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Automatic Phase Compensation for Extremely Short
Optical-Pulse Generation Using Wavelet Transform

K. Hazu, K. Narita, T. Sekikawa, and M. Yamashita

Abstract—We introduce the wavelet transform (WT) method
to automatic phase compensation for the generation of extremely
short optical pulses with a duration of a few to several femtosec-
onds. This method is based on the immediate negative feedback
of the spectral phase which is directly reconstructed by the
wavelet-transform analysis with no uncertainty in phase retrieval
without any manual decision, unlike the Fourier transform
method. It is shown that the wavelet-transform method is useful
for automatic compensations for three types of ultrabroadband
pulses with different characteristics, such as: 1) a strong chirp; 2) a
600-rad spectral-phase variation over one octave bandwidth; and
3) a complicated spectral phase as well as a structured intensity
spectrum.

Index Terms—Automatic phase compensation, few- to
mono-cycle optical pulse, over-octave bandwidth pulses, wavelet
transform (WT).

I. INTRODUCTION

RECENTLY, compression to a 2.8-fs single pulse in the
mono-optical-cycle region has been demonstrated [1]

using a technique based on the negative feedback (FB) of the
reconstructed spectral phase [2] for the strongly chirped pulse
from a gas-filled hollow fiber. Moreover, it has been shown that
the technique is useful for pulse compression using a photonic
crystal fiber (PCF) [3], [4] and for further pulse compression
(e.g., 2.6 fs, 1.3 cycles) based on induced phase modulation
[5]. This phase-compensation technique with a bandwidth
exceeding the octave consists of the combination of a phase
manipulator with a spatial light modulator (SLM) [6], a phase
characterizer using a modified spectral phase interferometry
for direct electric-field reconstruction (M-SPIDER) [7], and
computers for phase analysis and SLM control. However, the
technique has one problem that FB phase compensation does
not operate automatically. This fact prevents the technique
from being widely utilized by those who are not familiar with
ultrafast optics. This is mainly due to the fact that a decision by
an observer is required in the process of the Fourier-transform
(FT) analysis for the spectral phase reconstruction from the
M-SPIDER signal when the spectral phase of ultrabroadband
pulses is complicated and/or the intensity spectrum has a
structure (see Section II).

On the other hand, in 2004, it was demonstrated that a novel
analysis for extracting the spectral phase from the SPIDER
signal, based on wavelet transform (WT), provides an alter-

Manuscript received March 26, 2007; revised August 1, 2007.
The authors are with the Department of Applied Physics, Hokkaido Uni-

versity and Japan Science and Technology Agency (JST), CREST, Sapporo
060-8628, Japan (e-mail: mikio@eng.hokudai.ac.jp).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/JQE.2007.907546

native method for phase retrieval [8], [9]. The purpose of this
paper is to show that the use of the WT analysis (instead of the
FT analysis) enables us to compensate for the phase automat-
ically in the FB mode without any manual decision, even for
pulses with an ultrabroadband, a complicated spectral phase,
and/or a structured intensity spectrum.

II. PROBLEM OF FT ANALYSIS AND APPLICATION OF WT

In general, the M-SPIDER signal is described by the
following equation [7], [10], [11]:

(1)

where is the spectral shear, is the delay time between two
replica pulses, is the intensity spectrum, and is the
spectral phase of the pulse to be characterized. The first and
second terms of (1) represent the dc component, the third term
represents the ac component including the spectral phase in-
formation, and the fourth term represents the ac component.
The spectral phase is usually reconstructed from the mea-
sured M-SPIDER signal using the FT analysis through the fol-
lowing processes.

Step 1) Calculate the inverse FT of the M-SPIDER signal.
Step 2) Determine the lower and upper time limits

of the eighth-order super-Gaussian filtering function
to extract the component (see Fig. 1.

Step 3) Calculate the FT of only the ac component and its
argument .

Step 4) Remove the linear term from the and in-
tegrate the spectral phase difference

, that is, the is an approximation for
the first derivative of , multiplied with .

