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1 Introduction

In 1968, Simons [34] gave the formula for the square of the length of the
second fundamental form A of a compact n-dimensional minimal submani-
fold M in a real space form M"*?(k) of constant curvature k. The specific
expression of the formula is the following:

;A|A|2 = kAP — Y (trAy, Ay + St A, AP + VA,

a7b a,b
where {vy,---,v,} is an orthonormal basis of the normal vector space. Here
we denote by | - | the length of a tensor with respect to the induced metric g
on M and by [, | the commutator.

As an application, Simons proved that if the second fundamental form A
of a compact n-dimensional minimal submanifold M in S satisfies |A]* <
n/(2 — 1/p), then M is totally geodesic. Moreover, Chern, do Carmo and
Kobayashi [7] proved that if the second fundamental form A satisfies |A|? =
n/(2 —1/p), then M is the Clifford hypersurface or the Veronese surface in
S4. For minimal submanifolds in the sphere, the Simons type formula was
studied by many authors, and many interesting results are given (e.g. [31],
42], [40)).

For minimal submanifolds of complex space forms, there are some pinch-
ing theorems with respect to the sectional curvature, Ricci curvature, scalar
curvature and so on. For example, for the study of complex submanifolds in
a complex space form, Ogiue [27] and Tanno [37] showed the Simons type
formula for the square of the length of the second fundamental form. The
Simons type formulas for minimal totally real submanifolds and minimal
generic submanifolds are given by Chen-Ogiue [5], Yano-Kon [46], respec-
tively.

For general submanifolds of a complex space form, a direct extension of
Simons’ methods for the sphere to the complex projective space C'P™ as
an ambient space has some difficulties (see Lawson [24]). So many authors
push known theorems on the sphere down to C'P™ by using the following
commutative diagram:

N SN g2m+1
I L
M = CP™,



where 7 : S?™t! — CP™ is the standard fibration, N and M are sub-
manifolds of S?™*! and C'P™, respectively, such that the immersion 7' is a
diffeomorphism on the fibres (e.g. [24], [29], [46]).

In this paper, we give pinching theorems for general real submanifolds in
a complex space form without this method.

In section 2, we prepare some definitions and basic formulas for the sub-
manifolds in a complex space form. In section 3 and section 4, we compute
the Simons type formula and its useful modification for general submanifolds
in a complex space form M™(c). Using the formula in the previous section,
in section 5 and section 6, we give pinching theorems in terms of the square
of the length of the second fundamental form without the assumption that
the existence of the above commutative diagram for the standard fibration.
We prove the following

Theorem 5.7 ([23]). Let M be an n-dimensional compact minimal sub-
manifold of a complex space form M™(c),c > 0, of codimension p = 2m —n.
If the second fundamental form A satisfies

n+1
—2
=1/ D),

then M is a totally geodesic complex submanifold M™?(c) or a real hyper-
surface of M™(c) with |A|> = (n —1)c/4.

AP < £

This theorem is an extension of the pinching theorem with respect to the
square of the length of the second fundamental form of compact minimal
submanifolds in C'P™ given by Yano-Kon [45, Theorem 3.2, p.150].

In the next place, we study some pinching theorems for the sectional
curvature of minimal submanifolds in a complex space form. For compact
minimal submanifolds in S™*?, complex submanifolds in C'P™ and totally real
submanifolds in C'P™, there are many results of the pinching problems for the
sectional curvature (e.g. [6], [10], [28], [33], [39]). In 1980, Kon [17] proved
that if the sectional curvature of a compact minimal real hypersurface of
C'P™ satisfies K > 1/(2m — 1), then M is the geodesic minimal hypersphere.
In section 7, we improve this theorem. We prove the following

Theorem 7.2 ([21]). Let M be an n-dimensional compact minimal sub-
manifold in a complex projective space CP™ with flat normal connection. If
the second fundamental form A satisfies Y27 " trA3, > 16|FP|?, and if the

a=1
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sectional curvature K of M satisfies K > 1/n, then M is the geodesic mini-
mal hypersphere w(S1(y/1/2m) x S*™~1(\/(2m —1)/2m)) in CP™.

The above tensor fields F', P and f are defined in Definition 2.2.

We also prove that if the sectional curvature K of an n-dimensional com-
pact minimal submanifold M in CP™ satisfies K > 3/n, then M is the
complex projective space C'P™? under the assumption that the normal con-
nection of M is semi-flat (Theorem 7.5). The semi-flatness of the normal
connection of a submanifold in a complex projective space is closely related
to the flatness of the normal connection of the corresponding submanifold in
the sphere (Definition 2.4, Lemma 2.13).

Pinching problems for the Ricci curvature of minimal submanifolds in
S™P or CP™ are also studied ([8], [18]). In section 8 and section 9, we
consider the pinching problems with respect to the Ricci tensor of minimal
submanifolds in C'P™.

Section 8 is devoted to prove a reduction theorem of the codimension of
a compact n-dimensional minimal proper C'R submanifold M in C'P™. We
prove that if the Ricci curvature of M is equal or greater than n — 1, then M
is a real hypersurface of some C'P"+Y/2 in C'P™ (Theorem 8.1). Using this
result, in section 9, we improve the pinching theorem given by Kon [18]. We
prove the following

Theorem 9.3 ([22]). Let M be a compact n-dimensional minimal CR
submanifold of a complex projective space C P™ which is not a complex sub-
manifold of CP™. If the Ricci tensor S of M satisfies S(X,X) > (n —
1)g(X, X) for any vector X tangent to M, then M is congruent to one of
the following:

(a) a totally geodesic real projective space RP™ of CP™,

(b) a pseudo-Einstein real hypersurface M¢((n—1)/4,7/4) of some C P +1)/2
i CP™,

(¢) a real hypersurface of some CP™V/2 in CP™ which lies on a tube
of radius w/4 over certain Kdhler submanifold N with principal curvatures
cotf, 0 <0 < m/12.

Each submanifold is precisely described in Definition 2.1 and Definition
2.3. Using this theorem, we classify compact n-dimensional minimal C'R
submanifolds immersed in C'P™ whose Ricci tensor S satisfies S(X, X) >



(n—1)g(X,X)+ g(PX, PX) for any vector field X (Theorem 9.6).

It is an interesting and important problem to determine real hypersurfaces
of complex space forms with respect to some conditions for the holomorphic
distribution on real hypersurfaces. For instance, Kimura [12] classified real
hypersurfaces of a complex projective space C'P™, n > 3, on which the sec-
tional curvature of the holomorphic 2-plane spanned by a unit tangent vector
orthogonal to the structure vector field ¢ is constant. In the last section, we
give a characterization for totally n-umbilical real hypersurfaces and ruled
real hypersurfaces of a complex projective space with respect to the condition
of the second fundamental form on the holomorphic distribution (Theorem
10.5, [20]) and a characterization for pseudo-Einstein real hypersurfaces of a
complex projective space with respect to that of the Ricci tensor (Theorem
10.3, [19)).

The author would like to express her sincere thanks to Professor H. Fu-
ruhata for his encouragement and valuable advice.



2 Preliminaries

Let M™(c) denote the complex space form of complex dimension m (real
dimension 2m) with constant holomorphic sectional curvature c. We denote
by J the almost complex structure of M™(c¢). The Hermitian metric of M™(c)
is denoted by g.

Let M be a real n-dimensional manifold immersed in M™(c). We denote
by the same g the Riemannian metric on M induced from that of M™(c),
and by p the codimension of M, that is, p = 2m — n. We denote by V the
Levi-Civita connection in M™(c) and by V the connection induced on M.
Then the Gauss and Weingarten formulas are given respectively by

VxY = VxY + B(X,Y), VxV =—-AyX 4+ DxV

for any vector fields X and Y tangent to M and any vector field V' normal to
M, where D denotes the normal connection. We call both A and B the second
fundamental form of M which are related by g(B(X,Y),V) = g(Av X,Y).
The second fundamental form B is symmetric. A normal vector field V' on
M is said to be parallel if DxV = 0 for any vector field X tangent to M.

For the second fundamental form B, we define VB, the covariant deriva-
tive of B, by

(VxB)(Y, Z) = Dx(B(Y, Z)) — B(VxY, Z) — B(Y,VxZ)

for any vector fields X, Y and Z tangent to M. If VxB = 0 for all X, then
the second fundamental form B of M is said to be parallel. This is equivalent
to the condition VxA = 0 for all X, where VxA is defined by

(VXA)VY = VX(A\/Y) - ADXVY - Av(VXY)
We notice the relation
g(VxB)(Y,2),V) = g(VxAWY, Z).

Definition 2.1. The mean curvature vector pu of M is defined to be
= (1/n)trB, where trB is the trace of B, that is, trB = Y, B(e;, €;), {e;}
being an orthonormal basis for the tangent space T, (M) at . If u = 0, then
M is said to be minimal. A submanifold M is said to be totally geodesic if
the second fundamental form vanishes identically.



For © € M, the first normal space Ny(zx) is the orthogonal complement
in T,(M)* of the set No(x) = {V € T,(M)* : Ay = 0}. If DxV € Ny(x) for
any vector field V' with V, € Ny(z) and any vector field X of M at x, then
the first normal space Ni(x) is said to be parallel with respect to the normal
connection.

We next give some fundamental formulas on M induced from the action
of the almost complex structure J of M™(c) to the tangent space and the
normal space of M.

Definition 2.2. For any vector field X tangent to M, we put
JX =PX+FX,

where PX is the tangential part of JX and F'X the normal part of JX. For
any vector field V' normal to M, we put

JV =tV + fV,

where tV is the tangential part of JV and fV the normal part of JV.

Then P is a (1, 1)-tensor field on M and F' is a normal bundle valued 1-
form on M. P and f are skew-symmetric with respect to g and g(FX,V) =
—g(X,tV). We also have

P*=_]—tF, FP+ fF=0,
Pt+tf=0, f*=—-I-Ft

We notice that |FP| = |fF| = |Pt| = |tf|, where | - | denotes the length of a
tensor with respect to g.

We define the covariant derivatives of P, F, t and f by (VxP)Y =
Vx(PY)— PVxY, (VxF)Y = Dx(FY) - FVxY, (Vxt)V = Vx(tV) —
tDxV and (Vx f)V = Dx(fV) — fDxV, respectively. We then have

(VxP)Y = Apy X +tB(X,Y), (VxF)Y = —B(X,PY)+ fB(X,Y),
(Vxt)V = —PAyX + Ajv X, (Vx[)V = —FAyX — B(X,tV).

The Riemannian curvature tensor R of a complex space form M™(c) is
defined by ) o o 3
R(X,)Y)Z =VxVyZ —VyVxZ -V ixyZ,
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are given by

RX,Y)Z = 2(9(1/, )X — g(X, 2)Y + g(JY, 2)JX
—g(JX, Z2)JY +29(X,JY)J Z)

for any vector fields X, Y and Z of M™(c). Let R be the Riemannian
curvature tensor of M which is defined by

R(X,Y)Z =VxVyZ - VyVxZ — Vixy|Z

for any vector fields X, Y and Z tangent to M. The equation of Gauss and
the equation of Codazzi are given respectively by

R(X,Y)Z = g(g(Y, Z)X — (X, 2)Y + g(PY,Z)PX — g(PX, Z)PY
~29(PX,Y)PZ) + Apv.z)X — Apix.z)Y
and

(VxB)(Y,Z) - (VyB)(X, Z)
= S(g(PY,2)FX — g(PX,Z)FY +29(X, PY)FZ).
1

The Ricci tensor field S of M is the covariant tensor field of degree 2 defined
as S(X,Y) =3, 9(R(e;, X)Y,e;). Then we have

S(X,Y) = 2((71 ~1)g(X.Y) +3g(PX, PY))
+ > trd.g(AX,Y) =Y g(A2X,Y),

where A, is the second fundamental form in the direction of v,, {vy,- -, v,}
being an orthonormal basis for the normal space T,(M)* at z.

Definition 2.3. If the Ricci tensor S is of the form S = ag, where a
is a function, then M is said to be Finstein. Moreover, a real hypersurface
M of CP™ is called a pseudo-Finstein if the Ricci tensor S is of the form
S(X,Y) =ag(X,Y) 4+ bg(X,&)g(Y, &), where £ = —JN for the unit normal
vector field N and b is a function.



It is known that any real hypersurface of CP™ is not Einstein. Accord-
ingly the notion of pseudo-Einstein is necessary.
The scalar curvature r = Y, S(e;, e;) of M is given by

r=2((n- 10— 3P?) + D(trda)” — AP,

where |A|? =Y, trA2.

We define the sectional curvature of a 2-dimensional subspace o of T, M
by K(u,v) = g(R(u,v)v,u), where {u,v} denotes an orthonormal basis for
.

The curvature tensor Rt of the normal bundle T'(M)+ of M is defined
by

RY(X,Y)V = DxDyV — DyDxV — DixyiZ,

where X and Y are vector fields tangent to M and V is a vector field normal
to M. Then we have the equation of Ricci:

g(RH (X Y)UV) +g(|Av. Ay]X.Y)
= J(9FY.U)g(FX.V) — g(FX.U)g(FY.V)

+29(X, PY)g(fU,V)),
where [, | denotes the commutator and [Ay, Ay| = Ay Ay — ApAy.

Definition 2.4. Let M be an n-dimensional submanifold of a complex
space form M™(c). If the normal curvature tensor R of M satisfies

1
RY(X,Y)U = §cg(X, PY)fU
for any vector fields X and Y tangent to M and any vector field U normal
to M, then the normal connection of M is said to be semi-flat. If the normal
curvature tensor R+ of M vanishes identically, then the normal connection

of M is said to be flat [46, p.224].

From the equation of Ricci, we have



Lemma 2.5. Let M be an n-dimensional submanifold in M™(c). If the
normal connection ofM 1s flat, then

Z\ Ay, A2 = =16 (22 (tvg, tvg) g(tvy, tuy) — g(tvg, tvy)?)
a,b

—SZg tfva,tfva +4Zg Pewpe) (fUa,fUa))7

l(l

Zg([Afa, Agle;, Pe;) =2 Z trA, Az P

_ %(Z 9(tfvastfra) = 3 g(Pei, Peg(fra, fva)),

> 9([Aa, Abltvg, tup) = (g(Aatvy, Atv,) — g(Agtva, Aptoy))
a,b a,b
c
= Z (Z(g(tvtu tUa)g(t'Ub, tUb) - g(t’Ua, tvb - 2 Zg tfvtm tfv(l))

a,b

where we have put Ay, = Ay, .

