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Abstract

This translational study aimed at gaining insight into the effects of lenalidomide in acute myeloid leukemia (AML). Forty-one

AML patients aged 66 or older of the Swiss cohort of the HOVON-103 AML/SAKK30/10 study were included. After random-

ization, they received standard induction chemotherapy with or without lenalidomide. Bone marrow biopsies at diagnosis and

before the 2nd induction cycle were obtained to assess the therapeutic impact on leukemic blasts and microenvironment.

Increased bone marrow angiogenesis, as assessed by microvessel density (MVD), was found at AML diagnosis and differed

significantly between theWHO categories. Morphological analysis revealed a higher initial MVD in AMLwith myelodysplasia-

related changes (AML-MRC) and a more substantial decrease of microvascularization after lenalidomide exposure. A slight

increase of T-bet-positive TH1-equivalents was identifiable under lenalidomide. In the subgroup of patients with AML-MRC, the

progression-free survival differed between the two treatment regimens, showing a potential but not significant benefit of

lenalidomide. We found no correlation between the cereblon genotype (the target of lenalidomide) and treatment response or
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prognosis. In conclusion, addition of lenalidomide may be beneficial to elderly patients suffering from AML-MRC, where it

leads to a reduction of microvascularization and, probably, to an intensified specific T cell-driven anti-leukemic response.
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Introduction

Most individuals with acute myeloid leukemia (AML) are

older than 65 years upon diagnosis [1]. As the incidence of

unfavorable genetic alterations increases with age, the prog-

nosis of AML in the elderly is dismal and associated with the

worst median overall survival (OS) of all cancers in this age

group with nearly 80% of the patients died after 1 year [1, 2].

Aggravatingly, chemotherapeutic treatment remains challeng-

ing due to the rising incidence of comorbidities and the poorer

performance status of aged individuals. Although the devel-

opment of less toxic and more effective treatment options is of

utter interest, only modest progress has been achieved in clin-

ical outcomes of elderly AML patients in the last decade.

Based on its clinical activity in related disorders such as

myelodysplastic syndromes (MDS) and other hematologic

malignancies including multiple myeloma and follicular lym-

phoma [3–5], the orally active immune-modulatory drug

(IMiD) lenalidomide gathered attention as a novel anti-

neoplastic agent for the treatment of AML. Lenalidomide tar-

gets the omnipresent E3 ubiquitin ligase complex cereblon

[6], which mediates its effects on tumor cells and non-

neoplastic cells of the tumor microenvironment [7].

Lenalidomide activates cereblon’s ligase activity leading to

faster degradation of the transcription factors Ikaros and

Aiolos, which play an important role in the regulation of B-

and T cell development [7], and the casein kinase 1A1

(CK1alpha), which is a negative regulator of p53 [8].

CK1alpha is encoded by the CSNK1A1 gene, which can be

deleted or mutated in del(5q) MDS. In murine models,

haploinsufficiency of this gene leads to hematopoietic stem

cell expansion, whereas a complete loss induces stem cell

apoptosis by activation of p53, explaining at least partially

the effect of lenalidomide in del(5q) MDS [9]. In analogy,

Csnk1a1 knockdown in AML cell lines increases p53 activity

andmyeloid differentiation and results in selective elimination

of leukemic cells [10].

Furthermore, autoubiquitination (and thus degradation) of

wild-type cereblon is prevented by lenalidomide. In net terms,

lenalidomide has anti-proliferative effects particularly on ma-

lignant B-cells and stimulating effects on by-stander T cells

and natural killer (NK) cells, while promoting the production

of anti-inflammatory cytokines [7]. Next to this anti-

neoplastic and immune-modulatory effect, lenalidomide im-

pairs the secretion of the vascular endothelial growth factor

(VEGF) in the bone marrow stroma, eventually influencing

vessel density and other microenvironmental changes [11].

Recently, the HOVON/SAKK study group published their

data of the HOVON103 AML/SAKK 30/10 trial on the addi-

tion of lenalidomide to standard intensive treatment in elderly

patients with AML and high-risk MDS [12]. Unfortunately,

the study failed to show a clear benefit for those patients re-

ceiving additional lenalidomide, putting it in line with many

other surveys performed in the setting of AML in the elderly.

