

Instructions for use

Title Introducing assignment functions to Bayesian optimization algorithms

Author(s) Munetomo, Masaharu; Murao, Naoya; Akama, Kiyoshi

Citation Information Sciences, 178(1), 152-163
https://doi.org/10.1016/j.ins.2007.08.014

Issue Date 2008-01-02

Doc URL http://hdl.handle.net/2115/30305

Type article (author version)

File Information IS178-1.pdf

Hokkaido University Collection of Scholarly and Academic Papers : HUSCAP

https://eprints.lib.hokudai.ac.jp/dspace/about.en.jsp

Introducing Assignment Functions to

Bayesian Optimization Algorithms

Masaharu Munetomo a, Naoya Murao b, Kiyoshi Akama a

aDivision of Large-scale Computing Systems, Information Initiative Center,
Hokkaido University, Sapporo, Hokkaido 060-0811, JAPAN.

bDivision of Systems and Information Engineering, Graduate School of
Engineering, Hokkaido University, Sapporo, Hokkaido, 060-0811, JAPAN.

Abstract

In this paper we improve Bayesian optimization algorithms by introducing propor-
tionate and rank-based assignment functions. A Bayesian optimization algorithm
builds a Bayesian network from a selected sub-population of promising solutions,
and this probabilistic model is employed to generate the offspring of the next gener-
ation. Our method assigns each solution a relative significance based on its fitness,
and this information is used in building the Bayesian network model. These assign-
ment functions can improve the quality of the model without performing an explicit
selection on the population. Numerical experiments demonstrate the effectiveness
of this method compared to a conventional BOA.

Key words: evolutionary computation, Bayesian optimization algorithms,
assignment functions

1 Introduction

In order to realize a truly robust search algorithm, one that is applicable to
a wide spectrum of applications, a variety of evolutionary algorithms have
been proposed. Genetic algorithms (GAs) maintain a population of solution
candidates in the problem domain, each solution represented by a parameter
string, and arrive at an optimal or near-optimal solution by applying selection,
recombination, and mutation operators over repeated generations.

Email addresses: munetomo@iic.hokudai.ac.jp (Masaharu Munetomo),
naoya.m@cims.hokudai.ac.jp (Naoya Murao), akama@cims.hokudai.ac.jp
(Kiyoshi Akama).

Preprint submitted to Elsevier Science 5 February 2007

It is essential to ensure tight linkage for effective genetic search through recom-
bination operators such as crossovers. When a subset of loci in the parameter
space is found to form a building block (BB) — a good candidate for a sub-
solution of the larger problem — these parameters should be “tightly” encoded
on a string. In other words, they should be closely linked to each other in such
a way that recombination operations will preserve the BB when a new gen-
eration of solutions is created. Conventional recombination operators such as
one-point crossover will easily disrupt BBs if they are not tightly linked on a
string.

In the early history of GA applications, it was common to employ problem-
specific knowledge to ensure the tight linkage of associated parameters. This
advance knowledge is not always available when starting a new genetic search,
so it is sometimes difficult to ensure tight linkage by this approach.

More advanced GAs have recently been proposed that can learn or identify
linkage groups, either directly or indirectly, without the need for problem-
specific knowledge. The “Linkage Learning” GA, for example, applies two-
point crossovers on circular strings to obtain indirect information on impor-
tant linkages. The Linkage Identification with Nonlinearity Check (LINC) al-
gorithm [12], on the other hand, pioneered a number of techniques for directly
identifying linkage groups by detecting nonlinear behavior under pair-wise
perturbations.

In addition to these linkage identification techniques, estimation of distribu-
tion algorithms (EDAs) have been introduced that obtain linkage information
indirectly by estimating the probable distribution of alleles in a set of promis-
ing solutions.[13] Unlike classical GAs, EDAs do not apply genetic operators to
individual candidate solutions. Instead they generate offspring based on the
estimated probabilistic distribution of a population of promising solutions.
Linkage information is implicit in these distributions, so we do not need to
ensure tight linkage in advance.