Fig. 1 is one example of results after the step 1), which was cal-
culated from the M-SPIDER signal measured for the PCF output
[3], [4]. Fig. 1(a) indicates that it is difficult to determine man-
ually suitable values and quickly, even with the help of
the comparison with the calculated result of the inverse FT of
the corresponding replica spectrum. Different values and
lead to different spectral phases [see Fig. 1(b)] and, hence, dif-
ferent temporal intensity profiles. In (1), in general, it is possible
to separate dc and ac components by choosing large for an
optical pulse whose intensity spectrum is clear and not ultra-
broad [13]. However, it becomes difficult to separate those com-
ponents when the optical pulse spectrum has a bandwidth as ul-
trabroad as that of nearly one octave and is complicated because

0018-9197/$25.00 © 2007 IEEE
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Fig. 1. (a) Result of calculating the inverse FT of the M-SPIDER signal (solid
curve) and that of one of its replica spectra (dotted curve) which were measured
for the PCF output [3], [4]. It is difficult to set apart dc and +ac components.
Arrows indicate the lower (T ) and upper (T ) time limits of an eighth-order
super-Gaussian filtering function to extract the +ac component. (1) T = 760
to T = 1080 fs. (2) T = 680 to T = 1240 fs. (3) T = 530 to T = 1600
fs. (4) T = 530 to T = 1800 fs. (b) The intensity spectrum (solid curve)
and reconstructed spectral phases using different time limits (T and T ) of an
eighth-order super-Gaussian filtering function in (a).

the ac component extends so as to overlap in the time region
after the inverse FT. Moreover, large results in a SPIDER
signal with a decent number of interference fringes and hence
request a measurement with a high spectral resolution for its
signal [13]. For example, for large ps, the spectral res-
olution necessary for a spectrometer is evaluated to be 0.05 nm
at 400 nm by considering the fringe period of about and the
Nyquist sampling criterion. This is the almost limited value, in
practice, for the measurement of the present ultrabroad SPIDER
signal.

To overcome this problem, we introduce the WT to the spec-
tral phase analysis from the M-SPIDER signal in the FB phase-
compensation technique. In addition, the WT analysis has addi-
tional advantages of fewer reconstruction processes, no uncer-
tainty in phase retrieval, and usually higher accuracy [9] com-
pared with the FT analysis. The WT converts the one-dimen-
sional (1-D) frequency signal, the M-SPIDER signal ,

into the two-dimensional (2-D) time -frequency to-
pography . Using the Gabor wavelet , the complex
WT equation is expressed as follows [8]:

(2)

(3)

where (rad Hz) is the dilation factor, (rad Hz) is the moving
factor, and is the window factor. In the computer calculation
of , it is discretely computed at equal intervals for the
parameters, where the mesh numbers of and are 543,
3072–7168, and 3072–7168, respectively, depending on the
broadening of the pulse intensity spectrum. As the FT has no
time parameter, the chosen time window (width of
the super-Gaussian filter after the FT) affects the signal (after
the inverse transform) globally, complicating an automated
optimization. In contrast, the WT does have a time parameter

, whose variation affects the transformed signal only
locally (at the chosen “moving factor” ). Hence, the simple
maximum-modulus (of ) criterion can be applied
for an automated optimization and determination of the phase
trace. The spectral phase reconstruction using the WT is carried
out through the following processes.

Step 1) Calculate the 2-D mapping , the absolute
of (2) [see Fig. 2(c)], and find where

at each value of becomes maximum.
Step 2) Calculate the argument of , which corre-

sponds to the above-mentioned , and integrate
the spectral phase difference after subtraction
of the as in steps 3) and 4) in the FT analysis.
Those processes do not require any manual deci-
sions.

To choose a suitable value, the WT simulation analysis was
carried out in the wide range of for different
numerically-given signals of SPIDER including the cases I, A
and B (see Sections III, IV and V). As a result, the value of

was employed in this paper.

III. DEMONSTRATION OF AUTOMATIC PHASE COMPENSATION

The experimental setup was similar to our previously reported
one [3], [4] except for the two following points. First, an orig-
inal computer program was added for the phase analysis by the
WT method enabling the reconstruction automatically. Second,
a 7.5-mm-long glass (BK7) as a dispersion medium yielding a
strong chirp for 12-fs input pulses was employed.

