)

Simulation results of the recovery of forest biomass after logging in 2001, using PnET-CN model

3 Humans → Nature

Simulation results of stream NO₃⁻ concentration after tree cutting in 2001

Red arrows: year of tree cutting

3 Humans → Nature

Simulation results of stream NO₃⁻ concentration after tree cutting in 2001

Simulation results of chlorophyll *a* concentration near the river mouth of Akaishi River

Phytoplankton biomass change at the mouth of an inflow river (3 years after tree cutting). Tree cutting areas are as follows: Green, 0.8 km²; blue, 4 km²; red, 20 km².

(Kutsukake *et al.* unpublished data)

③ Nature → Humans

Results of Scenario Questionnaire

Decrease in forest landscape (area)

Decreases in the plant biomass and diversity

Uses in recreations

Occurrence of turbid water

Turbid water

Deterioration of river and lake water quality

People's preferences on environmental changes

(estimating from partial utility values)

Firstly minded attribute

Scenario Questionnaire

Secondary minded attribute

Preferred its deterioration

3 Humans ⇔ Nature

Preparation Procedure for Scenario Questionnaire