In this paper, we propose a novel approach of EDAs employing assignment
functions in the estimation process of Bayesian optimization algorithm (BOA)[15–
17,19,20], one of the most sophisticated approach in EDAs. The BOA first
selects a set of promising solutions from the original population, using the
information in these candidates to estimate the probabilistic distribution of
the solution space. Aside from this selection step, however, differences in fit-
ness among the population are not taken into account — the chosen solutions
are treated equally in building the model distribution. In order to improve
the accuracy of the model, one can introduce a function that assigns differ-
ent relative weights to individual solutions according to their significance. By
employing these assignment functions, we can simplify the algorithm, mak-
ing it unnecessary to perform explicit selections — the BOA simply repeats

2

model-building and generation of solution candidates based on the model.

This paper is organized as follows. First we review EDAs briefly, including
the BOA proposed by previous studies. Second, we introduce our assignment
functions and show how they can improve the model-building accuracy of the
BOA. Finally we perform numerical experiments, and compare the effective-
ness of the proposed method with conventional approaches.

2 Bayesian Optimization Algorithms

In the field of evolutionary computations, Estimation of Distribution algo-
rithms (EDAs) were first introduced by Mühlenbein et al. [13] EDAs, which are
also called probabilistic model-building genetic algorithms (PMBGAs) [6,7],
have been studied in the context of realizing a robust evolutionary search with-
out a priori knowledge of linkage in the problem. EDAs are population-based
search algorithms, and thus similar to GAs in many respects; they do not,
however, employ explicit genetic operators such as crossovers and mutations.
Instead they build probabilistic models from a collection of promising solu-
tions — those strings with higher (for maximization problems) or lower (for
minimization problems) fitness values — and employ this model to create the
next generation of strings. In general, EDAs perform the following sequence
repeatedly to obtain optimal solutions:

(1) randomly initialize a population of N strings.
(2) sort strings by fitness and select M (M < N) strings with high fitness

(for maximization problems).
(3) create a probabilistic model base on the selected strings.
(4) create a new generation of N strings based on the model.
(5) if the specified termination condition is not met, go to (2).

The underlying idea of EDAs is that if we can detect some bias in the fit-
ness distribution of the string population, then we can expect to generate
relatively good solutions from a model based on an appropriately selected
sub-population.

A variety of EDA methods have been proposed, such as PBIL (Population-
Based Incremental Learning) [1], UMDA (Univariate Marginal Distribution
Algorithm) [13], BMDA (Bivariate Marginal Distribution Algorithm) [14], and
so on. CGA (compact GA)[6] and ECGA (extended compact GA) [7] have
also been proposed as PMBGAs. Detailed reviews of EDAs and PMBGAs are
available in a survey article by Pelikan [18] and a textbook by Larrañanga and
Lozano [8].

3

The Bayesian optimization algorithm (BOA), proposed by Pelikan et al. [15,16],
is considered one of the most sophisticated EDAs. BOA builds probabilistic
models based on Bayesian networks. The Bayesian networks employed in BOA
are composed of nodes and directed links. Each node Xi (i = 0, · · · , l−1, where
l is the string length) of the network represents a random variable: the proba-
bility that locus si has the value 1. A directed link is established from node i
to node j in order to indicate that node i is a parent of node j. The probability
distribution of each random variable Xi can be written as p(Xi|

∏

Xi
), where

∏

Xi
is the set of parents of Xi: that is, the set of nodes connected to node i.

The overall probabilistic distribution over the string X is thus determined by
the joint distributions as follows:

p(X) =
n−1
∏

i=0

p(Xi|
∏

Xi

). (1)

BOA performs its model-building and search processes according to the fol-
lowing sequence [16]:

(1) set t← 0, randomly generate an initial population P (0)
(2) select a set of promising strings S(t) from P (t)
(3) construct the network B using a chosen metric and constraints
(4) generate a set of new strings O(t) according to the joint distribution

encoded by B
(5) create a new population P (t + 1) by replacing some strings from P (t)

with strings from O(t), and set t← t + 1
(6) if the termination criteria are not met, go to (2).