A mode-locked Ti:sapphire laser was used as a light source.
The laser producing a pulse duration of 12 fs at a repetition rate
of 75 MHz was tuned to a 786-nm center wavelength

with a 620-mW average power. The laser spectrum
was broadened from 680 to 910 nm (see Fig. 2(a): the spectrum
after passing through a 4-f phase compensator). The laser output
pulse was divided into two beams with a 1:3 beam splitter.
The lower intensity pulse was sent to the M-SPIDER apparatus
as a reference chirped pulse. The higher intensity pulse was
passed through the BK7 dispersion glass. After that, the strongly
chirped pulse was directed into a 4-f phase compensator. The 4-f
system consisted of a pair of 500 grooves/mm gratings, a pair
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Fig. 2. Experimental result of automatic phase compensation for pulses which
propagated through a BK7 glass with a 7.5-mm length. (a) The solid curve is the
intensity spectrum. Dotted and dashed curves are reconstructed spectral phase
before and after the third FB compensations, respectively. (b) M-SPIDER signal
before FB compensation. (c) Two-dimensional map of jW (a; b)j and the cor-
responding maximum-trace curve jW (a ; b)j. (d) Solid and dotted curves
are reconstructed temporal intensity profiles before (I(t)) and after the third
(I (t)) FB compensations, respectively. Dashed and dashed–dotted curves
are temporal phase profiles before (�(t)) and after the third (� (t)) FB com-
pensations, respectively. The pulse widths are 270 and 9.6 fs for before and after
third FB compensations, respectively.

of silver-coated mirrors, a pair of silver-coated concave mirrors
with a 200-mm focal length, and an SLM with a 648 pixels, a
97- m pixel gap, and an 85 % transmission at 800 nm.

The output pulse from the 4-f phase compensator was guided
to the M-SPIDER apparatus for characterization. The pulse was
split into two beams with a 1:4 beam splitter, and a delay time

between their pulses was controlled by a Michelson interfer-
ometer arm. The fs was determined from the mea-
surement of the second-harmonic interference between pulses
which were focused onto the type-I -barium borate (BBO)
crystal (25- m thickness) by a 50-mm-focal-length parabolic
mirror. The reference chirp pulse was produced by transmission
through TF5 glass with a 10-cm length. Combined replica and
reference pulses were superimposed on a surface of a type-II
BBO crystal (50- m thickness) by a 50-mm-focal-length para-
bolic mirror to produce two sum-frequency waves (those center
angular frequencies ). The interference signal of
their waves, the M-SPIDER signal, was detected by a com-
bination of a 0.5-m-focal-length monochromator with a 1200-
grooves/mm grating (Bruker 500 IS 2–0411) and an intensified
charge-coupled device (ICCD: ANDOR DH 520-25F-03). The
spectral resolution is 0.05 nm at 400 nm. The spectral shear

rad THz) and the spectral shift
rad PHz) were measured from the comparison be-

tween spectra of two sum-frequency waves.
To generate the shortest pulse, we carried out the FB spectral

phase compensations three times as well as the spectral phase
measurement before FB. Fig. 2(a) shows the spectral phases
before FB compensation (dotted curve) and after the third
FB (dashed curve). All spectral phases before and after FB
compensations were reconstructed automatically by the WT
method . In addition, Fig. 2(c) shows the absolute
WT function and the corresponding maximum-trace
curve . Those were calculated from the measured
M-SPIDER signal before FB [Fig. 2(b)]. For one FB
loop for phase compensation, it typically took about 81 s using
the combination of two conventional personal computers, one
for the M-SPIDER signal measurement and the other for the
signal analysis and SLM control (this time is slightly shorter
than that (at least 83 s) in the case of the FT analysis), that is, it
took 40 s to measure the M-SPIDER signal ranging from 370 to
435 nm owing to the requirement of three automatic rotations
of the spectrometer grating for the present ultrabroadband
pulse, under the condition of 5000 pulse accumulations per
each grating angle. Then, it took 26 s for the WT analysis and
15 s to apply the negative spectral phase to the SLM and to
control it. The former time (26 s) is comparable to the case of
the FT analysis even with the use of the fast FT program (23 s)
except for the manual decision time (at least 5 s) because of
the requirement of more steps (see the previous section). To
reduce the FP loop time, the use of an upgraded spectrometer
ICCD and computers, the program improvement, the parameter
selection of the accumulation number [12], and the spectral
shear and the delay time suitable for pulses to be characterized
will all be useful. In particular, the use of the fast algorithms for
the discrete WT with unequal grid spacing such as a so-called
gdyadich grid for the and parameters [14] may shorten the
computation time.