Here, we present a translational research analysis of the study

encompassing patients of the Swiss study cohort, for whom

bone marrow biopsies at study inclusion and—for the major-

ity of individuals—before the 2nd induction cycle were avail-

able. Our results suggest that addition of lenalidomide to in-

duction chemotherapy may be beneficial to elderly patients

suffering from AML with myelodysplasia-related changes

(AML-MRC).

Materials and methods

Patient cohort and treatment

Forty-one patients of the Swiss cohort of HOVON103 AML/

SAKK 30/10 trial were included in this translational research

study, of whom 20 were male and 21 female (Table 1). They

were all previously untreated, aged ≥ 66, had a WHO perfor-

mance score of ≤ 2, and amorphologically confirmed diagnosis

of de novo AML. Patients with acute promyelocytic leukemia

were not included. The patients’mean age at first diagnosis was

69 years (range 66 to 76). Clinical outcome parameters for this

study were progression-free survival (PFS) and overall survival

(OS). For further details, we refer to the HOVON/SAKK study

group publication on the clinical trial [12]. This study was

approved by the ethics committee of Northwestern

Switzerland (EKNZ BASEC 2016-01218).

To morphologically assess the therapeutic impact on blasts

and microenvironment, bone marrow biopsies were gained at

the time-point of diagnosis and, whenever possible, before the

beginning of the 2nd induction cycle.

Karyotypes were classified according to Grimwade et al.

[13] into three prognostically relevant groups (favorable, in-

termediate, adverse). Considering morphological and geneti-

cal criteria, patients were subgrouped into different diagnostic

categories, according to the current WHO classification of

tumors of hematopoietic and lymphoid tissues [14].
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As described inmore detail by Ossenkoppele et al. [12], the

patients randomly received either a standard remission induc-

tion regimen with or without lenalidomide. Of our cohort, 19

patients were assigned to the standard treatment arm (dauno-

rubicin 45mg/m2 days 1–3 and cytarabine 200mg/m2 days 1–

7 in cycle I; and cytarabine 1000 mg/m2 q 12 h days 1–6 in

cycle II), and 22 patients additionally received lenalidomide at

an assigned dose level (10 to 20 mg/day orally, days 1–21 of

each cycle) (Table 1).

Morphological, immunohistochemical, and molecular
work-up of bone marrow biopsies

Bone marrow biopsies at the time-point of diagnosis were

available in 39/41 cases. A second bone marrow biopsy,

which was obtained before the 2nd induction cycle, was avail-

able in 28/41 cases. The specimens were fixed in 4% formalin

and paraffin-embedded, followed by decalcification with eth-

ylenediaminetetraacetic acid (EDTA) [15]. Hematoxylin-and-

Table 1 Patients’ characteristics

and responses to treatment Standard treatment (n = 19): n(%) With lenalidomide (n = 22): n(%)

Sex

• Male 10 (52.6%) 10 (45.5%)

• Female 9 (47.4%) 12 (54.5%)

Dose of lenalidomide

• 15 mg NA 1 (4.5%)

• 20 mg NA 21 (95.5%)

WHO classification of AML

• AML NOS 10 (52.6%) 11 (50.0%)

• AML mutations 6 (31.6%) 4 (18.2%)

• AML specific translocations 2 (10.5%) 0 (0.0%)

• AML MRC 1 (5.3%) 7 (31.8%)

Age at registration (years)

• 66–70 13 (68.4%) 20 (90.9%)

• 71–76 6 (31.6%) 2 (9.1%)

Karyotype according to Grimwade

• Favorable 2 (10.5%) 0 (0.0%)

• Intermediate 15 (78.9%) 15 (68.2%)

• Adverse 0 (0.0%) 5 (22.7%)

• Missing 2 (10.5%) 2 (9.1%)

Best response after cycle 1

• CR 11 (57.9%) 11 (50.0%)

• CRi 0 (0.0%) 4 (18.2%)

• PR 3 (15.8%) 0 (0.0%)

• RD 3 (15.8%) 6 (27.3%)

• Death in aplasia 0 (0.0%) 1 (4.5%)

• Death of indeterminate cause 2 (10.5%) 0 (0.0%)

Did patient start cycle 2?