Similar to a GA, BOA initializes a population of randomly generated binary
strings and selects a subset of the most promising solutions with relatively
high (in maximization problems) fitness values. The Bayesian network B is
constructed using these strings based on a specified metric and set of con-
straints. In its original form, BOA measures the quality of the network with
the Bayesian Dirichlet (BD) metric [4] p(D, B|ξ):

p(D, B|ξ) = p(B|ξ)
n−1
∏

i=0

∏

πXi

Γ(m′(πXi
))

Γ((m′(πXi
) + m(πXi

)))

×
∏

xi

Γ((m′(xi, πXi
) + m(xi, πXi

)))

Γ(m′(xi, πXi
))

(2)

where D is the data set which means a set of promising solutions, p(B|ξ) is a
prior probability of network B, Γ function is defined as Γ(a) = (a−1)!, m(πXi

)
represents the number of data where

∏

Xi
equals to πXi

in D, m(xi, πXi
) is the

number of data where Xi is xi and
∏

Xi
is πXi

in D. (m(πXi
) =

∑

xi
m(xi, πXi

)).

4

m′(xi, πXi
) is obtained with p(B|ξ) from prior information of the network

m(xi, πXi
) concerning the given problem.

As for the prior probability p(B|ξ), Heckerman et al. [4] suggest a simple
assignment function such as p(B|ξ) = cκδ.[16] Here, c is a normalization con-
stant, κ ∈ (0, 1] is another constant parameter, and δ is the number of edges
that are different in network B and in the network for prior probabilities.

The maximum degree of the network (i.e., the maximum number of links
connected to a node) is constrained by the value k. In order to search for the
selected strings, BOA performs a greedy search to minimize the metric under
this constraint. The greedy algorithm is outlined below.[16]

(1) initialize the network B (e.g., to an empty network)
(2) choose all simple graph operations that can be performed on the network

without violating the constraints
(3) pick the operation that increases the score of the network the most
(4) perform the operation picked in the previous step
(5) if the network can no longer be improved without violating the given

constraints on its complexity, or when a maximal number of interactions
has been reached, then finish

(6) go to (2)

To generate new instances for the next generation, BOA performs the following
algorithm[16].

(1) mark all variables as unprocessed
(2) pick up an unprocessed variable Xi with all parents already processed
(3) set Xi to xi with probability p(Xi = xi|

∏

Xi
= πXi

)
(4) mark Xi as already processed
(5) if there are unprocessed variables left, go to (2)

As for the computational complexity of a BOA, network construction —
searching for the optimal network that minimizes the BD metric — tends
to dominate the computational overhead. The computational complexity of a
greedy search of network structures is O(k2kl2N + kl3), where l is the string
length, k is the maximum degree, and N is the number of strings. Assuming
that k is constant, we have an overall time complexity of O(n2N +n3) for the
network construction performed in each generation.[16]

5

3 Introducing assignment functions

In this paper, we introduce a method of improving the accuracy of proba-
bilistic model-building by drawing more information from the strings’ fitness
values. In genetic algorithms, a wide variety of selection methods and oper-
ators have been proposed that employ fitness values. In EDAs such as the
BOA, however, selection is based on a simple truncation. Thus, while fitness
values are indirectly employed in the selection process, they are not directly
utilized in the model-building process. Even in the most sophisticated EDA
methods, fitness values are not considered in the metric and therefore are not
used effectively.

In our approach, fitness values are utilized in the probabilistic model-building
process. We employ an “assignment function”, which assigns a weight to each
string reflecting its relative significance in the population. Probabilistic models
are generated based not only on the information in the selected strings, but
also on their relative significance. We thus expect to improve the accuracy
of the probabilistic models, which will reflect differences in the fitness of the
promising solutions. This should in turn improve the quality of the offspring
generated by the model.

An EDA with an assignment function is performed according to the following
sequence:

(1) randomly initialize a population of strings.
(2) calculate a relative significance for each string based on the assignment

function
(3) create a probabilistic model based on the strings and their significance.
(4) create a population of strings for the next generation based on the model.
(5) if a specified termination condition is not met, go to (2).

The assignment functions used here are similar to the roulette-wheel (propor-
tionate) selections or ranking selections used in GAs [3]. We propose two types
of assignment functions, each defined on a single string s of a given population.

