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Three female specific serum proteins were detected immunologically in the sera of grey 

mullet (Mugil cephalus) which were named vitellogenin A (VgA), VgB, and VgC, based 

upon their distinct antigenicity against specific antisera raised against three types of mullet 

lipovitellins (Lvs).  These Vgs were subsequently purified from the serum of estradiol-treated 

mullet by combining several types of chromatography columns (anion exchanger, 

hydroxylapatite, immunoadsorbent column, and gel filtration).  Purified native VgA, VgB, 

and VgC exhibited molecular masses of 570, 580, and 335 kDa, respectively.  Following, 

SDS-PAGE, the estimated mass of polypeptide bands evident for VgA and VgB were ~179 

kDa and ~175 kDa, respectively; VgC appeared to be ~132 kDa.  The two larger Vgs (VgA 

and VgB) appeared to be phosphorylated, suggesting that these Vgs contain a highly 

phosphorylated, serine-rich phosvitin (Pv) domain.  Furthermore, two discrete Vg-type 

specific antisera, anti-VgA and anti-VgB, were developed and each generated two precipitin 

lines against ovary extracts in immunoelectrophoresis, indicating that these Vgs contain 

additional antigenic yolk protein domains: Lv and β’-component.  The small Vg (VgC) 

appeared to lack a Pv domain because of its low serine content (5.35%) and failure to show 

positive results in phospho-staining experiments.  In conjunction with N-terminal amino acid 

sequencing analyses of the purified Vgs, our present results have conclusively identified the 

purified Vg products in grey mullet as typical A-type (VgA), B-type (VgB), and C-type 

(VgC) Vgs. 
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In oviparous vertebrates, vitellogenin (Vg) is produced by the liver of maturing females 

in response to estrogen, secreted into the bloodstream, and then taken up by growing oocytes 

to be processed into yolk proteins (YPs) that are subsequently stored in the ooplasm. In avian 

and amphibian species, Vg gives rise to two major YPs, a large lipoprotein (lipovitellin, Lv) 

and a small phosphoprotein (phosvitin, Pv) (Bergink and Wallace 1974; Christman et al. 

1977), in addition to a further small Vg derivative, the yolk plasma glycoprotein (YGP) 

(Yamamura et al. 1995). In teleost fish, which are known not to produce YGP, another small 

Vg-derived YP that does not contain lipid or phosphorus has been identified, β’-component 

(β’-c) (Hiramatsu et al. 2002a, b, c). A simple model in which one teleost Vg gives rise to 

three YPs (Lv, PV and β’-c) and has previously been referred to as the “single Vg” model 

(Hiramatsu et al. 2002d, 2005), is now clearly outdated. In marine teleosts that spawn 

remarkably hydrated (typically pelagic) eggs, the Vg-derived YPs undergo a unique second 

proteolysis mechanism during final oocyte maturation (Matsubara and Koya 1997; Hiramatsu 

et al. 2002b).  Studies have shown that in these species, the YPs derived from two different 

types of Vg (VgA and VgB) are disparately proteolyzed into free amino acids that 

osmotically drive oocyte hydration and the acquisition of proper egg buoyancy whilst also 

acting as a source of diffusible nutrients for early embryos (Matsubara et al. 1999; Hiramatsu 

et al. 2005). This discovery led to the development of an interim “dual Vg” model for teleost 

oogenesis.  Recent gene cloning and immunobiochemical analyses have confirmed that the 

presence of multiple forms of Vg in fish is entirely normal, leading to the adoption of a new 

“multiple Vg model” for teleost oocyte growth (reviews: Hiramatsu et al. 2002d, 2005, 2006; 

Patiño and Sullivan 2002; Matsubara et al. 2003).  As described in Hiramatsu et al. (2002d, 

2005), members of advanced teleost taxa (Paracanthopterygii and Acanthopterygii) 

generally express three types of Vg at the transcription level, two of which (VgA and VgB) 

have been referred to as a “complete” Vg form based on their complete structure with regard 

to yolk protein domains (Lv, Pv and β’-c).  On the other hand, one unique form of teleost Vg 

(VgC or Pv-less Vg), consisting largely of only Lv domain, was referred to as an 

“incomplete” Vg form.  With regard to Vg protein products, at least two forms of Vg have 

been detected in species of tilapia (genus Oreochromis) (Ding et al. 1989; Lee et al. 1992; 

Kishida and Specker 1993; Buerano et al. 1995), barfin flounder (Verasper moseri) 

(Matsubara et al. 1999), haddock (Melanogrammus aeglefimus) (Reith et al. 2001), medaka 

(Oryzias latipes) (Shimizu et al. 2002), and Japanese goby (Acanthogobius flavimanus) 

(Ohkubo et al. 2003). Three forms of Vg protein have been distinguished in only three 

teleosts: white perch (Morone americana) (Hiramatsu et al. 2002d), mosquitofish (Gambusia 
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affinis) (Sawaguchi et al. 2005), and red seabream (Pagrus major) (Sawaguchi et al. 2006).  