Proof. By the equation of Ricci, we have

[Am Ab}ei = g(g(eia tva)tvb - g(eia tvb)tva - 29(fvb7 Ua)Pei)-
Hence we obtain

ZHAa’Ab”Q = Zg([Aava}eh[Aa’Ab]ei)

a,b,i
16
(2 Z g(tvg, tvg)g(tuy, tvy) — 2 Z g(tvg, toy)?
a,b

—l—ZSg Ptug, tfuvg) + 4> g(Pe;, Pe;)g (fva,fva)).

az

Since Pt = —tf, we have the first equation. By the similar computation, we
obtain the other equations. q.e.d.

By the similar method, we have

Lemma 2.6. Let M be an n-dimensional submanifold in M™(c). If the
normal connection of M 1is semi-flat, then

2
C
Z |[A0L7 Ab] |2 - g Z(g(tvm tva)g<tvb7 tvb) - g(tvm tvb>2)7
a,b a,b
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Zg([AfmAa]eiaPei) = %Zg(tfvaatfva)a

2,0

> g([Aa, Apltvg, toy) = EZ(g(tva,tva)g(tvb,tvb) — g(tvg, tuy)?).

a,b a,b

Here we recall some classes of submanifolds of a Kihler manifold M with
almost complex structure J.

Definition 2.7.

(a) If JT,(M)* C T,(M) for any point z of M, then we call M a generic
submanifold of M.

(b) If JT,(M) C T,,(M) for any point = of M, then we call M a complex
submanifold of M.

(c) If JT,(M) C T,(M)* for any point = of M, then we call M a totally

real submanifold of M.

Remark 2.8. M is a complex submanifold if and only if F' and ¢ vanishes
identically. M is totally real if and only if P vanishes identically.

Definition 2.9 (Bejancu [2]). A submanifold M of a Kéhler manifold M
with almost complex structure J is called a CR submani fold of M if there
exists a differentiable distribution D : © — D, C T,(M) on M satisfying
the following conditions:

(a) D is holomorphic, i.e., JD, = D, for each x € M, and

(b) the complementary orthogonal distribution D+ : ¥ — D+ C T,(M)
is anti-invariant, i.e., JD; C T,,(M)* for each z € M.

Remark 2.10. By the definitions, if a submanifold M of M™(c) is
generic, complex or totally real, then M is also a C'R submanifold. Any real
hypersurface of M™(c) is obviously a generic submanifold.

~ Lemma 2.11 ([46]). Let M be a CR submanifold of a Kdhler manifold
M. Then

FP=0, fF=0, tf=0, Pt=0,
PP+P=0, f°+f=0.

Theorem 2.12 ([46]). In order for a submanifold M of a Kdhler manifold

11



M to be a CR submanifold, it is necessary and sufficient that FP = 0.

For the study of submanifolds of a complex projective space C'P™ with
constant holomorphic sectional curvature 4, many authors use the method of
the standard fibration to push known theorems on the sphere down to C' P™
by considering the commutative diagram below (e.g. [24], [29], [46]).

Let S™ be a (2m + 1)-dimensional unit sphere, i.e., S?" ! = {2 €
C™1 . |z| = 1}. For any point z € S*"*! we put £ = JZ, where J
denotes the almost complex structure of C™*!. We consider the orthogonal
projection 7’ : T,(C™) — T,(S?™*1). Putting ¢ = 7' - J, we have a
contact metric structure (¢, &, 1, G) on S*™ 1 where 7 is a 1-form dual to £
and G the standard metric tensor field on S?™ ! which satisfies G(¢X, ¢Y) =
G(X,Y) — n(X)n(Y). The contact metric structure satisfies n(§) = 1 and
H*(X) = =X +n(X)E We see that S?™ ! is of constant curvature 1.

There exists a fibration 7 : S?™*! — C'P™ that satisfies the following:

(a) The fibers are totally geodesic in M.

(b) At each point p of S?™*! the differential 7, carries the normal space

to the fiber at p isometrically onto the tangent space of CP™ at 7(p).
We call 7 the standard fibration. Let M be an n-dimensional submani-
fold in CP™. Let N be an (n + 1)-dimensional submanifold immersed in a
(2m + 1)-dimensional unit sphere S?*™*! such that the following diagram is
commutative:

N L gemtl
I
M = CpP™,
where the immersion i’ is a diffeomorphism on the fibres.

The horizontal lift with respect to the connection 7 is denoted by *. Then
(JX)* = ¢X* and G(X*,Y"*) = g(X,Y)* for any vectors X and Y tangent
to CP™. A submanifold N in S?*™*! is tangent to the totally geodesic fibre
of 7 and the structure vector field £ is tangent to N.

Let a be the second fundamental form of N in S?™*!. Then we have the
relations of the second fundamental form « of N and B of M:

a(X*Y")=B(X,Y)", «al&f) =0.
Moreover, we have

(Vx-a)(Y", Z") = [(VxB)(Y.Z)+ g(PX,Y)FZ + g(PX, Z)FY]",

12



(Vx-a)(Y*,€) = [[B(X.Y) - B(X, PY) - B(Y,PX)]",
(Vx-a)(,€) = —2(FPX)’

for any vectors X, Y and Z tangent to M. From the third equation, we see
that if the second fundamental form « of N is parallel, then F'P =0 and M
is a C'R submanifold of C’P™ by Theorem 2.12.
We denote by ' = (1/(n + 1))trac the mean curvature vector field of N,
and by p = (1/n)trB the mean curvature vector field of M. Then we have
/ n / /

* n * *
Ho= n+1ﬂ , Diyep :m(DXM) ’ Délﬁ/:(fﬂ)

where D' is the normal connection of N. Thus the mean curvature vector
field p/ of N is parallel if and only if the mean curvature vector field p of M
is parallel and fu = 0.

Let K+ be the curvature tensor of the normal bundle of N. Then we
have

G(KH(X" YV, U") = [g(R*(X,Y)V.U) — 29(X, PY)g(fV.U)]",
G(KH (X" V™, U") = g(Vx )V, U)'

for any vectors X and Y tangent to M and any vectors V' and U normal to
M. Therefore, we have the following lemma (see [29], [30], [46]).

Lemma 2.13. The normal connection of N in S*™* is flat if and only
if the normal connection of M in CP™ is semi-flat and Vf = 0.

Example 2.14. In this setting, we put

2
N =S8m(r) x - xS™(ry), n+1l=> my 1= r}

i=1 =1

where mq,---,m; are odd numbers. Then n + k is also odd. The second
fundamental form o of N is parallel in S*"*!. We can see that M = 7(N) is
a generic submanifold in C P +*#=1/2 with flat normal connection. Especially,
7(S(r1) x S™(r2)) is a geodesic hypersphere in CP"*1/2, Moreover, M is a
CR submanifold in CP™ (m > (n+k—1)/2) with semi-flat normal connection
and Vf =0.

If r; = (my/(n+1)Y2 (i = 1,---,k), then M is a generic minimal
submanifold in CP™*=1V/2_ Then we have |A|? = ¥,trd2 = (n — 1)q,

13



qg=k—1.

If M is a complex submanifold in C'P™, the normal connection of M is
semi-flat if and only if M is totally geodesic (see [9]).

Example 2.15. The natural imbedding of C'P™ into C'P™ is induced from
the inclusion of C™*! into C™* ie. (29,---,2") — (2% ---,2,0,---,0).
It gives rise to a complex submanifold. The natural imbedding of RP" into
CP™ is induced from the inclusion of R"*! into C™*! ie. (2% ---,2") —
(-, 2",0,---,0). Tt gives rise to a totally real submanifold. We remark
that both are totally geodesic.

Conversely, an n-dimensional complete totally geodesic submanifold M
of C'P™ is either a complex projective space C'P™? or a real projective space
RP" of constant curvature 1 (see [1]).

Example 2.16. Let 2° z!,--- 2™ be a homogeneous coordinates of
CP™. The complex quadric @™ ! is a complex hypersurface of CP™ de-
fined by the equation

Then Q™! is a Kihler manifold. Moreover, @™ ! is an Einstein manifold
with Ricci curvature 2(m —1). Smith [35] proved that C'P™ and the complex
quadric Q™ are the only complete complex Einstein hypersurfaces in C P+

Example 2.17. For an integer k and for 0 < r < 7/2, we define M (k,r)
in SQm-l—l C Cm+1 by

k m
Z:|zj|2 = cos?r, Z |2j|? = sin®r.
=0

j=k+1

M (k,r) is the standard product S**1(cosr) x S#*(sinr), | = m—k—1. We
consider the standard fibration 7 : S?"*! — CP™, where S?"*! denotes
the unit sphere. Then M°(k,r) = n(M(k,r)) is a real hypersurface in CP™.
For an integer 1 < k < m — 2, we see that M¢(k,r) is the tube of radius r
over C'P* (see [3]).

When r satisfies cosr = \/(2k+ 1)/(2m) and sinr = /(21 4+ 1)/(2m),
M¢(k,r) is a minimal real hypersurface of C'P™.

14



Moreover, we see that M¢(k,r) is a pseudo-Einstein real minimal hyper-
surface of CP™ if and only if k =1 = (m—1)/2 and r = 7/4. Then the Ricci
tensor S satisfies S(X,Y) = (2m —2)g(X,Y) + 2¢9(PX, PY) [46, p.376].

There are many pinching results with respect to the length of second
fundamental form, Ricci curvature, sectional curvature of compact minimal
submanifolds in the sphere. In the last of this section, we recall some of
them. With respect to the pinching theorem for the length of the second
fundamental form, Peng and Terng [31] proved the following: Let M be a
compact minimal hypersurface of S"*! with constant scalar curvature. There
exists a constant €(n) > 1/(12n) such that if n < |A|*> < n + €(n) then
|A]? = n, so that M is a generalized Clifford torus.

Yang and Cheng [42] proved that, for a compact minimal hypersurface M
with constant scalar curvature in S™, if |A]? > n > 3, then |A|? > n+n/3.
In particular, if the shape operator A of M in S™! with respect to a unit
normal vector satisfying trA® =constant, then |A|* > n + 2n/3.

For an n-dimensional compact minimal manifold M in S™*? with p > 2,
Xia [40] proved the following:

(1) If n is even and |A|*> < n(3n —2)/(5n — 4), then M is either totally
geodesic or the Veronese surface in S*;

(2) If n is odd and |A]*> < n(3n —5)/(5n — 9), then

(2-a) when n > 5, M is totally geodesic in S™*?;

(2-b) when n = 5, M is either totally geodesic or homeomorphic to S°
and |A|*> = 25/8 on M; and

(2-¢) when n = 3, |A|? is identically equal to 0 or 2; in the latter case M
is diffeomorphic to S* or RP3.

Itoh [10] proved that if f : M — S™? is a minimal full isometric
immersion of a compact orientable Riemannian n-manifold into S™*? and if
the sectional curvature K of M satisfies K > n(n + 1)/2, then either M is
totally geodesic or M is of constant sectional curvature n(n + 1)/2 and f is
given by the second standard immersion of an n -sphere of sectional curvature
n(n+1)/2. Chen and Zou [6] showed that if the sectional curvature satisfies
K >1/2—1/(3p), then either M is totally geodesic or the Veronese surface
in S4.

Ejiri [8] showed that if the Ricci tensor of an n-dimensional compact
minimal submanifold of S"*? (n > 4) satisfies S > (n — 2)g, then M is
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totally geodesic, or n = 2m and M is

S™(y/1/2) x 5™(,/1/2) € 5™ snir

embedded in a standard way, or M is a 2-dimensional complex projective
CP? of constant holomorphic sectional curvature 4/3 which is isometrically

immersed in a totally geodesic S7 via Hermitian harmonic functions of degree
one.

16



3 Laplacian

We compute the Laplacian for the square of the length of the second funda-
mental form A of an n-dimensional submanifold M immersed in a complex
space form M™(c). In the following, we put V; = V., and D; = D,,, where
{e;} being an orthonormal basis of T,,(M). We use the following (see Simons
34)

Lemma 3.1. Let M be a submanifold of a locally symmetric Riemannian
manifold M. If the mean curvature vector field of M is parallel, then

9(VB)X.Y),V) = X a(ViViB)X.Y),V)
— Z(?g ei, Y)B(X, ), V) + 2g(R(e;, X)B(Y, :), V)

— g(Av X, R(e;,Y)e;) — g(AvY, R(e;, X)e;) + g(R(ei, B(X,Y))e;, V)
+ g(R(B(ei, e1), X)Y, V) = 2g(Ave;, R(ei, X)Y))
+ 2

+ 3 (trAug(Ay AuX,Y) — trA,Avg(A X, Y) + 29(A, Ay A, X, Y)
— g(A2AVX,Y) — g(AvAZX,Y)).

We compute the equation of Lemma 3.1 for an n-dimensional minimal
submanifold M in M™(c). We notice that M™(c) is locally symmetric. Using
the expression of the curvature tensor R of M™(c), we have the equation of
Lemma 3.1 in the following:

9((V*B)(X,Y),V)
= Zg((viviB)(X7 Y),V)

C
+ 3 gV tV)g(Ape,e, X) + Y g(X, tV)g(Ape.er, V)

~2g(A;v X, PY) = 29(Ap Y, PX)) (3.1)
+§ (ng(AvX,Y) = 3g(Av X, P2Y) — 3g(AyY, P2X)

3¢
+39(Apv X, Y)) — S 9(AvPX, PY)

17



+Z( tr AgAyg(A.X,Y) + 29(A, Ay A, X, Y)
—g(A2AyX)Y) — g(AvAZX,Y)).
We generally have g((V2B)(X,Y),V) = g((V?A)yX,Y). Hence we obtain
(VZA A)
]A|2 - — ZtrA Apg(tvg, tuy) — 1 Z(trA )2

a,b a

- — ZtrP2A2 —|— Z (trA,P)? + ZtrAbg (Agtvg, tuy)
a,b

+ cZ(g(Aatvb, Aptvg) — g(Agtvg, Aptoy) ) — QCZtrAaAfaP
a,b a

+ D (AT AZA, — (trA,A)” + 2tr(A,A,)* — 2trAZAD),
a,b

where we put Ay, = Ay,,. Substituting equations:

ZtrA Apg(tvg, tuy) = ZtrAFmaA = |A? - ZtrA2a, (3.2)

ab

2 (trAZA7 — tr(A,A4)° Ztr [Ag, Ap)?, (3.3)
a,b

2 (tr(A,P)? —trAZP?) =) |[P, A (3.4)

into the equation above, we have the following theorems.