The chirped pulse before FB compensation has a spectral
phase variation over 80 rad in the spectral range from 680 to
910 nm and a temporal broadening from to fs with
a duration of 270 fs [Fig. 2(d)]. The fitted group delay disper-
sion (GDD) and third-order dispersion (TOD) are fs and
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fs at 800 nm, respectively. Those are consistent with the
GDD and TOD of the dispersion glass and other optical com-
ponents. The time-dependent phase [Fig. 2(d)] shows a strong
chirp. After the third FB compensation, the spectral phase is
almost flat with the smaller GDD than 10 fs [Fig. 2(a)]. The
corresponding temporal intensity profile [Fig. 2(d)] shows a du-
ration of 9.6 fs, which is very close to the transform-limited
(TL) pulse duration of 9.3 fs. These results demonstrate that the
WT method is very useful for the automatic phase compensation
even for pulses with a strong chirp and an ultrabroad spectrum.

IV. STUDY OF EXTREME PULSES

A. Case of Pulses With Over-Octave Bandwidth

We investigated the possibility of the application of the WT
analysis for automatic phase compensation of output pulses
that were generated in our previous experiment of a gas-filled
hollow fiber for the 2.8-fs (1.5 cycles) pulse compression [
in Fig. 3(e)] [1].

For this purpose, we performed two types of studies. The
first is the simulation study for the test of the reliability of the
WT analysis by comparison between a numerically given
(as “true” spectral phase) and the corresponding reconstructed

spectral phases for the over-octave bandwidth pulse, that
is, the M-SPIDER signal to be employed [Fig. 3(c)] was
calculated from a numerically given intensity spectrum
(460 to 1060 nm) [Fig. 3(a)] and a numerically given spectral
phase (over 600-rad variation) [Fig. 3(a)]. Their numer-
ical data of and in this subsection are origi-
nally the ones which had been measured before FB compen-
sation in the above-mentioned experiment [1] with parameters
of rad THz and fs. We chose the recon-
struction of the most frequency-dependent spectral phase be-
fore FB because it is the most difficult automatic reconstruction
work among those before and after FB compensations. From
the , the spectral phase was reconstructed by the
WT method without any manual decision [Fig. 3(a)]. The recon-
structed result with the fitted GDD of fs and
TOD of fs at 515 nm shows an excellent agreement
with the given spectral phase with the GDD of
fs and TOD of fs , over the whole frequency range ex-
ceeding the octave. This is also confirmed by the curve of the
spectral phase difference as shown in Fig. 3(b).
The analysis time (45 s) was somewhat longer than the conven-
tional FT analysis time (30 s). This is because the data of the
M-SPIDER signal obtained under six grating rotations, which
were required for the over-octave bandwidth pulse, are much
more than those of the corresponding signal in the previous
section. The agreement between the reconstructed temporal in-
tensity profile and the given one is also excellent
over the whole time region from to fs, as shown in
Fig. 3(e).

Next, using the WT method, we studied the direct analysis
from the M-SPIDER signal (280 to 460 nm) measured
before FB compensation [Fig. 3(d)] in the same 2.8-fs pulse ex-
periment [1], where the fringe contrast of the signal was
much reduced compared with the . Fig. 3(b) shows the
curve of the difference between the reconstructed and
given spectral phases before FB. As a result, a similar