These findings lead to explore the physiological function of the individual Vgs and their yolk 

protein derivatives. It is of course, highly probably that such processes might be different 

among teleost species (Matsubara et al. 1999; Reith et al. 2001; Hiramatsu et al. 2002d; 

Sawaguchi et al. 2005, 2006).   
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Routine laboratory purification procedures for more than two forms of Vg from plasma 

or serum have been developed for only three teleosts: two Vgs from tilapia (Oreochromis 

mossambicus) (Takemura and Kim 2001) and medaka (Shimizu et al. 2002), and three Vgs 

from white perch (Hiramatsu et al. 2002d).  In goby (Ohkubo et al. 2003) and mosquitofish 

(Sawaguchi et al. 2005), one Lv derived from VgC was purified from the vitellogenic ovaries, 

as well as one complete Vg.  In general, “complete” Vgs (e.g., VgA and VgB) elute in 

fractions at relatively high NaCl concentration during anion-exchange chromatography, 

while the “incomplete” Vg (VgC) elutes in pass-through fractions or fractions at low NaCl 

concentration (Hiramatsu et al. 2006).  Therefore, it is relatively easy to separate the 

“complete” Vg(s) from the “incomplete” Vg, as clearly demonstrated in tilapia, medaka, 

goby and mosquitofish (Kishida and Specker 1993; Shimizu et al. 2002; Ohkubo et al. 2003; 

Sawaguchi et al. 2005).  Two “complete” Vg forms have proved difficult to separate due to 

their similarity in mass and biochemical properties; literature reports only one case of 

successful separation, in white perch (Hiramatsu et al. 2002d). 

The grey mullet (Mugil cephalus) inhabits coastal areas, including harbors, estuaries, 

and rivers.  Mullet are considered to be key species for monitoring estrogenic substances 

contaminating aquatic environments due to their close association with polluted sediments 

while feeding and to their wide geographical distribution (Bompadre et al. 2001; Canapa et al. 

2002; Asturiano et al. 2005). In Asian and Mediterranean markets, processed mullet roe is a 

valuable seafood product, in addition to mullet fillets or whole fish. Thus, its commercial and 

environmental attributes make the grey mullet an important aquacultural target and research 

model species, respectively.  The development of assays for Vg in mullet species are highly 

important for several reasons.  Firstly, in finfish aquaculture, Vg has been utilized as an ideal 

biomarker for detecting the onset of puberty and the progression of maturation in female 

broodstock (Hiramatsu et al. 2005). Secondly, Vg has become an important biomarker for 

assessing the estrogenic potency of chemicals and the exposure of animals to estrogenic 

contaminants present in aquatic environments (Hiramatsu et al. 2005, 2006, and reviews cited 

therein).  

In our previous study (Amano et al. 2007), three distinct forms of Lv (LvA, LvB, and 

LvC), and other yolk proteins (two β’-cs and one Pv), were purified from the vitellogenic 
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ovary of grey mullet.  N-terminal amino acid sequences were determined for these purified 

products. Full-length cDNA encoding mullet Vgs were isolated and used to determine their 

deduced amino acid sequences.   Results confirmed that LvA, LvB, and LvC were derived 

from three distinct types of Vg: VgA, VgB, and VgC.  Our previous study, however, clearly 

demonstrated the importance of verifying the production of corresponding Vg proteins and 

developing appropriate purification protocols. The specific objectives of this study were to 

purify, characterize, and classify multiple mullet Vg proteins and to use immunological 

techniques to investigate their respective relationships to ovarian yolk proteins.  
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Materials and methods 
 

Experimental animals, blood and tissue samples 

 

Male and vitellogenic female grey mullet were caught off Gokasyo Bay in Mie, Japan 

and also off the Goto Islands in Nagasaki, Japan.   Fish were anesthetized and sacrificed in 

order to obtain serum and ovarian samples for the immunological detection of Vgs and yolk 

proteins.  Preparation of serum samples and ovarian extracts (OE) were performed according 

to Amano et al. (2007). 

For estrogen-induction, adult male or immature grey mullet were caught off Aurora, 

North Carolina, USA, and held in outdoor flow-through tanks at the North Carolina State 

University, Pamlico Aquaculture Field Laboratory under natural photo-thermal conditions.  

Following anaesthesia, fish were injected (intra-peritoneal route) with estradiol-17β (E2) at a 
dose of 5 mg/kg body weight.  Injections were performed again following a 5 day interval. 