Theorem 3.2. Let M be an n-dimensional submanifold of a complex
space form M™(c) with parallel mean curvature vector field. Then we have

g(V*A, A)
_ [ _43)0|A|2 ZtrAQQ ~3 Z<trA ZtrAbg (Aatva, tuy)

+c Z(g(Aatvb, Aptv,) — g(Aatvg, Aptoy)) — 2¢ Z trAaAfaP

— Z ’ P A ’2 + Ztr Aa, Ab + Z trAbtrA Ab (tl"AaAb)Z).

a,b

18



Theorem 3.3. Let M be an n-dimensional minimal submanifold of a
complex space form M™(c). Then we have

g(V*A, A)
_(n=3)c s 3¢ 2
= |A]” + 1 Za:trAa

+ cZ(g(Aatvb, Aptv,) — g(Aatvg, Apty)) — QCZtrAaAfaP

+ ZlPA |2+Ztr AaaAb] —Z(tI‘AaAb)Q.

a,b a,b

Next, we give the Simons type integral formula for a compact minimal
submanifold in C'P™ with flat normal connection. We use the following
lemma ([4, p.81]).

Lemma 3.4. Let M be a minimal submanifold in a Riemannian manifold

M. Then

(VQB) <X7 Y) = Z(szzB) (X7 Y)

7

- Z( (€1, X)B) (e, Y) + (Vi (Res, Y)er) 2 )" + (Vi(R(es, X)V)H)L),

where {ey1,--+,e,} denotes an orthonormal basis of To(M), and V is the
Levi-Civita connection in M.

We compute the equation in Lemma 3.4 for an n-dimensional minimal
submanifold M in a complex projective space C'P™ of constant holomorphic
sectional curvature 4. Since C'P™ is locally symmetric, using the expression
of the curvature tensor R of CP™, we have

Z(vX(R(eu Y)e;) )t

_ Z( B(X,e),Y)e; + Rles, BX,Y))e, + Rlei, Y)B(X, e)))

—ZB R(ei, Y)e))),

3(fB(X,PY)+ FtB(X,Y) = B(X,P’Y) + FApy X),

19



> (Ve (R(es, X)Y))*

)

= > (R(Blew. e, X)Y + Rlew Bles. X)) + (e X) Bl V)

— Z B(ei, (R(e;, X)Y)T)

_ FApY — FApy X + fB(X,PY)+2fB(PX,Y)
—3B(PX,PY)—2% g(Ap.ei, X)FY =3 g(Apee;, Y)FX,

where (R(e;, X)Y)T) denotes a tangential part of R(e;, X)Y. Thus we obtain
Q(V2B, B) = Z g((veiveiB)(eja 6k)7 B(eja 6k))

i3k

_ Z g((R(ei, e5)A)qei, Agej) + 3(2 trA g, Aa

1,5,a

—23 trAAp P — Y trP?AZ + > tr(A,P)?
+ Z g(Agtvg, toy)trA, + Z(g(Aatvb, Aptvg) — g(Agtug, Abtvb))).
a,b a,b
Using (3.2) and (3.4), we have

Lemma 3.5. Let M be an n-dimensional minimal submanifold in C P™.
Then

9(V?B,B) = g(V*A, A)
= > g((R(ei e5)A)ai, Aue;)

i,5,a
(= A+ Y A%, — 23 trAuALP + 3 ([P AP

+ Y (9(Aatoy, Aptvg) — g(Aqtu,, Abtvb))).

a,b

We prepare the following lemma.

Lemma 3.6. Let M be an n-dimensional minimal submanifold in C' P™.
If U s a parallel section in the normal bundle of M, then

div(VtU) = (n — 1)g(tU, tU) + 3g(PtU, PtU) — > _ g(A.tU, A.tU)

20



1
+trA?cU - trAQU — 2trAyAju P + Zg(AUtva, Ayto,) + §|[P, Ayll%.

Proof. For any vector field X on a Riemannian manifold, we generally
have the equation ([43])

div(VxX) — div((divX)X) (3.5)
1
= S(X,X) + §|LXg|2 — VX = (divX)?,
where S denotes the Ricci tensor and (Lxg)(Y, Z) = g(Vy X, Z)+9(V2zX,Y).

Suppose that U is a parallel section of the normal bundle of M. From
the equation of Gauss, we have

S(tU,tU) = (n — 1)g(tU, tU) + 3g(PtU, PtU) — > g(AatU, A,tU).

On the other hand, since (Vxt)V = —PAy X + Ay X for any V normal to
M, we have Vx (tU) = —PAy X + Ay X. This implies div(tU) = trApy = 0.

We also have
|VtU|* = trA?U +trA? — 2trAy Ay P — Zg(AUtva, Aytu,),
‘LtUg|2 = HP7 AUHZ + 4th?cU - 8trAUAfUP.

Substituting these equations into (3.5), we have our lemma. q.e.d.

Lemma 3.7. Let M be an n-dimensional minimal submanifold in C'P™ with
flat normal connection. Then

—g(V2A, A) -2 Z g(Pe;, Pe;)g(tvg, tv,) — 2 Z g(F Pe;, F Pe;)

ZtrA2a+Z| [P, Aq] 4ZtrA Ay, P)

+ Z (tvg, tva)g(tvy, tuy) — g(tva, tvy)?)
- Z tI'A2 Z g 617 e] ) €, Aaej)
a %,7,0

+8Zg (F'Pe;, F Pe;) ZtrA2a 2> div(Viy, tv,).

21



Proof. By a straightforward computation, we obtain
Z g(tfva, tfu,) = Zg(Ptva, Ptu,) = Z g(F Pe;, FPe;), (3.6)

> (g(tva, tvg) g(tvs, tvy) — g(tva, tvy)?) (3.7)
a,b

=(n-1) Zg(tva, tv,) — Zg(Pei, Pe;)g(tvg, tv,)

2,0

+Y " g(Ptu,, Pto,).

Thus, using Lemma 2.5 and Lemma 3.5, we have
—g(V?A, A)
==Y g((R(ei, e5)A)aes, Agej) + 3> trA2 — 3> trA3,

1,5,a
16 tr A AP - 2 SIP A = 200 — 1) g(tvn, tva)

+2 Z g(Pe;, Pe;)g(tvg, tv,) + 4 Z g(Ptv,, Ptv,)
— Z (tvg, tvg)g(tvy, tuy) — g(tvg, tuy)?).

Since the normal connection of M is flat, we can choose an orthonormal basis
{vy} of T(M)* such that Dv, = 0 for all a. Thus, from Lemma 3.6, we have
dlv(vtvatva> = (n - 1)g(t/U[l7 t/U(l) —"_ Bg(PtUQ7 Ptv(l)
1
+trA}, — trA2 — 2trA,Ap P + §|[P, A2

From these equations, we have our assertion. g.e.d.

Next, for the later use, we compute the Laplacian for the square of the
length of F' of an n-dimensional submanifold M immersed in M™(c).

Lemma 3.8. Let M be an n-dimensional submanifold of a complex space
form M™(c) with parallel mean curvature vector field. Then we have

A|F]P = 3c|PtP+4) trA}, — 4> trd, AP

—4 Z g(Agtuy, Agtuy) + 4 Z g(Agtvy, Aptu,,).
a,b a,b
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Proof. First we compute

;A|F|2 _ ; SV, VsalFei Fe)

= Y Vl(VF)en Fe)
irj

= 2_(Vig(Aaej, Ptva) + V;9(Aac;, tva))
J.a

= Z(g((vjA)aej’ Ptva) + g(ADjvaej’ Ptva) + g(Aaej’ (Vjp)tva)
:ilg(Aaejﬁ P(Vjt)va) + g(Aaej’ PtDjva) + g((vjA)faejv tva)
+ 9(Ap, fv. €5, t0a) + g(Agaej, (Vjt)va) + g(Agaes, tDjv,)).

Since the mean curvature vector field of M is parallel, using the equation of
Codazzi, we have

Zg((vjA)aej7 X) = Zg((vjA)aXv ej)

= S oV Ay es) — (P, )

J

3
= —ch(PX, tv,).

Moreover, using formulas for VP and Vt, we obtain our equation.
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4 Integral formulas

In this section we give integral formulas for a compact submanifold in a
complex space form M™(c), ¢ > 0, with respect to the square of the length
of the second fundamental form A ([23]).

We notice that second fundamental form Ay can be considered as a sym-
metric (n,n)-matrix for any vector V normal to M. For an orthonormal
basis {e;} of the tangent space T, (M) and an orthonormal basis {v,} of the
normal space T, (M)*, we put Ase; = 3 her. Let Hy, a = 1,--+,p, be a
symmetric (n + 1,n + 1)-matrix defined as

% hiy -+ hi, | i
H, = A, :a _ a a :a 7
s py | 0 peo s [0

where pu¢ = —(1/¢/2)g(tva, e;). In the following, we put |H|* = Y, trHZ2.
The main purpose of this section is to prove the following

Theorem 4.1. Let M be an n-dimensional submanifold of a complex
space form M™(c), ¢ > 0 with parallel mean curvature vector field. Then

2
C
—g(V2A, 4) = S( PP + |FPP)

3c 3c?
+7 Y (trA%, 4+ |[P, A — 4trA, Ay P) + TyFP|2

a

1
= = tr[H,, H)? + S (teH Hy)? — <”+4>C|H|2 n EA]FF
a,b a.b
Yt HL)? = 3 eyt HEH, + Y trHyte(Ho Hy — HyHo) HaB),
a a,b a,b

where
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Remark. In Theorem 4.1, if the mean curvature vector field p of M sat-
isfies fu = 0, then Y-, , trHytr((H,Hy, — HyH,)H,E) = 0. For the condition
fu =0, see section 2.

Before we prove Theorem 4.1, by the consequence of this theorem, we
state the following theorems.

Theorem 4.2. Let M be an n-dimensional minimal submanifold of a
complex space form M™(c), ¢ > 0. Then

2
~g(V?A, 4) = Z(PPItP + |FPP)

3¢ N ) 3c? )
+ " S (trA3, + [P AP — dtrA A P) + T|FP|

a

= = tr[He Hy)? + D (trH Hy)* — (n+De

C
H|> + - A|F|.
a,b a.b 4 | ‘ +4 | |

If M is compact, then [,,|VA|? = — [, 9(V2A, A) (see [34]). Thus we
have

Theorem 4.3. Let M be an n-dimensional compact submanifold of a

complex space form M™(c), ¢ > 0, with parallel mean curvature vector field.
Then

2
C
(VAR =S (PR + |FPP)

3c 3c?
+ o D (trAG, + [P AP — 4trA, Ag.P) + T|FP|2)

(n+1)c

— /M(_ > trlHay B + 3 (rH Hy)* — = == |H|’
a,b a,b
+ EZ(trHa)Q — S twHytrH2Hy + Y teHyte(HoHy — HyHo)HoE) ).

a a,b ab

Theorem 4.4. Let M be an n-dimensional compact minimal submanifold
of a complex space form M™(c), ¢ > 0. Then

2
C
| (VAR = (PP + |FPP?)
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2
#5000, + 1P AP - terAuAP) + 2 P)

—/ ZtrHa,Hb + 3 (trH, Hy)? —(”“)|H|)

a,b

To prove Theorem 4.1, we prepare some lemmas.

Lemma 4.5 Let M be an n-dimensional submanifold of a complex space
form M™(c), ¢ > 0. Then

— Y ulH, B = Y (—taAl, A

a,b a,b
c(g(Agtvy, Agtvy) — g(Agtuy, Aptu,))

_|._
+ c(g(Agtv,, Aptuy) — g(Aatvy, Aptv,))
2

_|._

c
5 (@(tva, tva)g(tvp, tuy) — g(tva, twr)?)).
Proof. By the straightforward computation, we have

— Z tI'[Ha, Hb]2
a,b

= 2 Z trHH; — 2 Z tr(H,Hy)’

O R 2 X Wb S B

ab i,7,k,l 1,5, 1,5,k
+ Z i pd sl + 2 by + O () (O (1))
i ikl k !
— Z gy h Ry — > RS hLpd pl — > Wyl
,7,k,l 1,7, 5,k
= > uubudut = 27 Wkl bt — (37 ph)?).
,] 7.kl k

Since Aqe; = Y hier and pf = —(1/¢/2)g(tva, €;), we have

—z;trAa,Ab = 2; E;lha i hl hy — E};lhahgjh;lhb
a 2,5 4.3,

> g(Agtoy, Agtoy) = g(Agtvy, €:)g(Agtoy, €;)
ab

a,b
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4

- Z Z hfkhzlﬂkﬂl )

Cab ikl
4
Zg A tvbaAbtUa - c ZzhgkhZM?cM?)
a,b i,k,l
4
Zg (Agtvg, Aptoy) = Zthkhfzu%u?,
a,b i,k,l

Z(g(tva, tva)g(toy, tvy) — g(tvg, tvy)?)

a,b
= Z( Zuk Z up)? = (2 md)?).
a,b k
From these equations we have our equation. g.e.d.

We also have

Lemma 4.6. Let M be an n-dimensional submanifold of a complex space
form M™(c), ¢ > 0. Then

2
SO (trH Hy)? = S (tr A, Ay)° + o A2 — ¢S trA2, + %|Ft|2.

a,b a,b

Lemma 4.7. Let M be an n-dimensional submanifold of a complex space
form M™(c), ¢ > 0. Then

[HI* = A" + !t\Q-

Lemma 4.8. Let M be an n-dimensional submanifold of a complex space
form M™(c), ¢ > 0. Then

2 Z(trAa)2 Z trAyg(Agtv,, tuy) Z trAytrA2 A,

a,b a,b
= 72 tI‘H ZtertrH2Hb + ZtI"Hth' (H Hb HbHa)HaE).
a,b a,b

Proof. From the definition of H,, we have trH, = trA,. Next, by the
straightforward computation, we have the following equations

YotrHIH, = (> hjhiht + Z Rl + 2 Z heudpt),

a 4,5,k

> te((HoHy — HyHo)H, Z Z hﬂ“z 15— Z hjitsi “J
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Thus we have

> trHytrH H, + Z trHytr((H, Hy, — HyH,)H,F)

a,b

= Z trHp) Z hi, hzjh?z +3>° ;g ,uj

4,7,k

On the other hand, we have
— Z trAb A tUa, tUb + Z tl"Abtl"A Ab

= Z (trHy)(3 Z hSudul + Y hihi;hS,).