• No 4 (21.1%) 8 (36.4%)

• Yes 15 (78.9%) 14 (63.6%)

Best response after cycle 2 (only for patients started cycle 2)

• CR 12 8

• CRi 1 3

• PR 1 1

• RD 1 0

• death in aplasia 0 1

• death of indeterminate cause 0 1

NA, not applicable; NOS, not otherwise specified; MRC, myelodysplasia-related changes; CR, complete remis-

sion; CRi, CR with incomplete hematologic recovery; PR, partial remission; RD, refractory disease
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eosin- (H&E) and Gömöri-stained slides were reviewed, and

t h e p r e s en c e and amoun t o f l e uk em i c b l a s t s ,

myelodysplasia-related changes, and the degree of myelo-

fibrosis [16] were assessed. Immunohistochemistry was

performed using the automated s ta in ing sys tem

Benchmark XT (Roche/Ventana Medical Systems,

Tucson, USA). To evaluate microvessels, CD34 staining

was performed and scored as described [17], and in cases

with excessive amounts of CD34 positive blasts hamper-

ing quantification, supplemented by a CD31 staining.

Stem cell niches were quantified using a nestin staining

as previously shown [18]. Blast quantification was based

on morphological analysis of the H&E slides corroborated

by CD34 staining, if expressed by the tumor cells, and

correlated with the blast counts assessed on aspiration

smears. Erythropoiesis was investigated with the help of

E-cadherin. Characterization and quantification of B-, T-,

NK- cells, and monocytes were performed utilizing anti-

bodies against CD3, CD4, CD8, CD20, CD56, CD57,

FoxP3, granzyme B, PD1, PD-L1, TIA1, and T-bet as de-

scribed [19, 20]. Lenalidomide’s target cereblon has also

been stained for and was assessed depending on its inten-

sity: a quality score from 0 (negative) to 3 (strong, un-

equivocal positivity) has been assigned. To highlight vas-

cular endothelial growth factor (VEGF) and -receptor

(VEGFR) expression alterations, stainings for VEGF and

VEGFR2 were performed [17]. Antibody sources, dilu-

tions, incubation, and retrieval conditions as well as cutoff

scores are displayed in Table 2. Two authors (MMB and

AT) investigated all stained slides, and reproducibility was

estimated applying the Cronbach’s Alpha method.

Cereblon genotyping

DNA was extracted from 34 available bone marrow biopsies

at the time of first diagnosis using the GeneReadTM DNA-

FFPE-Kit (Qiagen, Hilden, Germany) according to the manu-

facturer’s protocol. Fifty nanograms of the extracted DNA

was used to determine the rs1672753 (A/G) polymorphism

located in the 5′ UTR of CRBN. Genotyping was performed

using the Biorad QX200 digital PCR platform (Bio-Rad,

Berkeley, CA, USA).

Statistical analysis

All statistical analyses were performed with the IBM SPSS

25.0 (IBM, Armonk, New York) and R version 3.5.3. The

degree of inter-observer consensus was evaluated by interclass

correlation coefficients, using reliability Cronbach’s Alpha

analysis, α values > 0.75 indicating a good agreement [21].

Comparisons were performed using the Kruskal–Wallis- or

the Mann–Whitney U (MWU)–tests. Wilcoxon signed rank

test was used to compare numeric variables between pre- and

post-treatment. To investigate the correlation between two

markers, Spearman rank correlation coefficient (ρ) was esti-

mated; only the estimated ρ > 0.40 were further considered.

The 95% confidence interval (CI) of ρwas based on bootstrap

method. Progression-free survival (PFS) was defined as the

time from registration until relapse or death, whichever oc-

curred earlier. Overall survival (OS) was defined as time from

registration until death. These time-to-event endpoints were

analyzed using 50 ng Kaplan-Meier estimate, and 95% CI of

its median was based on log transformation. Generally, log

rank test was used to compare time-to-event endpoints be-

tween groups. However, if a small group (group size ≤ 2)

was involved, permutation test was used. Cox proportional

hazards regression model was used to investigate the associa-

tion between time-to-event endpoints and continuous vari-

ables. If the distribution of continuous variable is not symmet-

ric, it will be log transformed before modelling. P values <

0.05 were considered as significant. Two-sided tests were

used throughout. All results were not corrected for multiple

testing.