Blood samples were taken three days after the second injection.  Serum was separated from 

the blood and stored as described in Amano et al. (2007).  Serum samples obtained from 

estrogen-induced mullet (E2S) were used for the purification of Vgs. 

 

Antisera 

 

Polyclonal antiserum against the male mullet serum (anti-male) was raised in rabbits by 

intra-dermal injection of male serum emulsified with an equal volume of Freund’s complete 

adjuvant (Iatron, Tokyo, Japan).  This emulsified male serum (250 μl per injection) was 
injected four times at weekly intervals.  For immunizations with purified mullet VgA or VgB, 

rabbits were injected with each antigen into lymph nodes, followed by two additional booster 

injections into the back (0.8 and 0.6 mg in total of VgA and VgB, respectively).  Blood was 
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obtained from the ear vein of immunized rabbits one week after the final injection and used to 

prepare antiserum.  Antisera raised against mullet Lvs (anti-LvA, anti-LvB, and anti-LvC) 

were the same as those preparations characterized previously by our laboratory (Amano et al. 

2007). 
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Electrophoresis and immunological procedure 

 

Immunoelectrophoresis (IEP) and double immunodiffusion were conducted by routine 

procedures in 1% agarose gels prepared with 0.05 M sodium barbital buffer, pH 8.6 and 0.9% 

NaCl containing 0.1% NaN3, respectively. Discontinuous (DISC) polyacrylamide gel 

electrophoresis (PAGE) was carried out in 7.5 and 10% polyacrylamide gels according to the 

method of Davis (1964). Gels were stained with Amido black 10B for protein, Sudan black B 

for lipoprotein, periodic acid-Schiff’s (PAS) reagent (Merck, Darmstadt, Germany) for 

glycoproteins, and methyl green for phosphoprotein. Sodium dodecyl sulfate-PAGE 

(SDS-PAGE) with a 3% stacking gel and a 5-22.5% gradient separating gel was performed 

according to Laemmli (1970). Gels were stained with 0.1% Coomassie Brilliant Blue R250 

(CBB; Bio-Rad, Hercules, CA, USA) for protein and methyl green for phosphoprotein. 

Relative molecular masses (Mr) of polypeptides appearing on the gels were estimated using 

Low- or High-Molecular Weight Marker kits (GE Healthcare UK Ltd., Buckinghamshire, 

England). Western blotting was carried out according to the method of Towbin et al. (1979) 

using the polyclonal rabbit antisera described earlier. 

 

Column chromatography 

 

All purification procedures were performed at 4˚C. Anion-exchange chromatography 

was performed with a POROS perfusion chromatography media (POROS 50 HQ; Applied 

Biosystems, Foster City, CA, USA).  The POROS 50 HQ media was loaded into a 1  x 30 cm 

column and fitted to a fast protein liquid chromatography (FPLC) system (GE Healthcare UK 

Ltd.).  The column was equilibrated with a starting buffer of 0.02 M Tris-HCl (pH 9.0) 

containing 0.25 M NaCl.  Samples were eluted by step-wise addition of Tris-HCl buffer 

containing various concentrations of NaCl at a flow rate of 4 ml/min (see Fig. 3 for further 

details of elution profiles). Eluted fractions were collected at a volume of 5.0 ml per tube. 

Hydroxylapatite (HA) column chromatography was performed using Fast Flow Type 

HA column media (Nacalai Tesuque, Kyoto, Japan) in the second step of purification. 

Hydroxylapatite media was loaded into a 2.5 x 8 cm glass column (Bio-Rad) and equilibrated 
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with appropriate starting buffers: either 0.05M (for VgC) or 0.4M (for VgA and VgB) 

potassium-phosphate (KP) buffer, pH 6.8.  Samples were eluted by step-wise addition of 

various concentrations of KP buffer at a flow rate of 63.1 ml/hr (see Fig. 4A, 5A and 6A for 

further details of elution profiles). Eluted fractions were collected in a volume of 4.1 ml per 

tube. 
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Immunoadsorbent column chromatography (2.5 x 8 cm) was performed using 

Sepharose 4B (GE Healthcare UK Ltd.) coupled with anti-male or antiserum against one of 

the purified Vgs, VgB (anti-VgB). The column was equilibrated with phosphate buffered 

saline (PBS; 0.01 M sodium phosphate buffer, pH 7.0, containing 0.25 M NaCl).  The 

pass-through and bound fractions were eluted by PBS and 8.0 M urea, respectively, at a flow 

rate of 20 ml/hr.  Eluted fractions were collected in a volume of 4.0 ml per tube. 