Rank-based assignment function: ar(s) = g(r(s)), where r(s) is the rank
of s found by sorting the population of strings according to their fitness val-
ues. (Strings with exactly the same fitness value are sorted by their order in
the population, and their ranks are assigned consecutive values.) The signifi-
cance g() can be any non-negative, integer-valued, monotonically decreasing
function.

Proportionate assignment function: ap(s) = [c × f(s)/
∑

s f(s)], where
f(s) is the fitness value of string s and c is a constant. We may employ
scaling methods in this approach to control fitness differences.

6

These assignment functions provide the model-building process with more ac-
curate and reliable information on the fitness of the strings. Conventional
EDAs can be considered as a special case of the rank-based assignment func-
tion, where g(r(s)) = 1 for 1 ≤ r(s) ≤ M and g(r(s)) = 0 otherwise. By
introducing assignment functions, we expect to improve the accuracy of model-
building in a BOA with less computational overhead.

The relative significance a(s) is used to calculate the BD-metric terms m(πXi
)

and m(xi, πXi
):

m(πXi
) =

∑

s∈P (πXi
)

a(s) (3)

m(xi, πXi
) =

∑

s∈P (xi,πXi
)

a(s) (4)

P (πXi
) represents the set of strings where

∏

Xi
equals πXi

, and P (xi, πXi
)

represents the set of strings where Xi = xi and
∏

Xi
= πXi

in the current
population. The assignment function a(s) is the significance of string s in the
population.

4 Empirical results

We performed numerical experiments comparing the effectiveness of the BOA
with various assignment functions to the conventional BOA method.

4.1 Assignment functions

For rank-based assignment functions, we employ the three functions AR1 ∼
AR3 shown in figure 1. The x-axis shows the rank of a string in the population,
and the y-axis shows its assigned relative significance a(s). The current best
solutions are strongly weighted in function AR2, which places a relatively high
selective pressure on the estimated probabilistic distributions.

We also employ the following proportionate assignment function based on the
fitness f(s) of string s:

APc(s) = [c× f̂(s)
∑

s f̂(s)
] (5)

f̂(s) =
f(s)− fmin

fmax − fmin

, (6)

7

0

2

N/6

N/2

0 N

F
un

ct
io

n
va

lu
e

Rank

AR1

AR2

AR3

Fig. 1. Rank-based assignment functions employed in the experiments

where fmax, fmin are the maximum and minimum fitness values in the current
population of strings. The constant c controls the selective pressure of the
model-building process, and is set to either 1, 3, or 5 for a total of three
proportionate assignment functions.

4.2 Solutions to conventional test functions

We compare the quality of various solutions to the following conventional
numerical test functions where n = 30. Each xi is represented by a signed,
fixed-point, binary encoded variable. The optima of all functions are zero;
these are therefore minimization problems.

Sphere: f(x) =
n

∑

i=1

x2
i ,

xi ∈ [−5.12, 5.12] (10bit)

Rosenbrock: f(x) =
n−1
∑

i=1

[100(xi+1 − x2
i)] + (xi − 1)2,

xi ∈ [−2.048, 2.048] (12bit)

Rastrigin: f(x) =
n

∑

i=1

[x2
i − 10 cos(2πxi) + 10],

xi ∈ [−5.12, 5.12] (10bit)

8

Ackley: f(x) = −20 exp(−0.2

√

√

√

√

1

n

n
∑

i=1

x2
i)− exp(

1

n
cos 2πxi) + 20 + e,

xi ∈ [−32.768, 32.768] (16bit)

Griewank: f(x) =
1

4000

n
∑

i=1

x2
i −

n
∏

i=1

cos(
xi√
i

+ 1),

xi ∈ [−512, 512] (10bit)

For each function we observed the best fitness values in a population consisting
of 10,000 strings, after a total of 100,000 fitness evaluations in each experi-
ment. Tables 1 through 5 show the average (AVE), standard deviation (STD),
minimum (MIN), and maximum (MAX) best fitness value over 10 experi-
ments. Results are shown for the original BOA and for the various assignment
functions.