1,5,k

From these equations, we have our equation. g.e.d.

From Theorem 3.2 and Lemmas 4.5-4.8, we have Theorem 4.1.
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5 Pinching theorems of the square of the length
of the second fundamental form

We give some pinching theorems with respect to the square of the length of
the second fundamental form A, the square of the length of H and the scalar
curvature 7 ([23]). We prepare some inequalities.

Lemma 5.1. Let M be an n-dimensional submanifold of a complex space
form M™(c). Then

VAR > (PR + |FPP).
Proof. We put
T\(X,Y,Z) = (VxB)(Y, Z) + Z(g(PX, Y)FZ + g(PX, Z)FY).
Then

2 2
\Tf\ = |VB’2 + % Zg(Pei, Pe;)g(tvg, tv,) + % Zg(FPei, FPe;)

1,a

—l—cZg((ViB)(Pei, e;), Fej).

]

From the equation of Codazzi, we obtain

> 9((ViB)(Pej, ¢5), Fey)

i
C
= 9((V;B)(e;, Pe;), Fe;) — 1 > g(Pe;, Pe;)g(tvg, tug)
@, i,a

—2 S g(FPe;, FPe,).

Since B is symmetric and P is skew-symmetric, the first term in the right
hand side of the equation vanishes. So we have our assertion. q.e.d.

Lemma 5.2. Let M be an n-dimensional submanifold of a complex space
form M™(c) with parallel mean curvature vector field. If the equality

2
VAP = Z(IPPIt? + | FPP)
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holds, then M is a CR submanifold or ¢ = 0.

Proof. By the proof of Lemma 5.1, the equation holds if and only if
Ty = 0. Suppose that 77 = 0. Then we have

Dx(trB) = Y (VxB)(ei, i) = —%FPX.

)

Since the mean curvature vector field of M is parallel, we see that Dx (trB) =
0. When ¢ # 0, we have FP = 0. Then, from Theorem 2.12, M is a CR
submanifold. qg.e.d.

Lemma 5.3. Let M be an n-dimensional submanifold of a complex space
form M™(c). Then

S trAd, + D ([P AP — 4 trAAp P > 0.

Proof. We put
T»(X,Y)=fB(X,Y)— B(X,PY)—- B(PX,Y).
Then we have

T|* = D IfBleie;) — Blei, Pe;) — B(Peie))|*
]

= > trAl, + > |[P AP — 4 trA Ay, P.

a

Thus we have our inequality. qg.e.d.

Remark. From the consideration in section 2 and Lemma 5.2, we see
that the conditions 77 = 0, 75 = 0 and F'P = 0 for a submanifold M of C'P™
correspond to the notion of the second fundamental form « of a submanifold
of §*m*1 is parallel. Moreover, if T, = 0, we see that fu = 0. When M is a
generic submanifold, the condition 77 = 0 was studied by Yano-Kon [44].

Lemma 5.4. Let M be an n-dimensional submanifold of a complex space

form M™(c) with parallel mean curvature vector field. If Ty = 0 and Ty = 0,
then |A|* and |H|? are constant.
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Proof. Since T} = 0, Lemma 5.1 implies
(VxB)(Y,Z) = =1 (9(PX.Y)FZ +g(PX, Z)FY).

Moreover, by Lemma 5.2, M is a C'R submanifold, and hence |¢| is constant.
We notice that |A|* = 32, ; g(Ase;, Aaei) = X2 ; 9(Blei, ¢;), Bles, e5)) = | B
Then we have
Vx|A]? = 2> g((VxB)(es,€5), Bles, e;)) = ¢ > g(AaPX, tvy).
irj a
Since Ty = 0, we also have fB(X,Y) = B(PX,Y) + B(X,PY). Hence

we obtain Y, g(A X, tfv,) = 3, 9(APX, tv,) + Y, 9(AX, Ptv,). From
Lemma 2.11 and Lemma 4.7, we see that |A|? and |H|? are constant. g.e.d.

We need the following lemma (see Chern-do Carmo-Kobayashi [7]).

Lemma 5.5. Let A and B be symmetric (n,n)-matrices. Then
—tr(AB — BA)? < 2tr A*tr B2,

and the equality holds for non-zero matrices A and B if and only if A and
B can be transformed simultaneously by an orthogonal matriz into scalar
multiples of A and B respectively, while

1 0

Moreover, if Ay, Ay and As are (n,n)-symmetric matrices and if

then at least one of the matrices A; must be zero.
Using these lemmas, we prove following

Theorem 5.6. Let M be an n-dimensional compact minimal submanifold
of a complex space form M™(c), ¢ > 0. If H satisfies

\H\2< (n+1)c
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then M s a totally geodesic complex submanifold M™?(c) or a real hyper-
surface of M™(c) with |A]* = (n — 1)c/4.

Proof. Using Lemma 5.5, for a suitable choice of an orthonormal basis
{v.}, we have

> (trH Hy)? — > tr[H,, Hy)?
a,b a,b
<> (trHZ)? + 2> trH2trHy
a#b

— oY wH2) — Y (trH2)’

a

— (2 (S H S} — )

a>b

1
< (2-)H*
p
From Theorem 4.4, Lemma 5.1 and Lemma 5.3, we obtain
, 20412 2
0 < [ (VAR = S(PPIE + |FPP)
M 8

2
+ ?IZ(trAQCL + |[P, A])? — 4trA, Az P) + ?’Z|FP\2)

< [ (- e - U

Thus we see that if |H|*> < (n+1)c/(8 —4/p), then FP =0 and M is a CR
submanifold by Theorem 2.12. Moreover, we have |VA|? = (¢?/8)(n — q)q,
where q = [t|* =X, g(tva, tv,). Then Lemma 5.1 and Lemma 5.3 imply that
Ty = 0 and Ty = 0. Therefore, by Lemma 5.4, |A|? and |H|? are constant.
Consequently we see that |H|?> = (n+ 1)c/(8 — 4/p) or |H|* = 0.

Suppose that |H|* = 0. From Lemma 4.7, we have A, = 0 and tv, = 0
for all v,. Thus M is a totally geodesic complex submanifold, that is, M is
a complex space form M™?(c) of M™(c).

Next we suppose that |H|> = (n + 1)¢/(8 — 4/p). Since Y ,-;(trH2 —
trH?)? = 0, we have trH? = trHZ for any a # b. Thus, from Lemma 5.5, we
have p=1 or p = 2.

Suppose that p = 2. If dimD+ = 0, then M is a complex submanifold
of M™(c). Hence we have PA, + A,P = 0 and Ay, = PA, (cf. [44]). On
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the other hand, we obtain trA%, + |[P, A,]|* — 4trA, Az, P = 0. Thus we see
that A, = 0 for all a and that M is a totally geodesic complex submanifold
M™2(c) of M™(c).

If there exist vector fields X € D+ and V € N, where N is the orthogonal
complement of JD; in T,(M)*, then JX € JD+ and JV € N. So we have
dim7,(M)* > 3. This is a contradiction. Thus we see that if dimD+ # 0,
then dimN = 0, that is, M is a generic submanifold of M™(c).

Suppose that dimD+ # 0. Since M is generic, we have fv = 0 for any
v € Tp(M)*. Then, we obtain

> (trA3, + [P AP — dtrA, A P) = > |[P AP = 0,
that is, A,P = PA, for all v,. Changing the order of the orthonormal
basis {e;} of T,,(M), we suppose e1,es € D, e3,--,e, € D, and v, = Je,
(a =1,2). Since A,P = PA, for all a, we have

g(AtV, PX) = —g(A,PtV,X) =0
for any tangent vector field X and normal vector field V. So we have

g(Aseisej) = hi; = h§, = 0 fori = 1,2 and j > 3. Since rankH, = 2
and trA, = 0 for a = 1,2, the matrices H, (a = 1,2) are represented as

0 hiy Ve/2
hi, 0 0 0
0
H, = )
0 0 :
0
V2 010 ... 0] 0
and
0 h3 0
B, 0 0 |Ve2
" 0
? 0 0 :
0
0 e/2]0 ... 0] 0

By Lemma 5.5, there exist an orthogonal matrix T" = (¢;;) and scalars «
and 3 such that TH,T~! = oA and TH,T~! = 3B. By the straightforward
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computation, we have t;; = 0,115 = 0,%97 = 0 and t95 = 0. Hence we obtain
A, =0 (a=1,2).
On the other hand, from Lemma 4.7 and Y, g(tv,, tv,) = p = 2, we have
-5
AP = e = 0

Consequently, we have n = 5 and hence 2m = 7. Thus is a contradiction.
Hence we see that if |H|?> = (n+1)c/(8 —4/p), then M is a real hypersurface
with |A|? = (n — 1)c/4. Thus we have our theorem. g.e.d.

From Theorem 5.6, we have

Theorem 5.7. Let M be an n-dimensional compact minimal submanifold
of a complex space form M™(c),c > 0. If the second fundamental form A

satisfies
c, n+1
AP < = -2

then M is a totally geodesic complex submanifold M™?(c) or a real hyper-
surface of M™(c) with |A|?> = (n — 1)c/4.

Proof. Since p > [t|?, we have

g Ccrn+1 9
4P < (=57, —21),

from Lemma 4.7, we obtain |H|* < (n+1)c/(8 —4/p). Thus, from Theorem
5.6, we have our conclusion. qg.e.d.

Remark. This theorem is an extension of the pinching theorem with
respect to the square of the length of the second fundamental form of compact
minimal submanifolds in C'P™ given by Yano-Kon [45, Theorem 3.2, p.150].
If M is a real hypersurface of M™(c) with |A|*> = (n — 1)c/4, we see that
PA, = A,P. Then M has at most three constant principal curvatures.
When the ambient manifold M™(c) is CP" /2 of constant holomorphic
sectional curvature 4, a compact minimal real hypersurface of M with the
second fundamental form A which satisfies |A]> = n — 1 is equivalent to

m(SP(((2p+1)/(n + 1))1/2) x S2H(((2q+1)/(n + 1))1/2))7 2(p+q) =n.
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Corollary 5.8. Let M be an n-dimensional compact minimal submani-
fold of M™(c),c > 0. If the scalar curvature r of M satisfies

n+1
2—1/1?)’

r > g(n(n +2)—
then M s a totally geodesic complex submanifold M™?(c).
Proof. Since the scalar curvature r of M is given by

r=2((n=Dn+31PP) - AP~
Lemma 4.7 implies
ro= g(n(n — 1) +3|PP) + %It\Q —|H]?
= 3 (nn+2) — [tP) P

n(n+2)c
4

IN

— [H[*.

Hence we see that if r satisfies the inequality in the statement, then |H|* <
(n+ 1)c/(8 —4/p). By the proof of Theorem 5.6, M is a totally geodesic
complex submanifold M™?(c) or a real hypersurface with |[H|> = (n + 1)c/4
of M™(c). When M is a real hypersurface with |H|> = (n + 1)c/4, we have
r = (n* 4+ n — 2)c/4. This is a contradiction. Thus we have our conclusion.
q.e.d.
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6 Semi-flat normal connection

Let M be a n-dimensional submanifold of a complex space form M™(c). We
consider the condition that the normal connection of M is semi-flat, that is,
the normal curvature tensor R of M satisfies R (X, Y)U = (¢/2)g(X, PY) fU
for any vector fields X and Y tangent to M and any vector field U normal
to M. We put

SUX.Y) = gl Av, AIX. Y) — 1elg(FY, U)g(FX, V) — g(FX,U)g(FY,V)).

By the straightforward computation using the equation of Ricci, the normal
connection of M is semi-flat if and only if S; = 0. Thus we have the following
two lemmas.

Lemma 6.1. Let M be an n-dimensional submanifold of a complex space
form M™(c). The normal connection of M is semi-flat if and only if the
following equation holds

— > tr[Ag, Ap)? — ¢ g([Aa, Abtv, toy)

a,b a,b
+ 02 Z (tvg, tva) g(tvy, tuy) — g(tvg, tvy)?) = 0.

Proposition 6.2. Let M be an n-dimensional submanifold of a complex
space form M™(c). Then we have

|Sl|2 Ztr Ha,Hb] - *|Vf|2

a,b

Proof. From Lemma 2.6 and Lemma 4.5, we have

|Sl|2 = —Ztr[Aa,Ab]Q—cZg([Aa,Ab]tva,tvb)

a,b a,b
—|— Z (tvg, tvg) g(toy, tuy) — g(tvg, tvy)?)

= — Ztr Ha, Hy)? — CZ g(Agtvy, Agtuy) — g(Agtvy, Aptuy)).
a,b a

Since (Vxf)V = —FAy X — B(X,tV), we obtain
|Vf’2 =2 Z(Q(Aat’l)b, Aatvb) - g(AatUba Abtva))-
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From these equations we have our result. q.e.d.

Theorem 6.3. Let M be an n-dimensional compact minimal submanifold
with semi-flat normal connection of a complex space form M™(c), ¢ > 0. If
|H|?> < (n—2)c/4, then M is a totally geodesic complex submanifold M™?(c)

of M™(c).
Proof. From Lemma 2.6 and Lemma 3.8, we have
A|F]? = 2¢|Pt]? +4) trAj, — 2|V f]%.

Hence, from Theorem 4.2 and Lemma 2.6, we have

n—2)c
(w2
a,b

2
— —g(V?A, A) — i<|P|2rt|2 +|FP)?) + |H|2 > AR,) + P Al
ZtrA2a+Z|PA 4ZtrA A, P).

Thus we have, by Lemma 5.1 and Lemma 5.3,

/M(Z(trHaHb)2 - (”QQ)CyHP)z 0

a,b

We now choose an orthonormal basis {v,} such that trH,H, = 0 for a # b.
Then >, ,(trH H,)* = X, (trHZ)? < (3, trHZ2)?. Hence we have

[ (e =2 e 50

From Lemma 5.2, M is a C'R submanifold of M™(c¢). By a similar method
of the proof in Theorem 5.6, we see that if |H|* < (n — 2)c/4, then |H|?> =
(n —2)c/4 or |[H|? = 0. When |H|*> = 0, M is a totally geodesic complex
space form M"/%(c) of M™(c). We suppose that |H|?> = (n — 2)c/4. Then,
we have

>_IP AP =0, [HI* = A" + |1t|2 ZtIAQa
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Since |A]* = ¥, trA2 > ¥, trA7,, we have t = 0. Thus M is a complex
submanifold of M™(c). Then we generally see that PA, + A,P = 0 for all
a. Combining this to PA, = A,P, we have PA, = 0, and hence A, = 0,
n = 2. Consequently, M is a totally geodesic complex space form M™/2(c) of
M™(c). g.e.d.