Gel filtration was performed for the final step of purification with a Superose 6 column 

(GE Healthcare UK Ltd.) fitted to the FPLC system.  Samples were eluted with 0.02 M 

Tris-HCl, pH 8.0 containing 2% NaCl and 0.1% NaN3.  In cases where eluted fractions were 

to be lyophilized, 0.2 M ammonium bicarbonate was used for the elution in place of the 

Tris-HCl buffer.  The column was eluted at a flow rate of 0.5 ml/min and fractions collected at 

a volume of 0.25 ml per tube.  The following marker proteins were used to calibrate the 

Superose 6 column: immunoglobulin G (150 kDa), aldolase (158 kDa), catalase (232 kDa), 

ferritin (440 kDa) and thyroglobulin (669 kDa). 

 

Amino acid analysis 

 

Approximately 200 μg of purified Vg was lyophilized for amino acid analysis. Samples 
were hydrolyzed in 6 N HCl for 24 hr at 110˚C.  The amino acid composition of the Vgs were 

determined using a Hitachi Model KLA-3 automatic amino acid analyzer (Hitachi, Tokyo, 

Japan) at the Center for Instrumental Analysis of Hokkaido University, Hokkaido, Japan. 

 

 

N-terminal amino acid sequence 

 

Proteins were separated by SDS-PAGE and transferred to polyvinylidene difluoride 

(PVDF) membrane (Immobilon-PSQ; Millipore, Bedford, MA, USA) by transblotting. 

Peptide bands were visualized on the PVDF membranes by staining with CBB.  Visualized 

peptide bands were cut out from the membrane and subjected to N-terminal amino acid 

sequencing on a PPSQ-21 Protein Sequencer (Shimazu, Kyoto, Japan).  
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Purification of mullet β’-cs 

 

Mullet β’-cs were purified from OE as described in Amano et al. (2007).  These were 

previously designated as 0.1 M β’-c and 0.25 M β’-cs, based on their eluted positions.   

 

 

Results 
 

Detection of vitellogenins 

 

IEP of mullet serum and OE using three type-specific Lv antisera (anti-LvA, anti-LvB, 

and anti-LvC) are shown in Fig. 1. No precipitine lines were formed against male control 

serum with any of the three antisera. Each antiserum, however, formed one precipitine line 

with serum from vitellogenic females, E2S, and OE.  Female-specific serum proteins detected 

with anti-LvA, anti-LvB, and anti-LvC were tentatively termed VgA, VgB and VgC, 

respectively. 

 

Purification of three vitellogenins 

 

Outlines of the procedures used to purify the three mullet Vgs (VgA, VgB, and VgC) 

are shown in Fig. 2.  Detection of Vg at each step of the purification procedure was performed 

using the type-specific Lv antisera.  At the initial step of purification, E2S was applied onto a 

POROS 50 HQ column (Fig. 3).  Elution was performed by step-wise addition of NaCl in 

Tris-HCl buffer (8 steps; see Fig. 3).  Fractions taken at the 0.34 M NaCl step appeared to 

contain mainly VgA and VgB.   At this step, two peaks were formed: a major peak eluting 

between fraction numbers 50-52 mainly consisting of VgA (crude VgA), and a shoulder peak 

eluting between fraction 54 and 57 containing VgB (crude VgB) as a major component.  VgC 

was detected in a peak (fractions 3-5; crude VgC) appearing in the 0.25 M NaCl step.  These 

crude Vg fractions were pooled separately and dialyzed against appropriate starting buffers 

before being subjected to HA column chromatography. 

Figure 4A shows an elution pattern of the crude VgA fraction (i.e., fraction numbers 

50-52 from the POROS column chromatography) on HA column chromatography.  Elution 

was performed by step-wise addition of KP buffer (4 steps).  A peak eluted at the 0.8 M KP 

step (fractions 39-47) was predominantly VgA but was contaminated with VgB.  This VgA 
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peak was pooled and dialyzed against PBS.  Figure 4B shows an elution pattern of the VgA 

peak (i.e., fractions 39-47 from HA column chromatography) on an immunoadsorbent 

column coupled with anti-VgB.  A major peak of pass-through fractions (numbers 13-20) 

exhibited no trace of VgB.  Subsequently, the pass-through fractions were pooled, 

concentrated by ultrafiltration, and then subjected to gel filtration on Superose 6 (Fig. 4C).  A 

single, symmetrical peak was observed at a position corresponding to Mr ~570 kDa. This was 

collected as purified VgA (fraction numbers 34-41). 
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Figure 5A shows an elution pattern of the crude VgB fraction (i.e., numbers 54-57 from 

the POROS column chromatography) on the HA column chromatography.  Sample was 

eluted by step-wise addition of KP buffer (5 steps).  A peak at the 1.2 M KP step (fraction 

numbers 64-74) were dominant with VgB.  These fractions were pooled, concentrated by 

ultrafiltration, and subjected to gel filtration on Superose 6 (Fig. 5B).  A single peak was 

observed at the position corresponding to Mr ~580 kDa. This was collected as purified VgB 

(fractions 30-34). 