Table 1
Results for the Sphere function

AVE STD MIN MAX

BOA 9.35 1.47 7.46 12.56

AR1 9.35 1.32 6.98 11.03

AR2 7.95 1.08 6.02 9.73

AR3 7.95 1.05 6.32 9.39

AP1 9.63 1.21 7.92 11.66

AP3 10.11 1.07 8.07 11.61

AP5 10.19 1.06 7.66 11.47

Table 2
Results for the Rosenbrock function

AVE STD MIN MAX

BOA 72.47 10.18 54.96 86.50

AR1 99.44 16.08 77.85 127.27

AR2 35.20 6.31 28.49 51.52

AR3 107.88 29.12 66.03 159.74

AP1 88.03 12.46 60.11 104.84

AP3 94.80 19.69 61.95 122.00

AP5 108.60 18.07 84.34 138.29

9

Table 3
Results for the Rastrigin function

AVE STD MIN MAX

BOA 140.70 6.46 125.79 148.87

AR1 138.59 8.86 123.56 151.91

AR2 114.01 8.97 97.19 127.67

AR3 121.71 9.17 109.62 133.47

AP1 149.24 5.66 140.71 160.68

AP3 148.45 9.57 130.01 163.59

AP5 134.59 8.18 119.83 146.37

Table 4
Results for the Ackley function

AVE STD MIN MAX

BOA 11.20 0.38 10.69 11.85

AR1 11.15 0.17 10.90 11.52

AR2 9.77 0.28 9.42 10.21

AR3 9.80 0.35 9.17 10.24

AP1 11.16 0.42 10.23 11.63

AP3 11.48 0.40 10.55 12.00

AP5 11.79 0.44 11.09 12.42

Table 5
Results for the Griewank function

AVE STD MIN MAX

BOA 25.43 3.38 20.30 32.25

AR1 25.25 1.41 22.89 27.70

AR2 21.66 2.24 17.66 26.45

AR3 23.55 1.74 20.66 26.40

AP1 24.66 2.16 20.02 26.90

AP3 25.31 1.98 21.53 27.60

AP5 26.64 2.75 20.38 30.53

Assignment function AR2, which assigns a large relative significance to high-
ranked solutions, achieves the best results for all test functions. In addition,
BOA with AR2 apparently gives better results than BOA without an assign-

10

ment function for all test problems except the sphere (the simplest of all).
Proportionate assignment functions, which employ relative fitness values in-
stead of rankings, did not improve the quality of any solutions. This point is
discussed in the next experiment, which employs test functions with uniformly
or exponentially scaled traps.

4.3 The number of fitness evaluations required for K-bit trap functions

We now describe numerical experiments which compare the number of fitness
evaluations needed to obtain optimal solutions. These experiments employ test
functions with uniformly and exponentially scaled traps, which are also used
to test linkage learning GAs.[5,9] The weighted K-bit trap functions f(s) are
defined as follows.

f(s) =
L

∑

i=1

wifi(ui), (7)

where wi is the weight of the i-th K-bit trap sub-function fi:

fi(ui) =











K − ui − 1 if 0 ≤ ui ≤ K − 1

K if ui = K
(8)

The function ui represents the unitation, or the number of 1’s occurring in
the i-th K-bit substring si (s = s1, s2 · · · sL). In this function, a building block
sub-solution must be obtained for each trap sub-function. The building blocks
need to be mixed and tested through recombination to obtain a global optimal
solution. This function is therefore frequently employed to test genetic and
evolutionary computations, which employ crossover operations to recombine
the building blocks.

The BOA is not dependent on the order of the loci in encoding strings, so
we can obtain the same results even when the strings are randomly encoded.
This is one of the principal merits of the BOA. Conventional GAs must use
prior knowledge to preserve the linkage of their building blocks, so may fail to
obtain solutions when the information is presented in a random order.

