

HOKKAIDO UNIVERSITY

Title	Involvement of memory-based change detection in visual distraction
Author(s)	KIMURA, Motohiro; KATAYAMA, Jun'ichi; MUROHASHI, Harumitsu
Citation	The 47th Annual Meeting of the Society for Psychophysiological Research. 10/17–21, 2007. Savannah, Georgia, USA
Issue Date	2007-10
Doc URL	http://hdl.handle.net/2115/30150
Туре	conference presentation
File Information	47AMSPR3.pdf

Involvement of memory-based change detection in visual distraction

Motohiro KIMURA^{1.2}, Jun'ichi KATAYAMA³, & Harumitsu MUROHASHI³

¹Japan Society for the Promotion of Science (JSPS), ²Nagoya University, JAPAN, ³Hokkaido University, JAPAN

INTRODUCTION

Distraction effect

Distracted behavioral performance by sudden stimulus deviants

Visual distraction effect

Distraction by location deviants (Berti & Schröger, 2001, 2004)

- Purpose
 - ?? Involvement of memory-based change detection in visual distraction ??

- ?? An ERP correlate of memory-based change detection ??

> We examined the effects of sudden energetic decrements

METHODS

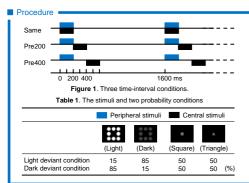
Participants

```
12 students (m/f = 5/7, mean = 25.4 yrs.)
```

Stimuli (Table 1)

Central stimuli: Square & Triangle (11.5 cd/m², 2.0° $\,$ x 2.0°) Peripheral stimuli: Light & Dark (79.5 & 2.5 cd/m², 2.5° $\,$ x 2.5°)

Task


Forced-choice task for central stimuli

EEG recordings

EEG: 25 electrodes, referred to the nose tip Bandpass: 0.03-30 Hz, A/D: 250 Hz

Data analysis

Deviance effects: Deviant-minus-standard differences

RESULTS

Deviant-minus-standard difference ERPs

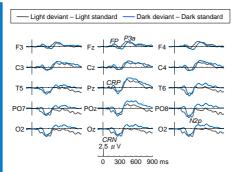


Figure 2. Deviant-minus-standard difference waves (time-interval conditions were pooled). CRN: change-related negativity; CRP: changerelated positivity; FP: frontal positivity; N2p: posterior N2.

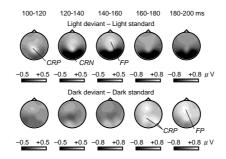


Figure 3. Topographical maps of the difference waves (time-interval conditions were pooled). CRN: change-related negativity; CRP: changerelated positivity; FP: frontal positivity.

Light deviant effects: CRN, CRP, FP, N2p, & P3a
Dark deviant effects: CRP, FP, N2p, & P3a (No CRN)

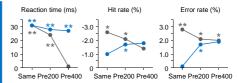


Figure 4. Behavioral distraction effects (i.e., deviant-minus-standard differences) in the three time interval conditions. **: p < .01, *: p < .05 by one-tailed *t*-tests.

Behavioral distraction by both Light & Dark deviant stimuli

DISCUSSION

- Involvement of memory-based change detection in distraction
 - < Behavioral distraction and elicitation of N2p & P3a even in response to Dark deviants
- CRP: Memory-based change detection
 - < CRP in response to both Light & Dark deviants (e.g., Fonteneau & Davidoff, 2007; Kimura et al., 2006)
- CRN: Refractoriness-based rareness detection

< CRN in response to Light deviants only (e.g., Berti & Schröger, 2006; Kenemans et al., 2003)

CONCLUSION

- Involvement of memory-based change detection in visual distraction
- CRP as an ERP correlate of memory-based change detection

CONTACT INFO.

Motohiro KIMURA, Ph.D.

Japan Society for the Promotion of Science (JSPS) Graduate School of Environmental Studies, Nagoya University, Nagoya, JAPAN E-mail: m-kimura@nagoya-u.jp