Figure 6A shows an elution pattern of the crude VgC fraction (i.e., fraction numbers 3-5 

from the POROS column chromatography) on the HA column chromatography.  Elution was 

performed by step-wise addition of KP buffer (5 steps).  Since pass-through fractions  

(numbers 1-13) contained VgC, they were pooled, concentrated by ultrafiltration, and 

subjected to gel filtration on Superose 6 (Fig. 6B).  A shoulder peak (fractions 38-41) 

contained not only VgC but also other serum proteins.  Therefore, these fractions were pooled 

and subjected to an immunoadsorbent column coupled with anti-male serum (data not shown).  

The pass-through fractions on the immunoadsorbent column chromatography were pooled, 

concentrated by ultrafiltration, and applied to gel filtration on Superose 6 (Fig. 6C).  A single 

peak was observed at the position corresponding to Mr ~335 kDa.  This was collected as 

purified VgC (fraction numbers 35-40). 

 

Biochemical and immunological characterization of multiple vitellogenins 

 

DISC-PAGE showed that purified VgA appeared as one band after staining with Amido 

black 10B, PAS reagent, Sudan black B, and methyl green (Fig. 7).  In contrast, two bands 

were observed with each staining method after DISC-PAGE of VgB. Purified VgC appeared 

as one sharp band and an additional smear band; these bands were positive to all staining 

methods except methyl green. 

Figure 8 shows the SDS-PAGE patterns of purified mullet Vgs and serum samples. 

Corresponding Western blots using three type-specific Lv antisera were also performed.  In 
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SDS-PAGE under reducing conditions, purified VgA and VgB appeared as one main band 

(Mr ~179 kDa and Mr ~175 kDa, respectively) in addition to several minor bands.  Unlike 

VgA and VgB, VgC appeared as a main band corresponding to Mr ~132 kDa.  These ~179 

kDa VgA, ~175 kDa VgB, and ~132 kDa VgC bands were specifically stained with anti-LvA, 

anti-LvB, and anti-LvC, respectively, indicating that each type of Vg was completely 

separated from other types of Vg.  Furthermore, these main bands appeared in Western blots 

of E2S.  No immunological cross-reactivity was observed in any Western blots using male 

serum. 
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The amino acid composition of the purified Vgs are shown in Table 1 compared to those 

determined previously for Vgs in Sakhalin taimen, Hucho perryi and medaka.  The amino 

acid composition of mullet Vgs appeared to have identical characteristics as the two medaka 

Vgs and the taimen Vg in terms of high Glx, Ala and Leu content. Highly similar trends in 

amino acid composition were observed among the three mullet Vgs, especially between VgA 

and VgB.  Although VgC exhibited some similarity in amino acid composition with VgA and 

VgB, it was apparent that VgC contained relatively lower amounts of Ser and Ile, and larger 

amounts of Glx.  

Figure 9 shows double immunodiffusion of purified Vgs using a mixture of antisera 

containing anti-LvA, anti-LvB, and anti-LvC.  Each of the three purified Vgs formed one 

precipitine line against the antiserum mixture.  Furthermore, each precipitine line of VgA, 

VgB and VgC completely crossed each other, indicating that in terms of antigenicity, they 

were immunologically distinct. 

 

N-terminal amino acid sequence of vitellogenins and yolk proteins 

 

When amino acid sequencing analyses were performed, it was found that the amino 

terminus was blocked for the 132 kDa VgC peptide.  N-terminal amino acid sequence 

obtained for the 179 kDa VgA peptide started with “GQSQ”, which aligned perfectly with the 

N-terminal portion (amino acid residues 17-20) of the deduced amino acid sequence for 

mullet VgA (Genbank accession number AB288932).  The N-terminal amino acid sequence 

obtained for the 175 kDa VgB peptide started with “XQISFAPG”, which aligned perfectly 

with the N-terminal portion (amino acid residues 16-23) of the deduced mullet VgB sequence 

(Genbank accession number AB288932), except for the first unknown residue (X). 