From Theorem 6.3, we have the following results.

Theorem 6.4. Let M be an n-dimensional compact minimal submanifold
with semi-flat normal connection of M™(c) . If |A]* < (n—2p—2)c/4, then
M s a totally geodesic complex submanifold M™?(c) of M™(c).

Corollary 6.5. Let M be an n-dimensional compact minimal submani-
fold with semi-flat normal connection of M™(c). If the scalar curvature r of
M satisfies 7 > (n® +n +2)c/4, then M is a complex space form M™?(c) of
M™(c).

We next prove a reduction theorem of the codimension of a submanifold
of a complex space form.

Theorem 6.6. Let M be an n-dimensional submanifold with semi-flat
normal connection of a complex space form M™(c),c > 0. If Vf =0, then M
is a totally geodesic complex submanifold of M™(c) or a generic submanifold
of some M"1(c) in M™(c).

Proof. From the assumptions, Lemma 3.8 implies

A|F]? = 2¢|Pt]? +4) " trAj,.

Moreover, we see that |f|?* is constant by Vf = 0. Then [t|* and |F|* are
also constant. Hence we have Ay, = 0 and Pt = 0. This means that M is
a C'R submanifold. If t = 0, M is a totally geodesic complex submanifold,
that is, complex space form M™?(c). If t # 0, then we have g(DxV, fU) =
—g(V,(Vxf)U) = 0 for any vector field V in FT(M). Thus DxV is in
FT(M). Therefore, FT(M) is the parallel subbundle in the normal bundle
T(M)*. From this and Ay, = 0, we have our assertion (see [4, Lemma 5.9]).
q.e.d.
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Remark. In [46, Theorem 3.14, p.236|, it was proved that if an n-
dimensional compact minimal C'R submanifold M of C'P™ with semi-flat
normal connection and Vf = 0 satisfies |A|?> < (n — 1)q, then M is CP™/?,
or M is a generic minimal submanifold of some CP™*9/2 in CP™ and is
T(S™(ry) X --- x S™(rg)), n+l=%F m, 1=%F r2 q¢gq=k-—1,
where mq, - -+, m; are odd numbers. Then n + k is also odd.

From Proposition 6.2, we see that H,H, = H,H, for all a and b if and
only if the normal connection of M is semi-flat and V f = 0.
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7 Pinching problem of the sectional curva-
ture

In this section we give some pinching theorems with respect to the sectional
curvature of the compact minimal submanifold in a complex projective space

([21]). If M is compact, we have [,,|VA|? = — [, 9g(V2A, A) (see [34]).
Therefore Lemma 3.7 implies

Theorem 7.1. Let M be an n-dimensional compact minimal submanifold
n a complex projective space CP™ with flat normal connection. Then

/ (\VA|2 -2 Zg(Pei, Pe;)g(tvg, tvg) — 2> g(FPe;, FPe;)

ZtrA2a+Z|PA 4ZtrA At P)

—i—z (tvg, tvg)g(toy, tvy) — g(tvg, tvy) ))
ab

/ ZtrA —Zg (€i,€5)A)qei, Agej)

1,7,a

+8 Z g(F Pe;, FPe;) — Z trAQG)

Theorem 7.2. Let M be an n-dimensional compact minimal submani-
fold in a complex projective space C'P™ with flat normal connection. If the
second fundamental form A satisfies S, trA3, > 16|FP|?, and if the sec-
tional curvature K of M satisfies K > 1/n, then M is the geodesic minimal

hypersphere w(S*(y/1/2m) x S*™~1(\/(2m — 1)/2m)) in CP™.

Proof. From Lemma 5.1 and Lemma 5.3, we see that the left-hand side
of the equation in Theorem 7.1 is non-negative. Next we prove that the
right-hand side of this is non-positive.

Choosing an orthonormal basis {e;} of T, (M) such that A,e; = hfe,
1=1,---,n, we have

ZQ 67,76] ) eiaAaej)

=Y g(R(ei, e5)Aaei, Aues) — D g(AaR(es, €5)es, Aaey)

0] Y]
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72 ha a 1]7

where K;; denotes the sectional curvature of M with respect to the section
spanned by e; and e;. Since K;; > 1/n, we obtain

Z 1
g 617 6] )aeiy Aaej) Z 2 g (h;l - h;l)2 Z trA?l
n -
2¥)

The left-hand side of this inequality is independent of the choice of an or-
thonormal basis {e;}. Hence we have

Z trAQ Z g 617 ej )aei’ Aa€j> <0.

%,J,a

Consequently, Theorem 7.1, Lemma 5.1 and Lemma 5.3 imply
VAP =23 g(Pe;, Pe;)g(tva, tva) — 2 g(Ptva, Ptv,) =0, (7.1)

i,a

Z(g(tvm tva>g(tvba tvb) - g(tva, tvb)z) = 07 (72)
a,b
8 Z g(F Pe;, FPe;) — ZtrA2a = 0. (7.3)

By (7.1) and Lemma 5.2, M is a C'R submanifold. Thus, from (7.3), we have
Ay, = 0 for all v,. On the other hand, (7.2) implies ¢ = 1 or ¢ = 0.
Suppose that ¢ = 1. Using Lemma 2.5, we obtain

Zg (A, Adles, Pe;) = —2h(p— 1) = 0.

When p = 1, from the theorem in [17], M is a geodesic minimal hypersphere.
When A =0, we have n = ¢ =1 and K = 0. This is a contradiction.

We next suppose that ¢ = 0. Then M is a complex submanifold and
n = h. On the other hand, again using Lemma 2.5, we have hp = 0, and
hence h = 0. This is a contradiction. q.e.d.

When M is a C'R minimal submanifold, by Theorem 2.12, we have F'P =
0. Hence the condition ", trA%, > 16|/FP|? in Theorem 7.2 is automatically
satisfied. So we have
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Theorem 7.3. Let M be an n-dimensional compact minimal CR sub-
manifold in a complex projective space C'P™ with flat normal connection. If
the sectional curvature K of M satisfies K > 1/n, then M is the geodesic

minimal hypersphere w(S*(1/1/2m) x S*™=1(y/(2m — 1)/2m)) in CP™.

Next we give pinching theorems for minimal submanifolds in C'P™ with
semi-flat normal connection. Using (3.6), (3.7), Lemma 2.6 and Lemma 3.5,
we have

Lemma 7.4. Let M be an n-dimensional compact minimal submanifold
in CP™ with semi-flat normal connection. Then

/ <|VA|2 -2 Zg(Pei, Pe;)g(tv,, tu,) — 2 Zg(FPeZ-, FPe;)
M ia i

+2<Z trAf, + D I[P Ad = D dtrA,Ag, P)

+43 " g(F Pe;, FPei))
- /M(_ Z g((R(6“ ej>A)aei) Aaej) +3 Z tI’Az
,7,a a
_;) D trAf, —2(n— 1)) g(tvg, tug)

- Z;‘(g(tva, tva)g(tv, tv) = g(tva, tu,)*)).

From this, we have

Theorem 7.5. Let M be an n-dimensional compact minimal submanifold
i a complex projective space CP™ with semi-flat normal connection. If
the sectional curvature K of M satisfies K > 3/n, then M is the complex
projective space CP% in CP™.

Proof. From Lemma 5.1 and Lemma 5.3, we see that the left-hand side
of the equation in Lemma 7.4 is non-negative. Next we prove that the right-
hand side of this is non-positive.

Since K;; > 3/n, by a similar method in the proof of Theorem 7.2, we

42



obtain
— > g((R(ei, ej)A)aes, Agey) + 3> trA2 <0.
%,7,a a

Consequently, we have
3
) > trA}, +2(n— 1)) g(tve, tv,) = 0.

Thus, we obtain Ay, = 0 for all v, and ¢ = 0. Therefore M is a complex
submanifold in C'P™ and A, = 0 for all v,. Thus M is a real n-dimensional
totally geodesic complex submanifold in CP™, that is, CP?3. q.e.d.

Next we give a pinching theorem for a compact minimal C'R submanifold
in CP™ with semi-flat normal connection.

Theorem 7.6. Let M be a compact n-dimensional minimal C R subman-
ifold in a complex projective space CP™ with semi-flat normal connection.
If the sectional curvature K of M satisfies K > 1/n, then M is a totally
geodesic complex projective space CP™? or a geodesic minimal hypersphere

(ST (y/1/(n + 1)) x S*(\/n/(n+1))) of some CPT+V/2 jn CP™.

Proof. Since M is a C'R submanifold in C'P™, we can take an orthonormal
basis {v,} of T,(M)* such that {v,---,v,} form an orthonormal basis of
FT,(M) and {vg41," -, v,} form an orthonormal basis of f7T,(M)*.

If ¢ =0, M is a complex submanifold in C'P™. Then the normal connec-
tion of M is semi-flat if and only if M is a totally geodesic complex projective
space C'P™? by a theorem of Ishihara [9].

We next suppose that ¢ > 1. Since the normal connection of M is semi-
flat, we have Apy PX =0 and Ay tU = BtU for any vector X tangent to M
and any vectors U, V normal to M (see Chen [4, Lemma 5.3, Lemma 5.6]).
Thus, by the minimality of M, we see that 5 =0 and Asy = 0.

Let V be in FT(M). Then we have

g(fDxV, fU) = —g(V/)V, fU)
= g(FAVX, fU) + g(B(X,tV), fU)
= g(AfUX,tV):O.

This means that F'T(M) is parallel, that is, DxV isin FT(M). Moreover, we
have RH(X,Y)V =0 for any V € FT(M). So we can choose an orthonormal
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basis {v)} in such a way that Dxvy, = 0, A = 1,---,q. We notice that
Vxtvy = —PA,X. Since P is skew-symmetric and A, is symmetric, we
have div(tv,) = —trPA, = 0.

From Lemma 2.6 and Lemma 3.5, we obtain

g(VPA,A) = > g((R(ei,e5)A)es, Are;)

iJA
=St 5 P AP + 3ala — ).
On the other hand, Lemma 3.6 implies
> div(Vitoy) = (n— 1)g ZtrA2 + = Z\ [P, Ay])?
)
Using these equations, we have
—g(V*A, A) — 2hq + ! Z [P, AN + q(g — 1)

= z:ter2 Z g((R(e;,ej)A)re;, Axej) — QZdiV(thv/\).
A A

0,0,
Thus we have
1
/. (VAP = 2ha + 5 3 1IP AP + ala = 1)
_/ z:trA2 Zg (e, €5) )\ei,A)\ej)).
1,7,A

By Lemma 5.1, we see that the left-hand side of this equation is non-negative.
Next we prove that the right-hand side of the equation above is non-positive.
By a similar method in the proof of Theorem 7.2, we have

ZUA2 > g((R(e;i,e5)A)res, Arej) < 0.
)

1,5,A

Consequently, we obtain
IVAP> =2hq, PAy,=A\P, q(qg—1)=0.

Hence we have ¢ = 1 and M is a real hypersurface in some C'P"+1)/2 in CP™
(cf. [46, p.227]). Therefore, using Theorem 7.3, we have our result (see also
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[17]). q.e.d.

If n > p+ 2, we see that Vf = 0 and M is a C'R submanifold in C'P™
with the second fundamental form A which satisfies Ay = 0 for any vector
V normal to M (see Okumura [29], [30]). Therefore, Theorem 7.6 implies

Theorem 7.7. Let M be a compact n-dimensional minimal submanifold
in C'P™ with semi-flat normal connection. If the sectional curvature K of M
satisfies K > 1/n, and if n > p+2, then M is a totally geodesic complex pro-

jective space CP™? or a geodesic minimal hypersphere w(S'(,/1/(n + 1)) x
Sn(\/n/(n+1))) of some CP"V/2 jn CP™,
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8 Reduction of the codimension

In this section we prove the following reduction theorem of a codimension
([22]). If a CR submanifold satisfies dimD > 0 and dim D+ > 0, then it is
said to be proper.

Theorem 8.1. Let M be a compact n-dimensional minimal proper CR
submanifold of a complex projective space C'P™. If the Ricci tensor S of M
satisfies S(X, X) > (n—1)g(X, X) for any vector X tangent to M, then M
is a real hypersurface of some CP™+D/2 jn CP™,

First of all, we prove

Lemma 8.2. Let M be a compact n-dimensional minimal C R submani-
fold of C'P™ which is not a complex submanifold of CP™. If the Ricci tensor
S of M satisfies S(X,X) > (n—1)g(X, X), then M is a real projective space
RP™ or ¢ =1, that is, dimD}+ = 1.

Proof. Since M is minimal, by the assumption, we have

=3¢(PX,PX) - g(A2X,X) > 0.
If P =0, then M is a totally real submanifold of C'"P™. Moreover the above
inequality implies that A, = 0 for all a. So M is totally geodesic in C'P™,
and hence M is a real projective space RP" by a theorem of Abe [1].

We next suppose P # 0. For any normal vector fields U and V', we have
AtV = 0. Thus we obtain

0= (VXA)UtV — Ay PAy X + AUAva,
from which

g(VxApY,tV) = g((VxA)utV,Y)
= g(AUPAvX, Y) — g(AUAva, Y)

By the equation of Codazzi, we have

—29(X, PY)g(tU,tV) = g(AyPAvX,Y)+g(AvPAyX,Y) (8.2)
—9(Av Ay X,Y) + g(Apv Ap X, Y).
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Since >, g(tv,, tv,) = ¢, we obtain
2 g(APAX, PX) = g((AsAsa — ApaAd) X, PX)
a: 2qg(PX, PX). ’
On the other hand, we have
S(PX,PX) = (n+2)g(PX, PX) — ¥ g(A,PX, A, PX).

From these equations, we obtain

> g(APX, A, PX)

~ Y g(4.PAX, PX) — ;Z((AaAfa A A)X, PX)

+(n+2 - q)g(PX,PX) — S(PX, PX).
Thus we have, for any orthonormal basis {e;} of T, (M),

1
52 HP, Aa”2 (8.3)
1
= (n + 2 — q)h - Z S(Pei, P@Z) + 5 ZtrP(AaAfa — AfaAa)
= —hqg+ Z trAfL + Z trPA,Af,.

Since S(Pe;, Pe;) > n —1, we have 3, trA2 < 3h. From these equations, we

see that
1

52 |[P, AaH2 < h(3 — Q) + ZtrPAaAfa.