The weight wi of sub-function fi reflects the importance of this building block
to the overall fitness, or the “signal difference”. To control the difficulty of the
test function, we consider the following two extreme cases in assigning signal
differences.

uniform case: wi = 1.0 for all i

11

exponential case: w0 = 1.0, wi = 0.5× wi−1 for i = 1, 2, · · ·

In the first case all sub-functions are weighted equally, and the BOA detects
all building blocks simultaneously early in the model-building process. In the
exponential case, on the other hand, the most significant sub-function domi-
nates all the other sub-functions. Only the building blocks for the most sig-
nificant sub-functions will be searched in the early stages of model-building,
which leads to a kind of domino convergence. Building blocks are obtained
sequentially, from larger to smaller weights.

In the following experiments we employ the sum of 5-bit trap functions (K =
5), with string lengths l = 30, 60, 90, 120. For l = 120 this function has 224−1 =
16777215 local optima, and is thus a difficult problem for conventional local
search techniques. We expect that Bayesian networks can identify the sub-
solutions of each trap sub-function separately.

Other conditions for the experiments are set as follows:

• The population size is optimized in each experiment to the value shown in
table 6.
• The maximum degree k of nodes in the Bayesian network is set to 4.
• All data plotted in the figures represent the average result of 10 experiments.

Table 6
Population sizes for the experiments

string length 30 60 90 120

uniform case 1300 3300 5200 7400

exponential case 3000 8500 15000 35000

Figures 2 and 3 compare the overall number of fitness evaluations required
to obtain optimal solutions, under uniform and exponential weighting of the
sub-functions respectively. The x-axis shows the string length (problem size),
and the y-axis shows the number of fitness evaluations (computational cost).
The points plot the average result of 10 experiments, and the vertical bars
indicate a range of one standard deviation (±σ).

Compared to the original BOA, algorithms incorporating assignment functions
AR2 and AR3 obtain an optimal solution with less computational overhead.
The results obtained by using AR1 are similar to those of the original BOA.
These two algorithms exert essentially the same weighting pressures on the
model-building process, but there should be some minor differences evident
in other performance measures. This figure illustrates that the accuracy of
model-building was improved by assigning a relatively large significance to
the best solutions in the population. Since there is little difference between
the results of AR2 and AR3, we see that the precise value of the significance
assigned is not very important.

12

�

���������

���������

���������

���������

�����������

�	���������

�����������

�
�� ��� ��� �
��� �	���
�����������������������

� �
! "
#$%'&
$
() �
*+

,.-0/
/21 �
/21 �
/21

Fig. 2. Results for rank-based assignment functions (uniform case)

3

45363636363

7�363636363

85363636363

95363636363

:;3�363636363

:
45363636363

:;7�363636363

:
85363636363

3 <�3 8�3 =�3 :
453 :
>�3
?�@BA�C D5EGF�H�D5E�@BI

J K
L M
NOPRQ
O
ST K
UV

WYX[Z
Z]\ :
Z]\ 4
Z]\ <

Fig. 3. Results for rank-based assignment functions (exponential case)

Figures 4 and 5 are similar, comparing the number of fitness evaluations re-
quired by the algorithm under the three proportionate assignment functions
APc.

In contrast with the conventional test functions of section 4.2, here proportion-
ate assignment functions significantly improve the performance of the BOA.
For both c = 3 and c = 5, we obtain optima at a lower computational cost.
For the uniformly scaled test function, the proportionate scheme even per-
forms better than the rank-based assignment functions. This is partly because

13

�

���������

���������

���������

���������

�	���������

�
���������

�	���������

� ��� ��� ��� �
��� �	
��
������� ����� �����	���

���
��
!"#%$
"
&' �
()

*,+.-
-0/ �	132�45�76
-0/ ��132�48��6
-0/
�132�48
�6

Fig. 4. Results for proportionate assignment functions (uniform case)

9
:�9�9�9�9�9
;�9�9�9�9�9
<�9�9�9�9�9
=�9�9�9�9�9
>79�9�9�9�9�9
>?:�9�9�9�9�9
>7;�9�9�9�9�9
>?<�9�9�9�9�9

9 @�9 <�9 A�9 >	:�9 >?B�9
CEDGFIH JLKNM�O�JLK?DGP

Q%R
S%T
UVWYX
V
Z[R
\]

^`_ba
adc >?egfLhi>kj
adc @�egfLhl@Lj
adc B�egfLhlBLj

Fig. 5. Results for proportionate assignment functions (exponential case)

it is more favorable to employ function values directly when the test function
does not cause any scaling difficulties. In Figure 5 results are more sensitive
to the weighting pressure parameter c, because the sub-functions introduce
some scaling difficulties in the building blocks. This also explains why the
proportionate assignment functions could not improve performance on the
conventional numerical test functions, where each variable is also encoded in
an exponential manner (fixed-point binary encoding).