 

Antisera against purified VgA and VgB 
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Antisera were raised in rabbits against purified VgA (anti-VgA) and VgB (anti-VgB) 

and their specificity tested by IEP (Fig, 10A and 10B).  Each antiserum reacted with female 

serum and E2S forming only one precipitine line, but did not react with male serum, 

indicating these two antisera were highly specific to their immunized antigens.  This result 

confirmed that the Vg antigens were also highly purified.  Both antisera generated two 

precipitine lines against mullet OE (Fig. 10C and D), presumably reacting with Lv and β’-c in 

the OE preparation (see Discussion).  
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Two distinct purified β’-c products, 0.1 and 0.25 M β’-cs, were subjected to double 

immunodiffusion using anti-VgA and anti-VgB (Fig. 11).  Anti-VgA specifically reacted with 

0.25 M β’-c, but not with 0.1 M β’-c, generating a single precipitine line (Fig. 11A).  In 

double immunodiffusion using anti-VgB, both β’-c fractions formed one precipitine line and 

each line fused with each other (Fig. 11B).  When anti-VgA and anti-VgB were mixed, the 

precipitine line of 0.1M β’-c formed a spur against the line of 0.25 M β’-c (Fig. 11C).  

 

 

Discussion 
 

Three forms of Vg protein were purified from the serum of E2-treated mullet by probing 

with three type-specific Lv antisera during the purification procedure.  Purified mullet VgA 

and VgB were identified as the “complete” form of Vg in this species based upon certain 

characteristic properties commonly found for this form of teleost Vg. Firstly, elution typically 

at a relatively high NaCl concentration (0.34M in this study) during anion-exchange 

chromatography (Hiramatsu et al. 2002d, 2005, 2006). Secondly, isolation of a large 

glycolipophosphoprotein with typical native mass of ~500 kDa (Matsubara et al. 1999; 

Hiramatsu et al. 2002d; Sawaguchi et al. 2005, 2006). Thirdly, relatively large mass of the 

major subunit on SDS-PAGE (Matsubara et al. 1999; Hiramatsu et al. 2002d; Sawaguchi et al. 

2005, 2006). Finally, N-terminal amino acid sequences of purified VgA and VgB peptides 

were identical to the deduced amino acid sequence of mullet VgA and VgB genes (Amano et 

al. 2007).  The molecular masses of VgA and VgB, based upon their deduced amino acid 

sequences without signal peptide were ~184 kDa for both Vgs and were thus similar to those 

of VgA and VgB proteins estimated by SDS-PAGE (179 kDa and 175 kDa, respectively). 

While, purified mullet VgC was identified as the “incomplete” Vg, based upon the 

evaluation of several properties of teleost VgC.  Specifically, VgC was smaller than the 

“complete” Vgs in native mass (~335 kDa) and resembles masses previously determined for 

VgC (Pv-less Vg) in tilapia (Takemura and Kim 2001), medaka (Shimizu et al. 2002), white 
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perch (Hiramatsu et al. 2002d), goby (Ohkubo et al. 2003), mosquitofish (Sawaguchi et al. 

2005), and red seabream (Sawaguchi et al. 2006).  The molecular mass of the VgC calculated 

using the deduced amino acid sequence without signal peptide was ~140 kDa, similar to the 

mass of VgC peptide estimated by SDS-PAGE (132 kDa).  In addition, VgC gave a negative 

result to a phospho-stain with methyl green in DISC-PAGE, indicating absence or 

considerably reduced levels of phosphorus moiety. Such biochemical properties have also 

been demonstrated in purified medaka Vg2 (a putative VgC of this species), suggesting that 

this type of Vg lacks the phosvitin domain (Shimizu et al. 2002).  Furthermore, absence of a 

serine-rich phosvitin domain might explain the low serine content found in the amino acid 

composition for mullet VgC.  These results suggested that grey mullet produces at least three 

immunologically distinct Vg proteins, which concur with the classification scheme of teleost 

multiple Vgs proposed previously (Hiramatsu et al. 2002d, 2005). 
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Shimizu et al. (2002) used HA column chromatography followed by gel filtration for the 

separation of medaka Vg1 (a “complete” Vg) and Vg2, while Hiramatsu et al. (2002d) used 

two types of ion-exchange chromatography (POROS HQ and Mono Q column) followed by 

gel filtration for the separation of white perch VgA, VgB and VgC. In the present study, both 

POROS HQ and HA column chromatography were utilized for the purification of mullet Vgs. 

However, this combination of media could not completely separate multiple mullet Vgs.  

Thus an additional step using immunoadsorbent column chromatography was necessary for 

the further separation of mullet Vgs.  Fractions containing two “complete” Vgs (i.e., VgA and 

VgB) were initially separated from VgC with POROS HQ and subsequently separated from 

each other using a combination of an HA column and an immunoadsorbent column coupled 

with anti-VgB.  Although VgC was separated from “complete” Vgs during POROS HQ 

chromatography, additional steps were required to separate it from other serum proteins by 

the combination of gel filtration and an immunoadsorbent column coupled with anti-male.  