We take a basis {vy, -+, v,} of T,,(M)* such that {vy,---,v,} is an orthonor-
mal basis of FT,(M) and {vg41,---,v,} is that of N,. By (8.2), we have
Zz))\:q_,d tl"PA,\Af)\ = Zg:q-‘rl tI‘A)\PA)\P. From these and

1 p 1 q p p
§Z|[P,Aa]|2:§Z|[P,A$]|2+ S trA\PAP — ) trP?A3,
a=1 r=1

= A=q+1 A=q+1
we obtain
1 q n p
0 < 3 SR AP +>0 > g(AsPe;, Ay Pe;)
z=1 i=1 A=q+1
< h3-gq).
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Thus we see that ¢ < 3. Suppose ¢ = 3. Then we have PA, = A,P for
r=1,2,3and A\P =0for A =4,---,p. Hence we have Ay PX=0 for any
normal vector field V' and tangent vector field X. From (8.2), we have

29(PX,PY)g(tV,tU) = g(AyAv PX, PY) + g(Ayv Ay PX, PY)
for any tangent vector fields X, Y and normal vector fields U,V € FT,.(M).
So we obtain A2X = X and g(A,.X,A,X) = g(X, X)g(tv,, tv,) for any

X € H and z,y = 1,2,3. From this, for a fixed z, taking a tangent vector
Y # 0 which satisfies A,Y = kY, k = £1, we obtain

gAY, A)Y) = kg(Y,A)Y) =0, z#y.

Thus we have ¢g(Y, A,Y) = 0. This is a contradiction.
Suppose g = 2. We have Ay, =0 for z = 1,2. Then we obtain

Z g(vjtvay ei)g(eja vitva)
x,1,]
= Z g(—PAe; +tDjv,, e;)g(—PAze; +tD;v,, €))
T,1,j

= =Y g(PAyej, AuPej) + > g(tDjvy, €)g(tDivy, €5)

x,) Z,%,]

=Y tr(PA)* + > 9(Dpava, vy)(Dyyva, v2)

w?yVZ

— Z tr(PA,)% + Z 9(Dyyva,v,)?,
T T,y
where z,y,2 = 1,2 and Dy, = D,,,. On the other hand, we have
> (diviv,)* = Y g(Vitve, €;)g(Vjtvg, e;)

T x7/l:7j

= Z g(—PAe; +tDv,, ;) g(—PAze; +tDjvy,, €5)

x7l7j

= Zg(tDivx,ei)g(tDjvx,ej)

x71’7]

= Z g(DtyUasa Uy)2~
x7y

Since S satisfies

div(VxX) — div((divX)X)
=S(X,X)+ > g(V;X,e)glej, ViX) — (divX)?

i,J
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for any tangent vector field X (cf. [46; p.44]), we have

> (div(Vitv,) — div((divtv, )tv,))

T

= Z S(tvg, tv,) + z:tr(PAx)2

1
=2(n—1)+ 3 SR AP+ tr(P2A2)
=2(n—1)—2h+ > trA2+> trPA A, + ) tr(P?A2)
> 2.

Here we used (8.3) and fuv, = 0. Since M is compact, this is a contradiction.
So we have ¢ = 1. qg.e.d.

If M is proper, then A > 0 and ¢ > 0. Thus we have

Lemma 8.3. Let M be a compact n-dimensional minimal proper CR
submanifold of CP™. If the Ricci tensor S of M satisfies S(X,X) > (n —
1)g(X, X), then q = 1, that is, dimD; = 1.

In the following, we shall prove that the first normal space of M is just
FH* and is of dimension 1 under the condition of Lemma 8.3. To prove this,
we prepare some lemmas.

Lemma 8.4. Let M be a compact n-dimensional minimal proper CR
submanifold of CP™. If the Ricci tensor S of M satisfies S(X,X) > (n —
1)g(X, X), then the following hold:

(a) Vf=0.

(b) For any X tangent to M and any V € FH*, we have DxV € FH*.

(¢) For any X tangent to M and any U € N, we have DxU € N.

Proof. By the proof of Lemma 8.2, if the Ricci tensor S of a minimal CR
submanifold M satisfies S(X, X) > (n — 1)g(X, X) for any tangent vector
field X, then AytV =0 for any U and V normal to M. Thus we have

g((va)‘/uU> = _g(FAVXaU>_g(B(X7tV)’U)
= —g(X,AytU) — g(AytV, X)
=0
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for any X tangent to M and any U and V normal to M. Thus f is parallel.
Since M is proper, by Lemma 8.3, we have dimD+ = 1. Let V be a
vector field in FH+. Then we have g(DxV, fU) = —g(V,(Vxf)U) = 0 for
any vector field U € N. Hence we have (b).
Next we prove (c). For any vector field U in N, there exists U’ in N that
satisfy U = fU’. Hence we have

DxU = Dx(fU') = fDxU".
Consequently, we have DxU € N. qg.e.d.

Lemma 8.5. Let M be a compact n-dimensional minimal proper CR
submanifold of CP™. If the Ricci tensor S of M satisfies S(X,X) > (n —
1)g9(X, X), then the second fundamental form A satisfies the following:

(a) A,PA, = P, where v is a unit vector field in FH* .

(b) |[P, A,]|> = 2trA2 — 2(n — 1), where v is a unit vector field in FH*.
(c) Ay Ay = Ay Ay for anyV € FH+ and U € N.

(d) PAU:AfU &ndPAU+AUP:OfOTGTLyU€N.

Proof. By Lemma 8.3, we have dimD+ = 1. Let {vy,---,v,} be an
orthonormal basis of T},(M)* such that v; =v € FD;} and v, -+, v, € N,.
By (8.2) and fv =0, we have

29(A,PA,X,Y) = =2¢g(X, PY)g(tv, tv)

for any X and Y tangent to M. Thus we have (a). Using this, we have (b)
by a straightforward computation.

Next we prove (c). From the equation of Ricci and Lemma 8.4 (b), we
have

g([AU7AV]X7 Y)
= g(Y,tV)g(X, tU) — g(X, tV)g(Y,tU) — 29(X, PY)g(V, fU)
=0
for any X and Y tangent to M and V € FH* U € N. Thus we have
AvAy = ApAy.

From the Weingarten formula and Lemma 8.4 (a), we have

VxJU =VxfU =—A; X + Dx fU = —A;u X + fDxU.
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On the other hand, since V.J = 0, we obtain
VxJU = JVxU = —PAyX — FAyX + fDxU,

thus we have PAy = Ayy. Since Agy is symmetric and P is skew-symmetric,
we obtain PAy + Ay P=0. Hence we have (d). g.e.d.

Using Theorem 3.3 and Lemma 8.5, we next compute the Laplacian for
the square of the length of the second fundamental form of the minimal
submanifold in C'P™ whose Ricci tensor satisfies S(X, X) > (n — 1)g(X, X)
for any tangent vector field X.

Lemma 8.6. Let M be a compact n-dimensional minimal proper CR
submanifold of CP™. If the Ricci tensor S of M satisfies S(X,X) > (n —
1)g(X, X), then

g(VPAJA) = (n+3)trAl+ (n+4) ) trd}, —6(n—1)

= ST [Ag, Ag)? = S (1A, A2,

a,b

Proof. From Lemma 8.5, we have Y., trd,As, P = >, trA3,. Next we
compute Y, |[P, A]|>. Using Lemma 8.5, we obtain

PP AP = ([P AP+ D[P Adl®

a>2

= —2(n—1)+2trd] +4> trAj,.

From these equations and Theorem 3.3, we have our result. q.e.d.

Lemma 8.7. Let M be a compact n-dimensional minimal proper C'R
submanifold of CP™. If the Ricci tensor S of M satisfies S(X,X) > (n —
1)g(X, X), then

Zg((VQA)Uej, Aye;) = (n+ 3)trA? —6(n — 1) — (trA?)?,

> g((VPA)uej, Agej) = > trAj, — Zb [Aa, )P = D (trAzAp)*.

az2,j a,b>2

51



Proof. From (3.1) and Lemma 8.5, we have
Zg V2A),e5, Ave;)

=2_9((V'B)(e;, Avej),v)
j

=ng Zg(Avej, Aye;) — 3Zg(Avej, PzAvej)
—329 (AZe;, P%e;) — SZg (Ayej, Ayej) GZg(AvPej,PAvej)
+Z —trA,A,g(Asej, A, e]) +29(A A, Ages, Ayej)

_g(A?zAveja Avej) - g(AvA?zeja Avej))
= (n = 3)trAl + 3|[P, A,]]* = D _(tr A, A,)* + > |[Aa, A
= (n+3)trd? —6(n — 1) — (trA?)2

Here we used the fact that 3,5, (trA,A,)* = 0, which is proved by Lemma
8.5 (¢), (d). From this equation and Lemma 8.6, we have

Z g(V2A)uej, Aue;)

a>2,j
= g(V2A, A) = > g((V?A)uey, Ave;)
J
= (n+4)> trA7, = > |[Aa, A|? =D (trA,4p)* + (trA2)?
a ab a,b
=(n+4) ZtrAfca — Z [Aa, Ap]|* — Z (trA,Ap)?.
a a,b a,b>2
Hence we have our equation. q.e.d.

Next we give inequalities for 3, |[Aq, Ap]|* and 3, 450(trA.A4p)? in the
equation in Lemma 8.7.

Lemma 8.8. Let M be a compact n-dimensional minimal proper CR
submanifold of CP™. If the Ricci tensor S of M satisfies S(X,X) > (n —
1)g(X, X), then

D [Aa, AP < 4> trA7,,
a,b a
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N | —

> (trA.4y)® < = (O trdd,)%

Proof. From (8.1), we have 3g(PX,PX) > >, 9(A. X, A, X) for any X
tangent to M. On the other hand, by Lemma 8.5, we have

Z g<A12;Afa€i7 Afaei)

= Zg(AvAfaAvei7Afaei> = Z g(AvaaAveiaAfaei)

,a i,a>2

= g(A,PA,Aqe;, Arpe;) = g(PAse;, PAye;).
f

i,a>2 i,a>2

From these and Lemma 8.5, we obtain

3ZtrA2a = SZQ(PAfaei,PAfaei)

2,a

> Z g(AbAfaeia AbAfaei)
i,a,b

= Y g(AvAgee;, AyAgaes) + Q(A?caA?cbei, e;)
i,a i,a,b

1
= Y g(PAse;, PAse;) + §Z|[AG,AI,]\2

1,a>2 ab

1
= > trd, + 3 > 1 Aq, 47,
a a,b

from which 437, trA%, > ., |[Aa, Ab]|*. Hence we have our first inequality.
In the next place, we take a basis {v,va, -, vy, Uyy1 = fva, -, 0, = fo,}
(p = 2" + 1) of T,(M)* such that 30, ,(trA.4y)* = S0 _,(trA2)?. Since
trA? = trA7, for a > 2, we have -

P

pl
(2?2 = 23(trd2)?
a=2 a=2

4 p
= 2((2 trA2)?— Y trAZtrA%).
a=2

a,b>2,a#b

On the other hand, we have
p P’ P’
(A = (2 A2 = 43 trA2)?
a=2 a=2 a=2
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Therefore we obtain

P P
> (trA2)? Z trAZ)? — 2 Z trAZtrA; < ;(Z trAZ)?
a=2 a=2

a,b>2,a#b

from which we have 327 -, (trA,A;)* < (1/2)(32, trA%,)*. Hence we have the
second inequality. q.e.d.

Using Lemma 8.3-Lemma 8.8, we prove the following lemma.

Lemma 8.9. Let M be a compact n-dimensional minimal proper CR
submanifold of CP™. If the Ricci tensor S of M satisfies S(X,X) > (n —
1)g(X, X), then Az, =0 for all a.

Proof. From Lemma 8.7 and Lemma 8.8, we have

A(Z trA?)

Zg VZA)uei, Avei) + D g((VA)aes, (VA)qe:)

a>2,i a>2,i
> Y g((VA)aei, Ages)
a>2i
— (n+4) St — 3 |[An, AP — 3 (trd,A,)°
a a,b>2 a,b>2

> (Y trA3,) (n - ; > trA2a>.
On the other hand, since

2 Sened = (n+3)n = 1) — AP > (1= 1) gles o),

we have |A]? = trA?2 + >, trA2, < 3(n —1). From Lemma 8.5 (b), we have
trA> > n — 1. Hence we have 3, trA%, < 2(n — 1) < 2n. Hence, by the
theorem of E. Hopf, 3°, trA%, is constant so that A(>, trA%,) = 0. Thus we
have A, = 0 for all a. q.e.d.

From Lemma 8.4 and Lemma 8.9, the first normal space of M is of di-
mension 1 and parallel. Hence we see that M is a real hypersurface of some
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totally geodesic complex projective space C P™+1)/2in CP™ (cf. [46; p.227]).
This theorem is an extension of the reduction theorem of the codimension of
a generic minimal submanifold in C'P™ given by Yamagata-Kon [41].
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9 Pinching theorems of the Ricci curvature

We define the notion of the tube of a submanifold. For the local calculation,
assume that NV is an embedded real n-dimensional C'*°-submanifold of C'P™.
For a normal vector field V' of N, let F'(V) be a point in C'P™ reached by
traversing a distance |V| along the geodesic in C'P™ originating at the base
point z of V with initial tangent vector V. A point p € CP™ is called a
focal point of multiplicity v > 0 of (N, z) if p = F(V') and the Jacobian of
the map F' from the normal bundle of N to C'P™ has nullity v at V. Let
BN denote the bundle of unit normal vectors to N. The tube of radius r
over N is defined by the map ¢, : BN — CP™ given by ¢,.(V) = F(rV).
For sufficiently small value of r at least, ¢, determines a real hypersurface of
cpP™.

In the following, we take the unit normal vector field v of a real hyper-
surface M in C'P™, and we put £ = —Jv. Then ¢ is the unit tangent vector
field of M and P2X = —X + g(X,&)§, PE = 0. We also put A, = A to
simplify the notation. Then Vx& = PAX for any vector field X tangent to
M.

In 1982, Cecil and Ryan classified real hypersurfaces of a complex pro-
jective space C'P™ with a princilpal curvature vector field &.

Proposition 9.1 ([3]). Let M be a real hypersurface (with unit normal
vector v) of a complex projective space C'P™ on which & is a principal cur-
vature vector with principal curvature o = 2cot2r and the focal map ¢, has
constant rank on M. Then the following hold:

(a) M lies on a tube (in the direction n = ~'(r), where y(r) = exp,(rv)
and x is a base point of the normal vector v) of radius r over a certain Kdhler
submanifold N in C'P™.