14

4.4 Comparisons of overall execution time

We also compared the execution times required to obtain optimal solutions, in
order to demonstrate the effectiveness of our approach in an actual computing
environment: an SGI Onyx300 consisting of MIPS R1400/500MHz processors.
In this experiment, we employ the sum of 5-bit trap functions for a string
length of l = 90. For the uniform case, Table 7 shows the execution times
(in seconds) required for selection and calculation of the assignment functions
(AFs), model-building, and fitness evaluation. Table 8 lists the same infor-
mation for the exponential case. The results presented are the average of 10
experiments. We succeeded in obtaining optimal solutions for all experiments.

Table 7
Execution times (uniform case)

Original BOA proportionate (AP5) rank-based (AR2)

Population size 5200 5200 5200

Opt/Exp 10/10 10/10 10/10

Time for selections (s) 0.532 – –

Time to calculate AFs (s) – 0.002 0.572

Model-building time (s) 31.20 22.08 26.41

Fitness evaluations time (s) 0.758 0.528 0.598

of fitness evaluations 76180 55120 60840

Average # of generations 27.3 19.2 21.4

Overall execution time (s) 32.77 22.59 28.27

In both cases we obtain optimal solutions with less computational overhead
by introducing assignment functions. This result can be attributed to an im-
provement in the accuracy of the model-building process. Another source of
improvement is the fact that these assignment functions obviate the need for
a separate selection/sorting phase. A sorting algorithm such as quicksort, for
example, makes O(n logn) comparisons where the proportionate scheme needs
only O(n) assignment function evaluations. Such an improvement may seem
minor in the context of this problem. When the model-building is not costly
and a huge number of strings are involved, however, the difference in sorting
time should affect the overall efficiency.

15

Table 8
Execution times (exponential case)

Original BOA proportionate (AP5) rank-based (AR2)

Population size 15000 15000 15000

Opt/Exp 10/10 10/10 10/10

Time for selections (s) 1.48 – –

Time to calculate AFs (s) – 0.036 5.43

Model-building time (s) 160.18 106.98 119.54

Fitness evaluations time (s) 4.17 3.40 2.93

of fitness evaluations 416250 334500 293250

Average # of generations 53.5 42.6 37.1

Overall execution time (s) 189.4 110.5 149.5

5 Conclusions

In this paper, we show that assignment functions can result in more accu-
rate probabilistic model-building and improved overall performance for the
Bayesian Optimization Algorithm (BOA). The proposed assignment functions
are inspired by the processes of proportionate and rank-based reproduction in
conventional genetic algorithms. By assigning a greater significance to the best
solutions of the current population, we improve the accuracy of the probabilis-
tic models. Our approach also simplifies the conventional BOA by removing
the explicit selection process; it simply alternates between building probabilis-
tic models and generating solution candidates based on the models.

Through empirical comparisons, we demonstrate that the assignment function
approach is more effective than the conventional BOA. Rank-based assignment
functions are a robust choice, improving performance for all the test problems
examined here. Proportionate functions achieve better results than rank-based
functions for certain uniformly scaled test functions, but achieve no significant
improvement for exponentially scaled functions. Parameter optimization is an
essential topic for future work, especially in the case of proportionate assign-
ment functions, to improve the robustness of this technique.

16

Acknowledgement

This research was partially supported by the Ministry of Education, Cul-
ture, Sports, Science and Technology, Grant-in-Aid for Young Scientists (B),
15700175, 2003-2005.

References

[1] S. Baluja. Population-based incremental learning: A method for integrating
genetic search based function optimization and competitive learning, Technical
Report No.CMU-CS-94-163, Carnegie Mellon University.