Results

Patient cohort and treatment

Patients’ baseline characteristics are shown in Table 1.

Regarding the karyotype analysis according to Grimwade,

two patients were categorized as having a favorable karyo-

type, five patients had a karyotype with adverse prognostic

impact and the karyotype of 30 patients was classified as in-

termediate; in 4 patients, this information was missing.

Patients were assigned to the treatment arms irrespective of

their karyotype. Due to the random distribution, all patients

with a favorable karyotype were allocated in the standard

treatment arm, whereas all patients with an unfavorable kar-

yotype received additional lenalidomide. The 30 patients with

intermediate karyotype were distributed equally between both

treatment groups.

According to the WHO classification 2017, 21 patients

were categorized as AML, not otherwise specified (NOS)

(AML, NOS). Of these, ten received standard treatment and

eleven additional lenalidomide. AMLwith defining mutations

(NPM1, FLT3, or CEBPA) applied to 10 patients, of whom 4

received lenalidomide and 6 did not. Specific translocations or

inversions were found in another 2 patients [inv(16) or

t(16;16)], who were assigned to the category AML with de-

fining translocations; both patients underwent standard treat-

ment. The AML category with myelodysplasia-related chang-

es (AML-MRC), either histomorphologically or genetically,

applied to 8 patients; 7 of them were treated with additional

lenalidomide and only one with the standard regimen

(Table 1).
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Morphological, immunohistochemical, and molecular
work-up of pre- and post-treatment bone marrow
biopsies

Internal consistency analysis regarding evaluation of the im-

munohistochemical markers yielded good or excellent results

for myelofibrosis, nestin niches, CD34-positive blast counts,

and counting of granzyme B, T-bet, FoxP3, CD3, CD4, CD8,

and E-cadherin positive cells. Acceptable results were obtain-

ed for the analysis of microvessel density, PD-L1, CD20, and

CD57. The reproducibility of PD1 was estimated as question-

able and was poor for TIA1, and therefore no further analyses

linked to this latter marker were done. CD56 staining never

yielded positive cells, except for osteoblasts.

All applied immunohistochemical markers were analyzed

regarding their distribution among the individual WHO cate-

gories, their prognostic impact, and under consideration of the

administered therapy (Fig. 1 and Supplementary Table 1).

Here, only potentially relevant results are described.

Blasts

Irrespectively of the therapeutic regimes, the amount of

blasts significantly decreased after treatment: from

45.4% (± 26.7) to 9.2% (± 21.7) in the standard arm vs.

51.9% (± 25.0) to 17.0% (± 20.8) in the lenalidomide arm

(p = 0.001 and 0.004, respectively), (Supplementary

Figure 1A-D; Fig. 2a–d); without significant difference

of the drops between both treatment arms. With the de-

crease of blasts, morphological regeneration of the bone

marrow with relative increase of adipocytes was detectible

(Supplementary Figure 1A-B; Fig. 2a, b). When comparing

both treatment regimens with respect to the WHO category,

addition of lenalidomide was associated with a more sub-

stantial decrease of blasts, particularly in patients with

AML with defining mutations (66.7% ± 14.5) compared

to standard treatment (24% ± 20.2; p = 0.034), while in all

other subgroups it was comparable between both treatment

arms.

Microvessel density

Previously, we could show that the bone marrow microvessel

density (MVD; given per mm2), is significantly higher in

newly diagnosed AML compared to healthy control individ-

uals [22]. The current study furthermore showed a significant

difference between the MVD of the various AML WHO cat-

egories (p = 0.011), being highest in AML-MRC (Fig. 2c)

Table 2 Antibodies applied and cut-off scores

Antibody Source and clone or ID Dilution Scoring/counting

Cereblon Celgene Corporation 1:400 Moderate to strong expression in > 50% of tumor cells

CD3 Ventana 790-4341 Ready to use Any lymphocyte, finally scored as % positive cells/all cells

CD4 Cell Marque SP35 1:100 Any lymphocyte, finally scored as % positive cells/all cells

CD8 DAKO C8/144B 1:400 Any lymphocyte, finally scored as % positive cells/all cells