Thus far, immunoadsorbent column chromatography has proved to be a powerful tool for the 

separation of multiple Vgs, even despite the proteins exhibiting considerably similar 

biochemical properties. 

Two type-specific Vg antisera, anti-VgA and anti-VgB, were developed and utilized in 

the present study in order to confirm the relationship between two Vgs (VgA and VgB) and 

their derived yolk proteins. Immunological studies clearly demonstrate that mullet VgA and 

VgB are “complete” Vgs since antisera against them reacted with two yolk components in 

IEP (Fig. 10); one component appears to be Lv, based upon the mobility of the precipitine line, 

whilst the other might be β’-c, but not Pv, since Pv is generally not antigenic.  Accordingly, 

purified VgA and VgB should be considered to be “complete” Vgs by definition as 
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“incomplete” Vg does not possess the β’-c domain.   Furthermore, purified 0.1 M β’-c reacted 

with anti-VgB alone, while 0.25 M β’-c reacted with both anti-VgA and anti-VgB in double 

immunodiffusion experiments (Fig. 11), suggesting that VgA and VgB are precursors of these 

β’-cs.  This result also confirmed that the 0.1 M β’-c fraction consists of β’-c derived from 

VgB (β’-cB), while the 0.25 M β’-c fraction is a mixture of β’-cA and β’-cB.     
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By combining the results obtained in this and our previous study (Amano et al. 2007), 

we constructed a model describing the molecular alteration of the three forms of mullet Vg 

and their yolk protein products during vitellogenesis (Fig. 12).  In the native state (dimeric 

form), VgA (~570 kDa) is cleaved into three yolk proteins after uptake by oocytes: LvA-PvA 

complex (~570 kDa), LvA (~330 kDa), and β’-cA (~34 kDa).  Although PvA is expected to 

exist in mullet OE along with its proteolytic variant (i.e., LvA-PvA complex), it was not 

detected in the previous study (Amano et al. 2007).  On the other hand, VgB (~580 kDa) is 

cleaved into LvB (~325 kDa), PvB (size yet to be characterised), and β’-cB (~34 kDa).  No 

LvB-PvB variant has been found in this species as yet.  The apparent molecular masses of 

native VgC and LvC are identical (~335 kDa), although LvC seems to undergo nicking and 

subsequently appears as an LvC heavy chain (~97 kDa) and an LvC light chain (~21.5 kDa) 

after SDS-PAGE.  Describing the physiological significance of the type-specific proteolysis 

of multiple Vgs is beyond the scope of this present study.  However, the aforementioned 

patterns of molecular alteration in mullet Vgs were almost identical to those found in three 

types of Vg in red seabream (Sawaguchi et al. 2006); this mode of Vg proteolysis may be 

typical of marine pelagic egg spawners that produce highly hydrated eggs in Acanthopterygii 

fish, although grey mullet (Mugiliformes) and red seabream (Perciform) belong to different 

Orders within Acanthopterygii.   

As mentioned earlier, mullet are considered to be important key species in monitoring 

the impact of estrogenic substances contaminating aquatic environments.  The findings and 

tools described in this study provide the perfect foundation for the future development of 

type-specific assays for each of the discrete Vg classes in this model species.  The 

development of such improved Vg immunoassays will be prove vital in understanding the 

basic biology of teleost oogenesis and will contribute significantly in the critical analysis of 

future surveys of estrogenic endocrine disruption utilizing multiple Vgs as biomarkers.   
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Figure 1. Immunoelectrophoresis of vitellogenic mullet ovary extracts (OE) and serum 

samples from male, female and E2-treated (E2S) mullet.  Antisera used in the analyses 

were raised against purified lipovitellin A (anti-LvA), LvB (anti-LvB) and LvC 

(anti-LvC) in our previous study (Amano et al. in press). 

Figure 2. Diagram of the procedures used to purify grey mullet vitellogenins (Vgs).  For a 

comprehensive description of these procedures, please see the Results (‘Purification of 

vitellogenins’). Anti-male affinity, immunoadsorbent column coupled with antiserum 

raised against mullet male serum; anti-VgB affinity, immunoadsorbent column coupled 

with antiserum raised against purified VgB. KP, potassium-phosphate buffer. 

Figure 3. Elution profile of serum proteins from estrogen-treated mullet on a POROS 50 HQ 

column.  Pooled fractions containing crude vitellogenin A (VgA), VgB, and VgC are 

indicated as shaded areas with arrows in the resulting chromatogram.   