(b) Let cotd, 0 < 6 < m, be a principal curvature of the second funda-
mental form A, at y = y(r) of the Kdhler submanifold N. Then the real
hypersurface M has a principal curvature cot(r — 0) at x = v(0).

For the special case that the second fundamental form A satisfies A¢ = 0,
Maeda proved the following

Proposition 9.2 ([26]). Let M be a real hypersurface of a complex pro-

jective space C'P™. If A& =0, except for the null set on which the focal map
o, degenerates, M is locally congruent to one of the following:
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(a) a homogeneous real hypersurface which lies on a tube of radius /4
over a totally geodesic CP* (1 <k <m —1),

(b) a nonhomogeneous real hypersurface which lies on a tube of radius
/4 over a Kdhler submanifold N with nonzero principal curvatures # +1.

Using these results, we prove the following

Theorem 9.3. Let M be a compact n-dimensional minimal CR subman-
ifold of a complex projective space C'P™ which is not a complex submanifold
of CP™. If the Ricci tensor S of M satisfies S(X,X) > (n — 1)g(X, X) for
any vector X tangent to M, then M is congruent to one of the following:

(a) a totally geodesic real projective space RP™ of C'P™,

(b) a pseudo-Einstein real hypersurface M¢((n—1)/4,7/4) of some C P +1)/2
in CP™,

(¢) a real hypersurface of some CP™)/2 in CP™ which lies on a tube
of radius w/4 over certain Kdhler submanifold N with principal curvatures
cotf, 0 <0 < m/12.

Proof. We suppose that M is proper. Then Theorem 8.1 implies that
M is a real hypersurface of some totally geodesic complex projective space
CP"D/2 in CP™. By the proof of Lemma 8.2, we have A = 0. On the
other hand, from Lemma 8.5, we obtain APAX = PX for any X tangent
to M. Thus we see that if AX = AX, then APX = (1/\)PX. Since
39(PX,PX) > g(A?X, X), we obtain A\* < 3. We also have rankA = n — 1
because A¢ = 0. A homogeneous real hypersurface which lies on a tube of
radius 7/4 over a totally geodesic C'P¥ is minimal if and only if k = (n—1)/4,
that is, M is M ;. The principal curvatures of this real hypersurface are 1
(see [3; p.493]).

For a nonhomogeneous real hypersurface M which lies on a tube of ra-
dius 7/4 over a Kédhler submanifold N, by the condition A < 3 and (b) of
Proposition 9.1, we have cot?(7/4 — #) < 3. Thus we have 0 < 0 < 7/12.
Consequently, using Proposition 9.1 and Proposition 9.2, we have our theo-
rem. qg.e.d.

Remark. The author does not know examples of certain Kéahler sub-
manifold N having the properties required in case (c¢) in Theorem 9.3.

Corollary 9.4. Let M be a compact n-dimensional minimal proper CR
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submanifold of a complex projective space CP™. If the Ricci tensor S of
M satisfies S(X,X) > (n — 1)g(X, X), then M is congruent to one of the
following:

(a) a pseudo-Einstein real hypersurface M¢((n—1)/4,7/4) of some C P"+1)/2
mn CP™,

(b) a real hypersurface of some CP™V/2 jn CP™ which lies on a tube
of radius w/4 over certain Kdhler submanifold N with principal curvatures
coth, 0 <6 <m/12.

In [25], Maeda proved that if the Ricci tensor S of a compact mini-
mal real hypersurface M of C'P™ satisfies (2m — 2)g(X,X) < S(X,X) <
2mg(X, X), then M is congruent to a pseudo-Einstein real hypersurface
Me((m —1)/2,7/4) of CP™. Combining this with Corollary 9.4, we have

Corollary 9.5. Let M be a compact n-dimensional minimal proper CR
submanifold of a complex projective space C P™. If the Ricci tensor S satisfies
(n—1g(X,X) < (X, X) < (n+1)9(X,X), then M is congruent to a
pseudo-Einstein real hypersurface M¢((n — 1)/4,7/4) of some CP™+V/2 jn
CcP™.

Next we prove the following

Theorem 9.6. Let M be a compact n-dimensional minimal C R subman-
ifold of a complex projective space C'P™. If the Ricci tensor S of M satisfies
S(X,X) > (n—1)g(X,X) + g(PX,PX) for any vector X tangent to M,
then M 1s congruent to one of the following:

(a) a totally geodesic real projective space RP™ of C'P™,

(b) a totally geodesic complex projective space CP™Y? of CP™,

(¢) a complex (n/2) dimensional complex quadric Q™% of some C P™/?+1
of CP™,

(d) a pseudo-Einstein real hypersurface M¢((n—1)/4,7/4) of some C P("+1)/2
mn CP™,

(e) a real hypersurface of some CP")/2 in CP™ which lies on a tube
of radius w/4 over certain Kdhler submanifold N with principal curvatures
cot 0, where 0 satisfies 0 < sin26 < 1/3.

For the proof of the theorem, we prepare some lemmas for complex sub-
manifolds. We take an orthonormal basis {vy, -, vy, Upy1 = fv1, -+, 09 =
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Fu,} of TL(M)*.

Lemma 9.7 ([14]). Let M be a complex k-dimensional Kdhler submani-
fold of a complex m-dimensional Kdhler manifold M. Then

1 27
%‘A|4 < Z |[ACL7Ab”2 < ’A|47

a,b=1

LA < S (A Ay < Lag
2p = TAgAp =9 )

a,b=1

where p = m — k. If M is of constant holomorphic sectional curvature c,
then M is Einstein if and only if 2 1 |[Aq, Ab)|? = |A[*/k.

From Lemma 3.1, we have,

Lemma 9.8. Let M be a complex k-dimensional Kdhler submanifold of
CP™. Then

2p 2p
g(V2A, A) =20k + 2)|AP = 3 [[Aa, 42— 3 (trA,A,)%
a,b=1 a,b=1

In the following we prove Theorem 9.6. From Theorem 8.1, if M is proper,
then M is a real hypersurface of some CP™+1/2 in CP™,

Next we suppose that M is a complex (n/2) dimensional complex sub-
manifold of C'P™. Since M is complex minimal submanifold of C'P™, we
have

2p

S(X,Y)=(n+2)g9(X,Y) = > g(A2X,Y).

a=1
Thus we have 3% g(A2X, X) < 2¢(X, X), from which |A|?> < 2n. Moreover,
we see that 27 — 3, A2 is a positive semi-definite operator. Since A, is sym-
metric, 3, A2 is positive semi-definite. The operators }°, A2 and 27 — ", A2
can be transformed simultaneously by an orthogonal matrix into diagonal
forms at each point of M, thus we see that (3, A%)(2] — 3, A?) is positive
semi-definite. Hence we have

2p
tr() " A2)* < 2|AP < 4n. (9.1)
a=1
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On the other hand, we obtain

2p 2p 2p
S Ae, AP =2 trAZA; = 2tr(d | A2
a,b=1 a,b=1 a=1

Therefore we have Z?fb:l [Aa, Ap)|* < 4|A]%. From Lemma 9.7, Lemma 9.8
and these equations, we have

1
SAIAR = g(V2A,4) + [VA[ (9.2)
> g(V24,4) 2 [AP(n— S|AP) >0

Hence, by the theorem of Hopf, |A|? is constant so that A|A[*> = 0. Thus we
have |A| = 0 or |A|*> = 2n. When |A| = 0, M is totally geodesic.
Next we suppose |A|? = 2n. By (9.1), we have tr(22, A2)? = 4n, which
induces
2141*
-

2p
Z [Aq, Ap)[* = 8n =

a,b=1

From Lemma 9.7, M is Einstein complex submanifold of C'P™.
For any V € Ny(z) = {V € T,(M)* : Ay = 0}, we have

Vy(AVx) = (VyA)VX + ADyVX -+ Av(vYX> =0.

Hence we have Ap, v X + (VyA)yX = 0. Since the equality of (9.2) holds,
we have VA = 0, from which we see that N, is parallel with respect to the
normal connection. Let V € Ny and U € N;. Then we have

Xg(U,V) = g(DxU,V) + g(U, DxV) = 0.

Hence we see that the first normal space is parallel with respect to the
normal connection. On the other hand, since the equality of (9.2) holds,
we have 227”b:1(1;rAaAb)2 = (1/2)|A]*. In the next place, we take a basis

a

{v1, -+, Up, Vpp1 = fo1,- -+, 09y = fv,} of Tp.(M)* such that fofb:l(trAaAb)2 =
S22 (trA2)2. Then we have

2p 1 P
S (6rA2)? = SJAL = 23 (rA2) (br42),
a=1 aF#b
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from which we have 37 _, (trA?)(trA3) = 0. Hence we have dimN, = 2. Hence
M is an Einstein complex hypersurface of some C P21 in C'P™, that is, a
complex quadric Q™2 of CP"/?1 (see [35]). From this and Theorem 9.3, we
have our theorem. g.e.d.

We suppose that M is a compact n-dimensional minimal C'R submanifold
of a complex projective space C'P™. When the Ricci tensor S of M satisfies
S(X,X) > (n—1)g(X,X) +29(PX, PX) for any vector X tangent to M,
the cases (c) and (e) in Theorem 9.6 do not occur. Thus we obtain

Theorem 9.9 ([18]). Let M be a compact n-dimensional minimal CR
submanifold of a complex projective space CP™. If the Ricci tensor S of M
satisfies S(X, X) > (n—1)g(X, X) +2¢9(PX, PX) for any vector X tangent
to M, then M is equivalent to one of the following:

(a) a totally geodesic real projective space RP™ of C'P™,

(b) a totally geodesic complex projective space CP™?* of CP™,
(¢) a pseudo-Einstein real hypersurface M¢((n—1)/4,7/4) of some C P +1)/2
in CP™.
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10 Real hypersurfaces of a complex space form

In this section we first study the Ricci tensor on the holomorphic distribution
on C'R submanifolds in a complex space form and give a characterization of
pseudo-Einstein real hypersurfaces ([19]).

Theorem 10.1. Let M be an n-dimensional C R submanifold of a com-
plex space form M™(c), ¢ # 0, h = dimD, > 2, with semi-flat normal
connection. Suppose that the curvature tensor R and the Ricci tensor S sat-
isfy g((R(X,Y)S)Z,W) =0 for any tangent vectors X,Y,Z,W € D,. Then
we have

9(SX,Y) = 1 (r =" (St t))g(X. Y)

a=1
for any vectors X,Y € D,, where r denotes the scalar curvature of M and
{v1,++,v,} is an orthonormal basis of JDx.

Proof. Since g((R(X,Y)S)Z, W) = 0 for any tangent vectors X, Y, Z, W €
D., the first Bianchi identity gives

g(R(X,Y)SZ + R(Y,Z)SX + R(Z,X)SY, W) = 0.

We take an orthonormal basis {ej,---,ep, tv1 = epty, -, tv, = e,} of
T, (M), where {ey,---,e,} is an orthonormal basis of D, and {vy,---,v,}
is an orthonormal basis of JD;. Then we have

h h h
9> R(e;, Pe;)SX + > R(Pe;, X)Se; + Y R(X,e;)SPe;,Y) = 0.
i=1 i=1 i=1
Since Ptv, =0 fora=1,---,q, we have

g(z R(e;, Pe;)SX + Z R(Pe;, X)Se; + Z R(X,e;)SPe;,Y) = 0.
i—1 i—1 i—1
Since we have

9(>° R(Per, X)Sen Y) = —g(3" Rler, X)SPer, Y),

i=1 =1

it follows that

S g(R(er, Pe))SX,Y) = 23" g(R(er, X)SPe,, Y).

i=1 i=1
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On the other hand, by the equation of Gauss, we obtain
Zg (e;, Pe;)SX,)Y)
= (—2h — 4)cg(PSX,Y) + Z 9(Appe; sx)€i, Y)
- ZQ Ape, sx)Pei,Y),

229 (e;, X)SPe;,Y)

=c{—2g(PSX,Y)+29(PSPX,PY)+ 49(PX, PSPY)
—QZQ(SP%P&')Q(PX> Y)} +229(AB(X,SPei)6i7Y)

-2 Z g(AB(ei,SPei)X7 Y)

Thus we have

c{(—2h —2)g(PSX,Y) —2¢9(PSPX,PY)—49(PX,PSPY)}
= —2¢>_g(SPe;, Pe;)g(PX,Y) + 2> g(Ase;,Y)g(AX, SPe;)
-2 Zg(AaXa Y)g(Aa€i7 S-Pez) —2 Z g(Aaeia Y)g(AaP€i7 SX)

Since the Ricci tensor S of M is given by

SX =(n—1)cX —3cP?X + > trd, - A, X — > A’X

we obtain, for X,Y € D,,

Zg A 627 A X SP@% Zg(AaXv Y).g(Aaei’SPei)

1,a

—ZgAeZ, g(A.Pe;, SX)

= Z trAbg (Agei, Y)g(A X, ApPe;) Z g(Aaei, Y)g(AX, A7 Pe;)

i,a,b i,a,b

- Z trAbg(Aa6i7 Y)g(Aapeia AbX) + Z g(Aaeia Y)9<Aapeia AgX)

i,a,b i,a,b

=3 (0 — D)eg(AuX,Y)g(Agei, Pe;) + 33 cg(AX,Y)g(Aqes, Pe;)

i,a i,a
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— Z trA,g(A. X, Y)g(Ages, ApPe;) + Z (A X, Y)g(Ages, A Pe;)

i,a,b i,a,b

= =) trAyg(AY, PAAX) + D g(AY, PA;AX)
a,b a,b

+ Z trdyg(AY, PA,AX) — Z g(AY, PA,AZX)

a,b a,b
= trApg(AX, Y)g(Asei, ApPe;) + > g(AX, Y )g(Agei, A; Pe;).
i,a,b i,a,b

Since the normal connection of M is semi-flat, the equation of Ricci gives
A A X = ApA X

for any X € D,. Therefore, the equation above vanishes identically. From
these equations and the assumption ¢ # 0, we have

(h+1)g(PSX,Y)+ g(PSPX,PY) +2g(PX,PSPY)
Z (SPe;, Pe;)g(PX,Y)
for any X,Y € D,. This implies
(h—1)g(PSX,Y)+ g(SPX,Y) = Zg(SPe,-, Pe))g(PX,Y).