CD20 Ventana QBEnd/10 Ready to use Any lymphocyte, finally scored as % positive cells/all cells

CD31 Ventana 760-4378 rReady to use Any lymphocyte, finally scored as % positive cells/all cells

CD34 Ventana 790-2927 Ready to use Any microvessel and any blast, finally scored as Nmicorvessels/mm2 or % positive

blasts/all cells

CD56 Ventana 790-4465 Ready to use Any lymphocyte, finally scored as % positive cells/all cells

CD57 Ventana 760-2626. Ready to use Any lymphocyte, finally scored as % positive cells/all cells

E-cadherin Ventana EP700Y Ready to use Any erythropoietic cells, finally scored as % positive cells/all cells

FoxP3 Abcam mAbcam 22510 1:50 Any lymphocyte, finally scored as % positive cells/all cells

Granzyme B Novocastra 11F1 1:100 Any lymphocyte, finally scored as % positive cells/all cells

Nestin AbD Serotec 10C2 1:200 Any perivascular niche (either single cells or clusters of up to three cells), finally

scored as Nniches/mm2

PD1 Cell Marque NAT105 1:50 Any lymphocyte, finally scored as % positive cells/all cells

PDL1 Cell signaling E1L3N 1:50 Single+ cells, 1–5% + cells, or > 5% + mononuclear cells

T-bet Abcam ab154200 1:100 Any lymphocyte, finally scored as % positive cells/all cells

TIA1 Biocare CM130C 1:25 Any lymphocyte, finally scored as % positive cells/all cells

VEGF DAKO VG1 1:40 * Moderate to strong expression in > 50% of tumor cells

VEGFR2 Neomarkers RB-10453-P1 1:10 * Moderate to strong expression in > 50% of tumor cells

In all instances except for *, in which high pH buffers have been applied, respectively, antigen retrieval was based on lower pH buffers andmicrowaving
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(mean 28 ± 6.8; versus 14.9 ± 10.6 in AML, NOS

(Supplementary Figure 1C), versus 24 ± 10.7 in AML with

defining mutations, versus 9.5 ± 2.1 in AML with defining

translocations). The same was true for the drop of MVD

after treatment (p = 0.001), showing the most prominent

decrease in the WHO category AML-MRC (Fig. 2d) (mean

drop 19.5 ± 17.7; versus 9.0 ± 11.6 in AML with defining

mutations, versus increases in AML, NOS with 2.5 ± 9.3

(Supplementary Figure 1D) and in one evaluable AMLwith

defining translocations with 41.0). Due to an asymmetric

distribution of AML-MRC cases among the two treatment

arms (i.e., most cases being treated with additional

lenalidomide), the initial MVD was higher in the

lenalidomide treated group (24.9 ± 11.4 versus 14.5 ± 8.5;

p = 0.011) and – accordingly— under standard treatment

microvessels increased from 14.5 ± 8.5 to 17.2 ± 12, in

contrast to a reduction from 24.9 ± 11.4 to 12.8 ± 6.7 under

additional lenalidomide (p = 0.041) (Fig. 1).

Stem cell niches

The amount of nestin-positive stem cell niches was not mod-

ified under treatment, but their increased presence in the initial

biopsy seemed to possibly correlate with an adverse prognosis

regarding OS (hazard ratio: 1.75, 95% CI: 0.94–3.27; p =

0.076).

Erythropoiesis

Erythropoiesis (assessed by E-cadherin) increased in both

treatment arms, which was slightly more prominent with the

addition of lenalidomide (4.1 % versus 9.1 %; p = 0.12).