Fig. 3. Case A : Over-octave bandwidth pulses which propagated a gas-filled
hollow fiber [1]. (a) The solid curve is the ultrabroadband spectrum (I (!)).
Dotted and dashed curves are the given spectral phase (� (!)) and the
reconstructed spectral phase (� (!): see the text), respectively. (b) Solid and
thin solid curves are the spectral phase difference of � (!) � � (!) and
that of � (!) � � (!), respectively. (� (!) : see the text). (c) Calculated
M-SPIDER signal (D (!)). (d) Measured M-SPIDER signal (D (!)). (e)
Solid, dotted and dashed curves are given (I (t)), reconstructed (I (t))
and compressed (I (t): [1]) temporal intensity profiles, respectively. The
dashed–dotted curve is the temporal phase (� (t)) before FB.

agreement to the result shown above was confirmed. This sug-
gests that the WT analysis is useful for the automatic phase com-
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pensation of extreme pulses with a large spectral-phase varia-
tion of more than 600 rad in the frequency region exceeding the
octave.

Since the is the numerically given signal of SPIDER,
it has no noise and a clean fringe contrast. On the other hand, the

is the experimentally measured signal [1] and, hence,
has usually noise which depends on the conditions of pulses to
be characterized and the measurement instrument. As a result,
the SPIDER signal with a much reduced fringe con-
trast is observed. However, as shown in [13], the fringe contrast
is fairly insensitive to the spectral phase reconstruction. This is
because the SPIDER algorithm is not concerned with the ampli-
tude of the interferogram. It is concerned only with the spacing
of the interference fringe [13].

B. Case of Pulses With Complicated Spectral Phase and
Structured Intensity Spectrum

Next, we investigated the possibility of the WT-analysis ap-
plication for automatic phase compensation of output pulses
generated from a PCF (zero-dispersion wavelength of 853 nm)
in our previous experiment of 5.8-fs pulse compression [
in Fig. 4(e)] [4].

In the same manner as in Section IV-A, the M-SPIDER signal
to be employed [Fig. 4(c)] was calculated from the com-

plicated spectral phase before FB compensation (over
30-rad variation) [Fig. 4(a)] and the structured intensity spec-
trum (600 to 1010 nm) [Fig. 4(a)] which had been mea-
sured in [4] with parameters of rad THz and
fs. From the , the complicated spectral phase was
reconstructed by the WT method with a good reproducibility
but without any manual decision [Fig. 4(a)]. Although the spec-
tral phase is so complicated that it is difficult to find a suitable
polynomial function, the agreement between the reconstructed

and given spectral phases is excellent over the
whole frequency, except for the following point [Fig. 4(a) and
(b)], that is, the small phase error occurred at wavelengths of

nm and nm in Fig. 4(b). This disagree-
ment will be discussed in the next section. The analysis time
(32 s) was a little longer than the FT-analysis time (28 s). As
for the temporal intensity profiles and , the agree-
ment is good over the whole time region from 100 to fs,
including many subpulse profiles [Fig. 4(e)]. Furthermore, the
direct WT analysis of the measured M-SPIDER signal
[Fig. 4(d)] [4] showed that the same conclusion as that of the
above-presented simulation study is derived. This suggests that
the WT method is useful for the atomatic phase compensation of
extreme pulses with a structured intensity spectrum and a com-
plicated spectral phase.

V. DISCUSSION

It is valuable to compare the accuracy between the spectral
phase reconstructed by the WT method and the spec-
tral phase reconstructed by the FT method. This was
performed on the basis of the same M-SPIDER signal
calculated from the measured spectral phase and inten-
sity spectrum with experimental parameters of and .
That is, we introduced a root-mean-square (rms) spectral-phase
error

Fig. 4. Case B: complicated spectral-phase pulses with a structured spectrum,
which propagated a PCF [4]. (a)–(e) correspond to Fig. 3(a)–(e), respectively.