[2] D. E. Goldberg, B. Korb, and K. Deb. Messy genetic algorithms: Motivation,
analysis, and first results. Complex Systems, 3(5):415–444, 1989.

[3] D. E. Goldberg. Genetic Algorithms in Search, Optimization and Machine
Learning. Addison Wesley, 1989.

[4] D. Heckerman and M. Chickering. Learning Bayesian networks: The
combination of knowledge and statistical data. Technical Report Technical
Report MSR-TR-94-09, Microsoft Research, 1994.

[5] G. Harik and D. E. Goldberg. Learning linkage. Technical Report IlliGAL
Report No.96006, University of Illinois at Urbana-Champaign, 1996.

[6] G. Harik, F. Lobo and D. E. Goldberg. The compact genetic algorithm
Technical Report IlliGAL Report No.97006, University of Illinois at Urbana-
Champaign, 1997.

[7] G. Harik. Linkage learning via probabilistic modeling in the ECGA. Technical
Report IlliGAL Report No.99010, University of Illinois at Urbana-Champaign,
1999.

[8] P. Larrañanga and J. A. Lozano. Estimation of Distribution Algorithms — A
New Tool for Evolutionary Computation, Kluwer Academic Publishers, 2002.

[9] F. Lobo, K. Deb, D. E. Goldberg, G. Harik and L. Wang. Compressed Introns
in a Linkage Learning Genetic Algorithm. Technical Report IlliGAL Report
No.97010, University of Illinois at Urbana-Champaign, 1997.

[10] M. Munetomo. Linkage identification based on epistasis measure considering
monotonicity. In Proceedings of the 4-th Asia-Pacific Conference on Simulated
Evolution and Learning, 550–554, 2002.

[11] M. Munetomo and D. E. Goldberg. Designing a genetic algorithm using the
linkage identification by nonlinearity check. Technical Report IlliGAL Report
No.98014, University of Illinois at Urbana-Champaign, 1998.

17

[12] M. Munetomo and D. E. Goldberg. Identifying linkage by nonlinearity check.
Technical Report IlliGAL Report No.98012, University of Illinois at Urbana-
Champaign, 1998.

[13] H. Mühlenbein, J. Bendisch, and H.-M. Voigt. From recombination of genes to
the estimation of distributions I. Binary parameters. Parallel Problem Solving
from Nature IV, 188–197, Springer-Verlag, 1996.

[14] M. Pelikan and H. Mühlenbein. The bivariate marginal distribution algorithm.
In R. Roy, T. Furuhashi, and P. K. Chawdhry, editors, Advances in
Soft Computing - Engineering Design and Manufacturing, 521–535, London,
Springer-Verlag, 1999.

[15] M. Pelikan, D. E. Goldberg, and E. Cantú-Paz. BOA: The Bayesian
optimization algorithm. IlliGAL Report No. 99003, University of Illinois at
Urbana-Champaign, 1999.

[16] M. Pelikan, D. E. Goldberg, and E. Cantú-Paz. Linkage problem, distribution
estimation, and Bayesian networks. Evolutionary Computation, 8(3): 311–340,
MIT Press, 2000.

[17] M. Pelikan, Tz-Kai Lin. Parameter-less hierarchical BOA. Proceedings of the
Genetic and Evolutionary Computation Conference 2004 (GECCO-2004), 24–
35, Springer-Verlag, 2004.

[18] M. Pelikan, D. E. Goldberg, and F. G. Lobo. A Survey of optimization by
building and using probabilistic models, Computational Optimization and
Applications, 21(1):5–20, Kluwer Academic Publishers, 2002.

[19] M. Pelikan, D. E. Goldberg, and S. Tsutsui. Getting the best of both
worlds: Discrete and continuous genetic and evolutionary algorithms in concert,
Information Sciences, 156:147–171, Elsevier, 2003.

[20] K. Sastry, D. E. Goldberg, and M. Pelikan. Efficiency enhancement of
probabilistic model building genetic algorithms IlliGAL Report No. 2004020,
University of Illinois at Urbana-Champaign, 2004.

18