Fig. 1 Boxplot diagram

visualizing quantitative changes

of microvessel density (MVD)

and selected studied T cell

populations in acute myeloid

leukemia treated by either

standard chemotherapy (upper) or

standard chemotherapy and

additional lenalidomide (lower);

boxes are color coded according

to variables and pairwise grouped

before (pre) and after (post)

treatment. Note the considerably

more pronounced decrease of

MVD and the more limited

increase of T cells under

lenalidomide with the exception

of the T-bet-positive

subpopulation that seems to more

stringently increase with addition

of lenalidomide

1174 Ann Hematol (2021) 100:1169–1179



B-, T-NK- cells and monocytes

The distribution of B-, T-NK- cells, and monocytes did not

differ between the pre-treatment biopsies of both therapy

groups (Fig. 1). Referring to the individual WHO categories,

only the presence of granzyme-B-positive lymphocytes dif-

fered among the miscellaneous groups (p = 0.00962), being

highest in AML-MRC (mean positive cells 4.5% ± 3.9; versus

1.3% ± 1.5 in AML, NOS, versus 0.5% ± 0.7 in AML with

defining mutations, versus 2.5% ± 2.1 in AML with defining

translocations). Neither standard treatment nor addition of

lenalidomide caused a significant increase in T cells as

assessed with the pan-T cell marker CD3, but subtle changes

in the composition of the T cell subpopulations could be iden-

tified (Fig. 1). Under lenalidomide, the CD4 positive T cell

count remained stable, while it increased under standard treat-

ment by 6% ± 9.1 (versus 1.9% ± 3.2 under addition of

lenalidomide, p = 0.029; Fig. 1). The amount of CD8-

positive T cells did not significantly change under therapy

(Fig. 1, Fig. 2e–f, Supplementary Figure 1E-F). Importantly

Fig. 2. Pre- (left side) and post-

treatment (right side) bone

marrow biopsies of a male patient

suffering from acute myeloid

leukemia with myelodysplasia-

related changes, who has been

treated with chemotherapy and

additional lenalidomide. a

Conventional morphology at

initial diagnosis, H&E. b

Conventional morphology before

the second induction cycle, H&E.

c CD34 staining revealing higher

microvessel density and partial

positivity of the leukemic blasts

and the dysplastic

megakaryocytes before treatment,

immunoperoxidase. d CD34

staining of the post-treatment

biopsy before the second

induction cycle illustrating a

significant decrease of the

microvessels and complete

absence of positively staining

blasts and megakaryocytes,

immunoperoxidase. e, f

Increasing amount of CD8-

positive T cells from 2% pre-

treatment (e) to 15% post-

treatment (f), immunoperoxidase.

g, h Increasing amount of T-bet-

positive T-helper cells from 1%

pre-treatment (g) to 9% post-

treatment (h), immunoperoxidase
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with respect to T cell subpopulations, T-bet-positive T-helper

1 cells seemed to slightly increase under addition of

lenalidomide compared to the standard treatment (p = 0.063;

Fig. 1, Fig. 2g–h, Supplementary Figure 1G-H). In contrast,

amounts of FoxP3-positive regulatory T cells were not influ-

enced by either treatment arm. The same was observed for

CD57-positive T-large granular lymphocyte-equivalents.

Remarkably, the proportion of granzyme-B-positive cells—

either representing non activated (since TIA1-negative) cyto-

toxic T-cells or NK-cells—significantly increased under the

standard regimen (6.5% ± 6.9 vs. 0.7% ± 4.6 under addition of

lenalidomide, p = 0.019; Fig. 1). The increase of PD-1-

positive T-cells was not significant in neither treatment arm,

but it was slightly less pronounced under lenalidomide (0.2%

± 0.9) compared to the standard treatment (0.9% ± 1.0; p =

0.19).

Cereblon

Strong expression of cereblon in the leukemic blasts (Fig. 3)

was not linked to unfavorable OS (hazard ratio: 1.18, 95% CI:

0.85–1.65; p = 0.328).

Correlation analysis

The presence of T-bet-positive cells correlated with the pres-

ence of CD8-positive cells (p = 0.00004; ρ = 0.61, 95% CI

0.32–0.79), CD4-positive cells (p = 0.00007; ρ = 0.59, 95%

CI 0.37-0.74), CD57-positive cells (p = 0.001; ρ = 0.51, 95%

CI 0.21–0.71), and the expression of VEGFR2 (p = 0.002; ρ =

0.48, 95% CI 0.14-0.69). In turn, the expression of VEGFR2

correlated with the grade of myelofibrosis (p = 0.001; ρ =

0.53, 95% CI 0.25-0.71) and the presence of nestin-positive

stem cell niches (p = 0.001; ρ = 0.53, 95% CI 0.22-0.74).