[13] for a quantitative comparison between the
or FT) and the as follows:

(4)
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TABLE I
RMS SPECTRAL-PHASE ERROR

Fig. 5. (a) Intensity spectrum (solid curve) of case B and the spectral phase
(� (!): dotted curve), which were employed in the simulation to clarify
the cause of the spectral phase error. The dashed curve is the corresponding
reconstructed spectral phase (� (!)), which overlaps with the � . (b)
The spectral phase difference of � (!)� � (!) (solid curve) and that
of � (!)� � (!) in case B (dotted curve).

where of the group delay term and of the constant phase
term are given as constant values so that the phase error is min-
imized for both WT and FT methods, that is, attention is paid
to the GDD and higher-order dispersion terms which are only
meaningful for the SPIDER measurement. These values of
and in the WT method are different from those in the FT
method. For the FT method, the optimized time limits and
were employed. We focus the spectral phase before FB
phase compensation for the three cases described in Sections III
(which we call case I) and IV (cases A and B) because the evalu-
ation for compensation of the most strongly chirped pulse before
FB, among pulses to be compensated before and after FB oper-
ations, is the most important. The result under the same mesh
number of 1024 in (4) is given in Table I. For all of the cases,
the rms phase error in both methods is small, and the accuracy of
the WT method and that of the FT method are comparable. The
error values are reasonable in comparison with the reported re-
sult in [13], with the help of an equivalence principle (Parseval’s
theorem) between time and frequency. In both methods, the rms
error becomes larger in case B with the structured spectrum and
the complicated spectral phase.

To clarify the above-mentioned result in more detail, we
investigated the cause of the phase error at specific wavelengths

and in case B [see Fig. 4(a) and (b)]. There are three

Fig. 6. (a) Gaussian intensity spectrum (solid curve) and the spectral phase
(� (!): dotted curve) of case B, which were employed in the simulation
to clarify the cause of the spectral phase error. The dashed curve is the corre-
sponding reconstructed spectral phase (� (!)), which almost overlaps with
the � (!) except for two wavelength regionsB andB . (b) Spectral phase
difference of � (!)� � (!) (solid curve) and that of � (!)� � (!)
in case B (dotted curve), which overlaps.

possibilities: the effect of the structure of the intensity spectrum,
the effect of the complicated spectral phase such as step-like
curves (e.g., discontinuous-like curves) and their combined ef-
fect. Fig. 5(a) shows the reconstructed spectral phase
from the test SPIDER signal which was calculated from
the structured intensity spectrum in case B and the given
spectral phase with only the large GDD of fs
at 800 nm. Fig. 5(b) shows the corresponding spectral-phase
difference of . The agreement between

and is excellent. This fact indicates that the
structured spectrum does not cause the phase error. In the same
manner, we reconstructed the spectral phase from
the test SPIDER signal which was calculated from the
spectral phase in case B and the Gaussian spectrum

ultrabroadened from 550 to 1050 nm (e.g., a bandwidth
of 88.2 THz, a center wavelength of 750 nm, and a TL pulse
duration of 5.0 fs). Fig. 6(a) and (b) shows the reconstructed
spectral phase and the corresponding phase difference
of , respectively. The result shows almost
the same phase error as that in case B, in the same wavelength
regions 680 nm) and ( nm). Therefore, the
phase error originates from the part of the step-like curve in the
complicated spectral phase.

To get the quantitative knowledge concerning this point, we
carried out the following simulation study, that is, the spectral
phase was reconstructed from the test SPIDER signal

. It was calculated from the step-like phase curve
with different slopes ( s) using a function of

with
nm, and

nm (Fig. 7(a) and Fig. 8)
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Fig. 7. (a) The 0� � step-like spectral phase (� (!): dotted curves) with four different slopes of �� = 5, 10, 25, and 100 nm (see the text) and the Gaussian
intensity spectrum (I (!): solid curves). The dashed curves are the corresponding reconstructed spectral phases (� (!)). (b) The spectral phase differences of
� (!)�� (!) for the corresponding different slopes. (c) The given (I (t): solid curves) and reconstructed (I (t): dotted curves) temporal intensity profiles for
the corresponding different slopes. The dashed and dashed-dotted curves are the given (� (t)) and reconstructed (� (t)) time-dependent phases, respectively.