Figure 4. Elution patterns of crude vitellogenin A (VgA; see Figure 3) during hydroxylapatite 

column chromatography (A) and an immunoadsorbent column coupled with antiserum 

raised against purified vitellogenin B (B), followed by gel filtration on Superose 6 

column (C).  Shaded areas in (A) and (B) represented pooled material subjected to the 

following chromatography step.  A shaded area in chromatogram (C) was the fraction 

collected as purified VgA.  KP, potassium-phosphate buffer. 

Figure 5. Elution pattern of crude vitellogenin B (VgB; see Figure 3) during hydroxylapatite 

column chromatography (A) followed by gel filtration on a Superose 6 column (B).  

Shaded areas in (A) represented pooled material subjected to the following 

chromatography step.  A shaded area in chromatogram (B) was the fraction collected as 

purified VgB.  KP, potassium-phosphate buffer. 

Figure 6. Elution pattern of crude vitellogenin C (VgC; see Figure 3) during hydroxylapatite 

column chromatography (A) and an immunoadsorbent column coupled with antiserum 

raised against serum from male mullet (B), followed by gel filtration on a Superose 6 

column (C).  Collection of fractions in chromatogram (A) was started when the elution 

of proteins was confirmed (~55 ml after the elution started).  Shaded areas in (A) and 

(B) represented pooled material subjected to the following chromatography step.  

Shaded area in chromatogram C corresponds to the fraction collected as purified VgC.  

KP, potassium-phosphate buffer. 

Figure 7.  7.5% DISC-PAGE of purified vitellogenin (Vg) A (A), VgB (B), and VgC (C).  

Gels were stained for protein (Amido black 10B), carbohydrate (periodic acid-Schiff’s 
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reagent; PAS reagent), lipid (Sudan black B), and phosphorus (Methyl green). 553 
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Figure 8.  5-22.5% gradient SDS-PAGE of serum samples and purified vitellogenin (Vg) A 

(A), VgB (B), and VgC (C), followed by corresponding Western blots using antisera 

raised against lipovitellin (Lv) A (anti-LvA), LvB (anti-LvB), and LvC (anti-LvC).  

Gels were stained with Coomassie Brilliant Blue (CBB).  Serum samples were obtained 

from male (M) and estrogen-treated mullet (E2S).  Numbers indicated with horizontal 

bars and arrowheads represented the apparent masses (kDa) of molecular marker 

proteins and purified mullet Vgs (monomer), respectively. 

Figure 9. Double immunodiffusion of purified vitellogenin A (VgA), VgB, and VgC using a 

mixture of antisera raised against lipovitellin (Lv) A, LvB and LvC (anti-Lvs mixture). 

Figure 10. Panels A and B: Results of immunoelectrophoresis of serum samples from male, 

female, and E2-treated (E2S) mullet using antisera raised against purified vitellogenin A 

(anti-VgA) and VgB (anti-VgB).  Panels C and D: Results of immunoelectrophoresis of 

vitellogenic ovarian extracts using four distinct type-specific antisera.  Each of the 

antisera were raised against purified lipovitellin A (anti-LvA) and LvB (anti-LvB) 

reacted with LvA and LvB in the extracts, respectively.  Besides these Lvs, anti-VgA 

and anti-VgB detected the putative β’-component A (β’-A) and β’-B, respectively, by 

forming an additional precipitine line. 

Figure 11 Double immunodiffusion of purified β’-components (β’-c) using antisera raised 

against vitellogenin A (anti-VgA; panel A), VgB (anti-VgB; panel B), along with a 

mixture of these antisera (anti-VgA and VgB; panel C).  Two discrete forms of β’-c 

were previously purified (Amano et al. in press), designated as 0.1 M β’-c (0.1) and 0.25 

M β’-c (0.25). Both forms are analyzed here. 

Figure 12. Schematic drawing of a flowchart describing the molecular alteration of three 

forms of vitellogenin (Vg) and their derived yolk proteins during vitellogenic oocyte 

growth in grey mullet.  In addition to the results obtained in this study, the primary 

domain structures of native (dimeric) Vgs and yolk proteins are also presented, based 

upon the results obtained in our previous study (Amano et al. in press): open square, 

lipovitellin heavy chain (LvH); shaded square, phosvitin (Pv); closed square, Lv light 

chain (LvL); square filled with oblique lines, β’-component (β’-c); square surrounded 

with dotted line, C-terminal component (C-t).  Apparent molecular masses were 

estimated by gel filtration (Native) and SDS-PAGE (SDS) and are indicated here as 

numbers (kDa) underneath each illustrated protein component.  Arrowheads indicate 

the positions of proteolytic nicking.  Solid lines connecting Vgs and yolk proteins 

represented their confirmed relationship, while dotted lines indicate expected 
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relationships, which have yet to be confirmed in this species. 588 
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