Additionally, CD4-positive cells correlated with the presence

of granzyme-B-positive cells (p = 0.001; ρ = 0.55, 95% CI

0.25–0.74).

Genotype analysis of CRBN

Whether CRBN was homozygous wild type (26 instances) or

contained variant alleles (8 instances), did not have an impact

on the treatment effect or the prognosis, irrespective of the

therapy applied.

Outcome

The median OS of the cohort was 18.5 months (95% CI 8.–-

46.8, 30 events) and the median PFS 8.9 months (95%CI 6.4–

17.1, 34 events). Neither the OS, nor the PFS differed signif-

icantly between the two treatment arms, in accordance with

the results of Ossenkoppele et al. (12). Neither age nor gender

were relevant for clinical outcome. PFS was significantly in-

fluenced by the karyotype (p = 0.012) and highly significantly

by the WHO category (p = 0.0061), being shortest in AML-

MRC. In this category, the median PFS differed between the

patient, who received standard treatment (0.4 months), and the

remaining patients receiving additional lenalidomide (2.6

months; p = 0.25), yet this did not reach statistical signifi-

cance. As expected, the karyotype (p = 0.0042) and the

WHO category (p = 0.0030) had a significant impact on the

OS. Neither the amounts nor the dynamics of the various

studied T cell subpopulations correlated with prognosis.

Discussion

Despite extensive research efforts, the prognosis of AML—

especially in the elderly—remains poor. Therefore, more ef-

fective and better tolerable therapeutic strategies are of urgent

need. Lenalidomide, an immune-modulatory drug already

successfully implemented in other hematological malignan-

cies associated with intrinsic dysfunction of the bone marrow,

gathered attention as a potentially effective drug in AML.

Indeed, in an AMLmurine model, immune-modulatory drugs

were shown to hamper leukemia progression in vivo and to

induce enhanced allogenic NK-cell activity [23].

In this translational research study of the Swiss cohort of

HOVON103 AML/SAKK30/10, we were able to show per-

ceptible differences in the outcome of AML-MRC patients:

those with additional lenalidomide treatment had a longer PFS

compared to the AML-MRC patients treated with chemother-

apy alone. Unfortunately, a statistical significance was not

reached due to the low case numbers and the unfavorable

random distribution of patients between both treatment arms

(only one patient received standard chemotherapy and 7

Fig. 3. Cereblon staining of the same patient as in Fig. 2 from the time-

point of initial diagnosis showing a distinct strong expression of

lenalidomide’s target cereblon in all leukemic blasts and dysplastic

megakaryocytes. Note: cereblon-negative residual erythropoiesis and

isolated unremarkable megakaryocytes
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patients received additional lenalidomide). Nevertheless, pa-

tients with AML-MRC had a significantly higher bone mar-

row MVD compared to other AML categories and the most

prominent lenalidomide-induced decrease of microvessels.

Since it is known that a high bone marrowMVD is associated

with a poor prognosis and that the reduction of microvessels

correlates with treatment response [24, 25], we hypothesize

that this particular patient subgroup, i.e., AML-MRC, might

profit from the antiangiogenic effects of lenalidomide.

Consistently, AML blasts are known to depend on the pres-

ence of nestin-positive stem cell niches [26], the density of

which in turn correlated with the expression of the

neovascularization-promoting VEGFR2 in our cohort. In gen-

eral, myeloid malignancies such as AML can remodel stem

cell niches to support malignant growth and to sustain

stemness [27, 28]. Concordantly, in our study, therapy-

induced blast reduction was not reflected by numeric changes

of nestin-positive stem cell niches, yet an increased presence

of such niches was linked to adverse outcome with respect to

OS. If these niches represent a treatment-refractory place of

retreat of leukemic blasts remains to be determined.

At least in our study, the effect of lenalidomide in AML-

MRC was independent of the presence of del(5q), which has

been linked to a better susceptibility to lenalidomide treatment

in MDS [29]: the only patient of our cohort, who displayed

del(5q) (in the context of a complex karyotype) and fulfilled

the criteria of AML-MRC, received standard therapy.

Irrespectively of the AML category, subtle treatment-

induced changes in the composition of T cell subpopulations

were observed, although the total number of T cells did not

significantly differ between pre- and post-treatment biopsies.