and the Gaussian spectrum with a bandwidth of 88.2 THz, a
center wavelength of 800 nm, and a TL pulse duration of 5.0 fs
[Fig. 7(a)]. The reconstructed spectral phase and the
corresponding phase difference
are shown in Fig. 7(a) and (b), respectively. The phase dif-
ference shows the so-called dispersion-like curve. Its
peak-to-zero difference [see Fig. 7(b) and Fig. 8] decreases
rapidly in the range from the slope of to
[rad/nm], and after the slope over [rad/nm] the grad-
ually approaches a difference of zero (Fig. 8). Fig. 7(c) shows
the reconstructed temporal-intensity profile with a splitting and
the reconstructed time-dependent phase. The decrease of the
peak intensity difference (see Fig. 7(c)
and Fig. 8) of the subpulse is considerably similar to the
curve (Fig. 8), while the difference of the main pulse duration
(5.1–5.7 fs) keeps almost constant. For example, the sharpness
( [rad/nm]) of the spectral-phase slope difference around
the wavelength in case B almost corresponds to that (
[rad/nm]) in Fig. 7(a). Comparison between the corresponding
maximum phase error ( rad) in case B and that
( rad) in Fig. 7(b) indicates a good agreement. A
similar result was also confirmed for the comparison between
the case of the wavelength and the case ( [rad/nm]) of
Fig. 7(a).

We also carried out the simulation for the effect of the
step-like phase curve using the FT analysis. The result showed
that the phase error in the range of the spectral-phase slope of

to [rad/nm] in the FT analysis is much
larger than that in the WT analysis. Moreover, it is extremely

Fig. 8. Peak-to-zero difference (�� : Solid circles) of the phase error curve
[see � (!) � � (!) in Fig. 7(b)] and the peak difference (�I : Solid dia-
monds) between the subpulse of the I (t) and that of the I (t) [see Fig. 7(c)]
as a function of the phase slope parameter �� [see the text and Fig. 7(a)].

difficult to determine the suitable time limits of and for
the filtering of the ac component, that is, many trials (typ-
ically, more than five times) using variable and values
were done, and it took a long time (typically several minutes)
including judging time to find the robust spectral phase. It is
much more difficult to do this work, compared with case I (in
Section III) with such a nonstep-like spectral phase [the dotted
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curve in Fig. 2(a)]. Around the step-like phase change, the
greater error in the FT method always yields more than that of
the WT method even after many trials. On the other hand, the
latter WT method is automatically carried out. As for this point,
therefore, the WT analysis is superior to the FT analysis.

Finally, we would like to point out the influence of the error
of the reconstructed phase on the FB phase compensation. The
problem of the less-than-perfect reconstruction of the spectral
phase, in the feedback technique, is not serious in practice. This
is because we can repeat the FB compensation until complete
phase compensation is achieved, and the small variation of the
spectral phase after FB makes the correct WT analysis easier,
even if the spectral phase was not reconstructed perfectly before
FB. However, the FT method always requests suitable manual
decisions (for and values) where the analyses using the
pairs of their different values are carried out several times for
the one SPIDER signal at least before FB operation. Under this
condition, the traditional FT SPIDER can also achieve satis-
factory results if the FB process is repeated for further several
times. In contrast, the WT method enables us to reconstruct the
suitable spectral phase automatically (without any manual deci-
sions) at each FB and to achieve satisfactory results after a few
FBs automatically.

VI. CONCLUSION

We have demonstrated that the WT method for the analysis
of the M-SPIDER signal is useful for automatic phase compen-
sation of three different extreme pulses, that is, the use of the
WT method has enabled us to compensate for a strong chirp of
pulses with an ultrabroad spectrum automatically and to gen-
erate nearly-TL pulses of 9.6 fs in duration. Furthermore, it has
been shown, for over-octave bandwidth pulses with a large spec-
tral-phase variation and ultrabroadband pulses with a compli-
cated spectral phase as well as a structured spectrum, that the
spectral phase reconstructed automatically by the wavelet trans-
form method gives the correct spectral phase except for a few
wavelength regions. We have revealed that the phase error oc-
curring in these few regions is not due to the structure in the
intensity spectrum but due to the step-like curve in the spectral
phase. However, it has been pointed out that the problem of the
phase error in the few regions is not serious in the repetitive
FB compensation technique in practice to get complete phase
compensation. We expect that this technique of the online phase
control of extremely short optical pulses using the WT analysis
will bring about a new point of view for fields such as selective
chemistry, quantum control [15], nonlinear optical microscopy
[2], and attosecond pulse control [16].
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