Since PX, PY € D,, we also have
(h—1)g(PSPX,PY)+ g(SP’X,PY) => g(SPe;, Pe;)g(PX,Y),

and hence

(h—1)g(SPX,Y)+ g(PSX,Y) = Zg(SPei, Pe;)g(PX,Y).

From these equations, we obtain
(h—2)g(SPX,PY)=(h—2)g(SX,Y).

Since h > 2, we have g(SPX,PY) = ¢g(SX,Y). Thus, by the definition of
the scalar curvature r of M, we get

hg(SX,Y) = Z g(PSe;, Pe;)g(X,Y)

= = X oSt ))g(X.Y),
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which proves our assertion. q.e.d.

Let M be a real (2m — 1)-dimensional hypersurface immersed in M™(c).
We take the unit normal vector field N of M in M™(c) and define a tangent
vector field £ by £ = —JN, which is called the structure vector field. We put
n(X) =g(X,&). As a corollary of Theorem 10.1, we have

Corollary 10.2. Let M be a real hypersurface of a complex space form
M™(c), ¢ # 0, m > 3. Suppose that the curvature tensor R and the Ricci
tensor S of M satisfy g((R(X,Y)S)Z, W) = 0 for any tangent vectors X,
Y, Z and W orthogonal to €. Then we have

g(SX,)Y) =

— X, Y
s~ o(SE.€)g(X.Y),
for any tangent vectors X and'Y orthogonal to &, where v denotes the scalar
curvature of M.

Theorem 10.3. Let M be a real hypersurface of a complex space form
M™(c), ¢ £ 0, m > 3. Then the curvature tensor R and the Ricci tensor S
of M satisfy g((R(X,Y)S)Z,W) =0 for any tangent vector fields X, Y, Z
and W orthogonal to & if and only if M is pseudo-FEinstein.

Proof. We suppose that M satisfies g((R(X,Y)S)Z, W) = 0 for any
tangent vector fields X, Y, Z and W orthogonal to £&. We can choose an
orthonormal basis {eq, -, en_2,&} of Tp(M) such that the second funda-
mental form A is represented by a matrix form

PVEEEE 0 hy
0 - Aam—2 | ham—2
hi =+ hom—s ‘ «

Then, we have

Se; = (2n+ 1)ce; — 3en(e;)€ + hAe; — A?e;
2m—2
= ((2n + 1)0 + h)\Z - )\3)61 + hz(h - )‘z - Oé)f - Z hihkek,
k=1

S¢ = (2m+ 1)c€ — 3en(6)€ + hAE — A%
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2m—2 2m—2

= (2m —2)c€ + h( Z hrer + a&) — A( Z hrey + af)
k=1

k=1
2m—2 2m—2

= > h(h=X—a)er+((2m —2)c+ah— > h; —a?)E.
k=1 k=1

By Corollary 10.2, we have

g(Seiej) = —hih; =0 (i # ), (10.1)

o(Seie) = (= g(SEE) (=1 2m-2). (102)

Equation (10.1) shows that at most one h; does not vanish. Thus we can
assume that h; = 0 for ¢ = 2,---,2m — 2. We set a = g(Se;,e;). Then we
have

Se; = aey; + hy(h — A\ — @),

Se; =ae; (i=2,---,2n —2), (10.3)

S¢ = hi(h— A —a)e; + ((2m — 2)c + ah — hi — a?)E.

Since g((R(X,Y)S)Z, W) = 0 for any tangent vector fields X, Y, Z and W
orthogonal to &, we have

g(R(X,Y)SZ — SR(X,Y)Z, W) =0.
By the equation of Gauss, for any j > 2, we obtain
0 = g(R(e,e;)Ser,ej) —g(SR(eq,e;)er,e;)
= ag(R(e1,ej)er, ;) + hi(h — A — a)g(R(er, €;), )

_ag(R(elvej)ehej)
= Ti(h— M —a)g(R(e1, €)¢, ;).

By the equation of Gauss, we have

g(R(e1,e5)é,e5) = g(Aej,§)g(Aei,ej) — g(Aer, §)g(Aej, e;)
== _hl)\j-

Thus we see that h3N\j(h — A\ —a) = 0 for j > 2. If hy(h — M\ — @) # 0,
then we have \; = 0 for j > 2. Since h = trA, we have h = \ + «a.
This is a contradiction. So we have hy(h — A\; — @) = 0. By (10.3), we see
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that M is pseudo-Einstein and that hy = 0 (see [15]). Thus we see that,
if g((R(X,Y)S)Z, W) = 0 for any tangent vector fields X, Y, Z and W
orthogonal to &, then M is pseudo-Einstein.

Conversely, if M is pseudo-Einstein, we have SZ = aZ 4+ n(Z)§ = aZ
and SW = aW for any tangent vectors Z and W orthogonal to £&. Then
we have g((R(X,Y)S)Z, W) = g(R(X,Y)SZ, W) — g(SR(X,Y)Z,W) = 0.
q.e.d.

As an application of Theorem 10.3, we prove the following theorem (see
[11], [13]).

Theorem 10.4 There are no real hypersurfaces with R(X,Y)S = 0,
semi-symmetric Ricci tensor, of a complex space form M™(c), ¢ # 0, m > 3.

Proof. We suppose that the Ricci tensor S of the real hypersurface M
is semi-symmetric, that is, the curvature tensor and the Ricci tensor satisfy
R(X,Y)S = 0 for any tangent vector fields X and Y. Then by Theorem 10.3,
the real hypersurface M is pseudo-Einstein. Consequently, the Ricci tensor S
satisfies Se; = ae; fori =1,---,2m—2 and S¢ = (c(2n—2)+ah—a?)€ := bE.
Then, for any i = 1,---,2m — 2, we have

0 = R(§ €)S§— SR(E €:)§
= bR({,e)§ — SR(E, €;)¢
= b{—cg(§, &ei — g(AE, §) Aei}
—5{—cy(&,&)es — g(AE, §) Aes}
—bce; — bad;e; + ace; + aa);e;
(a—b)(c+ a\)e;.
Since b # a, we have \; = —c/a, i = 1,---,2m — 2. We put A = —¢/a.
Suppose that X is a unit vector field orthogonal to £&. Then we have
VxVe = VxPAE=0,
VeVxé = VePAX = AV PX

= MVeP)X + APV:X
= Mn(X)AE — g(AE, X)E) + APV X
APV X,

Vixgé = PAX,{]
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PAVx¢ — PAV:X
= PAPAX — PAVX
= MNP’X — PAV:X
= —\°X — PAV:X.

Thus we obtain

R(X,§)§ = VxVe€ —VeVx§—Vixgl

= —APVX + XX + PAV:X.
So we have
g(R(X,6)E,X) = —Mg(PVeX, X)+ Ng(X, X) + g(PAV:X, X)
= M(VeX, PX) + Ng(X, X) — A\g(VeX, PX)
= Mg(X,X) =\

By the equation of Gauss, we have g(R(X,&)¢, X) = ¢+ aX = 0. These
equations imply A = 0 and ¢ = 0. This is a contradiction. So we have our
theorem. q.e.d.

Remark. We can see that the totally n-umbilical pseudo-Einstein real
hypersurfaces of CP™ and C'H™ satisfies ¢ + aX # 0 by a straightforward
computation using principal curvatures of examples (see [13]). Here, we
proved Theorem 10.4 by a slight general method.

We next consider the condition for the holomorphic distribution on real
hypersurfaces such that the second fundamental form A of a real hypersurface
M satisfies g(AX,Y) = ag(X,Y) for any X,Y € D, a being a function,
which includes the notion of totally n-umbilical real hypersurfaces, that is,
the second fundamental form A satisfies AX = aX + bg(X,£)¢ for some
functions a and b, and is independent of the condition with respect to the
structure vector field £ (see [38]).

Let M be a real hypersurface of a complex space form M™(c), ¢ # 0. If
the distribution D is integrable and its integral manifold is a totally geodesic
submanifold M™!(c), then M is said to be ruled real hypersurface.

We prove the following theorem.
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Theorem 10.5. Let M be a real hypersurface of a complex space form
M™(c), ¢ # 0, m > 3. If the second fundamental form A of M satisfies
g(AX,Y) = ag(X,Y) for any X,Y € D,, a being a function, then M is
either totally n-umbilical or it is locally a ruled real hypersurface.

To prove the theorem above, we prepare some lemmas.

Let M be a real hypersurface of M™(c), ¢ # 0, m > 3. Suppose that the
second fundamental form A satisfies g(AX,Y) = ag(X,Y) for any X,Y €
D,. We can choose a local field of orthonormal basiss {eq, -, e,_2,&} of
M such that the second fundamental form A is represented by a matrix form

Ao 0 hy
0 - Adam—2 | ham—2
hi =+ hom—s ‘ «

where we have put h; = g(Ae;,§),i=1,---,2m — 2 and b = g(AE, ).
First of all, we consider the case a # 0.

Lemma 10.6. Let M be a real hypersurface of M™(c), ¢ # 0, m > 3.
Suppose that the second fundamental form A of M satisfies g(AX,Y) =
ag(X,Y), a #0, for any X,Y € D,. Then hy,- -+, hopm_o salisfy

hig(de;, ex) = hig(der, e;) = hrg(de;, e;)
Jorany i # 3,5 # k, k # 1.

Proof. In the following, let ¢, j, k and [ satisfy ¢, 7, k,l < 2m — 2. By the
equation of Codazzi, we have
(Ve A)ej — (Ve A)e; = 2cg(e;, pe;)E.
Since Ae; = ae; + h;é fori=1,---,2m — 2, we have
(Ve A)e; — (Ve A)e;
Ve Aej — AV e — Ve, Ae; + AV e,
= Ve (ae; +h;§) — AV,e; — Ve, (ae; + hil) + AV, e;
= (ea)e; +aVe,e; + (e;h)€ + hjpAe; — AV . .e;
—(eja)e; —aVe,e; — (ejhi)§ — higpAe; + AV, e;
= 2cg(e;, pej)¢
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for any ¢ # j. Thus, for any k such that k # i and k # j, we have

0 = ag(Vee; — Ve,ei,er) +ag(hjoe; — hige;, ex)
—9(Ve,e; — Ve e, Aey) (10.4)
= ahjg(gei, ex) — ahig(ge;, ex) + hig(e;, Ve,£) — higles, Ve, §)
ah;g(dei, ex) — ahig(de;, ex) + higle;, 9Ae;) — hyg(es, pAey)
= ah;g(pe;, er) — ahig(dej, ex) + 2ahgg(e;, pe;).

By this equation, we obtain
ahrg(pe;, e;) — ah;g(per, e;) + 2ah;g(ex, pe;) = 0, (10.5)
ahig(gex, ej) — ahpg(pe;, e;) + 2ah;g(e;, pey) = 0. (10.6)

Since a # 0, the equations (10.4) and (10.5) imply h;(de;, ex) = hrg(Pei, €;).
Using (10.6), we have

hig(de;, ex) = hjg(der, e;) = hpg(des, e;).

g.e.d.

Lemma 10.7. Let M be a real hypersurface of M™(c), ¢ # 0, m > 3.
Suppose that the second fundamental form A of M satisfies g(AX,Y) =
ag(X,Y), a # 0, for any X,Y € D,. If h; =0 for some i, then hy = --- =
h2m—2 =0.

Proof. Suppose that there exists h; which satisfies h; = 0. Then we have

hjg(gex, ei) = hrg(gpei,ej) =0

for any j and k such that j # k, k # ¢ and @ # j. If there is a h; # 0, then
g(¢ex, e;) = 0 for any k such that k # i and k # j. Thus we have e; = ¢e; or
e; = —¢pe;. Since hipg(ge;, e;) = 0, we have hy, = 0 for any k such that k # i
and k # 7.

Let [ satisfy [ # 4, 1 # j and [ # k. Since hy = 0 and h; = 0, we have

hig(ger, er) = hig(der, €;) = 0,
hig(dei,er) = hig(ger, ;) = 0.
Since h; # 0, e; satisfies g(¢ey, ;) = 0 for any k # j, k # ¢ and g(¢e;, ¢;) = 0.

Thus we obtain ¢; = ¢e; or ¢, = —¢e;. Then we have e; = ¢; or ¢; = —¢;.
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This is a contradiction. So we see that if there is an h; = 0, then hy = --- =
hgm_g = 0. q.ce.

&

Lemma 10.8. Let M be a real hypersurface of M™(c), ¢ # 0, m > 3.
Suppose that the second fundamental form A of M satisfies g(AX,Y) =
ag(X,Y), a #0, for any X,Y € D,. Then there exists i such that h; = 0.

Proof. Suppose that hy #0,---, hop_o # 0, and ¢, j, k and [ are different
for each other. By Lemma 10.6, we have

hig(de;, ex) = hjg(dey, e

hig(der, e1) = hrg(der, e;

hig(ger, e;) = hug(de;, ex) (

hug(gei, e5) = hig(ge;, e1) = hjg(ger, e;). (10.10
By (10.8) and (10.10), we obtain

N—" N
Il
> =
=9
< o
O D
S
~— ~—
/N N /N
—_
(@)
o
N— e N N

h;h
hig(ge;,er) = hlkg@ezaey’)
h;h h
= - hlk X#Q(@iﬁj)

= —hg(gei,ej).

Since h;g(¢ej, ex) = hig(pe;, e;), we have h;g(¢e;, e;) = 0. Since h; # 0, we
have g(¢e;,ex) = 0 for any j and k such that i # j, j # k and k # i. Here,
we fix the index i. Then we obtain e, = ¢e; or e = —¢e; for any k # i. This
is a contradiction. Consequently, we see that there is a h; such that h; = 0.
q.e.d.

Proof of Theorem 10.5.

From Lemmas 10.6, 10.7 and 10.8, if a # 0, we have h; = 0 for all 7, and
hence A = al + by ® &, Thus M is a totally n-umbilical real hypersurface.

We next suppose that a = 0. Then g(AX,Y) = 0 for any X,Y € D.
Using the basic formulas from the Preliminaries, we easily check that, for
any X,Y € D, we have

9(VxY, &) = —g(Y, pAX) = g(AX, ¢Y) = 0.

From here we see that always VxY € D and the distribution D is integrable.
Moreover, VxY = VxY . and hence the integral manifold of D is a totally
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geodesic complex submanifold of M™(c). Consequently, M is locally a ruled
real hypersurface. This completes the proof of our theorem. qg.e.d.
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