Under lenalidomide, the amount of T-bet-positive T cells

more consistently increased, which might be interpreted as a

sign of increased T cell driven immune response against the

tumor cells. Indeed, the transcription factor T-bet has been

found to be one of the key players in the induction of

leukemia-reactive T-cells, and lower T-bet expression rates

have been linked to poor immune responses and disease pro-

gressions [30, 31]. Correspondingly, the presence of T-bet-

positive cells correlated, among others, with the presence of

CD8-positive cytotoxic T cell-equivalents and CD57-positive

large granular lymphocyte-equivalents.

The low PD-1-positive T cell count in all our samples fits to

the fact that immune-checkpoint inhibitor treatment failed to

achieve a major breakthrough in AML. This may be linked to

a lower immunogenic potential compared to solid tumors such

as melanoma or non-small cell lung cancer or due to genuine

impairment of the antigen processingmachinery in AML [32].

Nonetheless, we found a slight increase of PD-1-positive T

cells in the bone marrow biopsies after treatment, indicative

for a growing T cell exhaustion and enhanced inhibition of

anti-tumor immune response. Although not significant, this

effect seemed to be less pronounced under lenalidomide,

which leads us to hypothesize, that lenalidomide—as an

IMiD—may support some anti-leukemic immune responses.

This is in accordance with observations in other hematologic

malignancies such as multiple myeloma, in which

lenalidomide significantly reduces PD-1 surface expression

on T cells and enhances the anti-tumor response [33].

Additionally, lenalidomide was noticed to counteract the neg-

ative impact of PD-1-positive cells in follicular lymphoma

patients, potentially due to its stimulating effect on the im-

mune response [4].

The presence of cytotoxic, granzyme-B-positive T cells

differed between various AML categories of our study collec-

tive, being highest in AML-MRC. This observation is sup-

ported by recently published data, demonstrating an associa-

tion between cell-intrinsic genetic alterations in AML and the

amount of cytotoxic lymphocytes, suggesting that AML-

MRC may be more immunogenic. Indeed, genetic alterations

linked with poor prognosis [TP53, del(5q), complex karyo-

types] and being more frequently encountered in AML-MRC,

as well as AML-MRC per se were found to be associated with

higher T cell induced cytolytic activity [34].

Significant decrease of leukemic blasts under treatment

was observed in both arms. With respect to the AML-catego-

ries, a more substantial blast drop under lenalidomide was

noticed in AML with defining mutations, despite the fact that

the presence of driver mutations such as FLT3 and NPM1 has

been linked to low cytolytic activity of the tumor microenvi-

ronment [34]. If this effect is linked to the immunemodulatory

or other functions of lenalidomide and if it is reproducible in

other AML collectives, remains to be determined [35].

Strong expression of lenalidomide’s target cereblon in the

leukemic blasts was rather associated with an unfavorable OS,

which has also been documented for gastric marginal zone

lymphomas [36], but has until now not been addressed in

myeloid neoplasms and may deserve attention in larger stud-

ies. Interestingly, all of the described effects were independent

from the genotype of the cereblon gene (CRBN), which is in

line with data from other IMiDs [23].

Our study has several shortcomings. We were not able to

investigate the bone marrow samples of all patients included

in the HOVON103 AML/SAKK 30/10 study due to lacking

material and therefore the sample size is very limited. Due to

the random distribution of cases, there was an imbalance of

the assigned treatment arms among the AML categories.

Finally, the observed beneficial effect of the addition of

lenalidomide was present only in a subgroup of patients, i.e.,

AML-MRC, which although being a WHO category, is yet a

post-hoc subcohort from the perspective of the initial clinical

trial design [12].

Observable on a small number of patients, addition of

lenalidomide led to a perceptible but not significant increase

of PFS in patients with AML-MRC, a category characterized

by a poor prognosis and often complex karyotypes. Our
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findings are in keeping with encouraging results in the litera-

ture, showing on the one hand a direct anti-leukemic effect of

lenalidomide, and, on the other hand, an important immune-

activating impact on the tumor microenvironment. We think

that our observations also highlight the importance of taking

the WHO defined subentities into consideration when design-

ing clinical trials in AML.
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