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Abstract

We continue our study of equivariant local mirror symmetry of curves,
i.e., mirror symmetry for Xk = O(k) ⊕ O(−2 − k) → P

1 with torus action
(λ1, λ2) on the bundle. For the antidiagonal action λ1 = −λ2, we find
closed formulas for the mirror map, a rational B model Yukawa cou-
pling and consequently Picard–Fuchs equations for all k. Moreover, we
give a simple closed form for the B model genus 1 Gromov–Witten
potential. For the diagonal action λ1 = λ2, we argue that the mirror
symmetry computation is equivalent to that of the projective bundle
P(O ⊕ O(k) ⊕ O(−2 − k)) → P

1. Finally, we outline the computation of
equivariant Gromov–Witten invariants for An singularities and toric tree
examples via mirror symmetry.
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1 Introduction

Mirror symmetry has for some time now provided a convenient shortcut in
the computation of Gromov–Witten invariants of toric varieties. Although
mirror symmetry for compact Calabi–Yau toric varieties historically appe-
ared first, it has since been realized that the noncompact (or local) CY toric
variety setting enjoys many simplifications not present in the compact case.

However, as it turns out, there is a price to be paid for these simplifi-
cations: when working with noncompact Calabi–Yaus, one loses the nice
structure theorems regarding periods of the mirror Calabi–Yau manifold.
For example, on compact three-folds, the constant term of the prepotential
(generating function of genus 0 Gromov–Witten invariants) is known to be
given by the triple intersection number of curve classes in the space. How-
ever, for noncompact spaces, we have no triple intersection number, and
often the natural choice for this number (from the perspective of mirror
symmetry) turns out to be fractional.

More along the lines of the present paper, we are unable to use mirror
symmetry for any Calabi–Yau three-fold X such that b4(X) = 0. This is
because the periods mirror to the four cycles of X are used to compute
the prepotential. As an even more serious problem, consider the case of
‘local mirror symmetry of P

1’, by which we mean mirror symmetry for Xk =
O(k) ⊕ O(−2 − k) → P

1. The reason for this terminology is that if M is a
Calabi–Yau three-fold containing an imbedded P

1, P
1 ↪→ M , then the local

Calabi–Yau condition implies

NP1/X
∼= O(k) ⊕ O(−2 − k). (1.1)

This space is actually greatly troubled, as the Gromov–Witten theory of Xk

for k ≥ 0 is not even well-defined! This was shown in [4], where it was found
that the Gromov–Witten invariants change drastically with different choices
of equivariant weights (λ1, λ2) acting on the bundle. As such, any mirror
symmetry construction for Xk will necessarily be one of equivariant mirror
symmetry.

Thus, in this paper, we develop a version of mirror symmetry for Xk with
torus weights (λ, −λ) acting on the bundle. This case is of special interest,
as this is the Gromov–Witten theory computed by physicists [14]. We show
that through a certain decomposition of the bundle, we are able to describe
mirror symmetry at genus 0 (i.e., the mirror map and Yukawa coupling) via
very simple rational functions. Moreover, this structure allows us to easily
work out mirror symmetry at genus 1.
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After this paper was completed, we were informed by the authors of [14]
that they had obtained the same formula for the mirror map and genus 1
partition function in their paper. In contrast to our work here, the com-
putations of [14] are ultimately from the topological vertex, or A model,
perspective, and their mirror map was found as a ‘natural’ variable for the
problem, rather than a mirror map in the strict sense. Here, we will perform
all calculations using only the techniques of mirror symmetry — and we do
find the same mirror map can be used, though this mirror map actually
belongs to a different space, as we will see.

The organization of this paper is as follows. Section 2 summarizes our
main results. In Section 3, we review our previous results [9], and give a
derivation of natural rational Yukawa couplings and genus 1 mirror symme-
try on Xk (with antidiagonal action (λ, −λ)). Finally, in Section 4 we apply
equivariant mirror symmetry to two spaces which are not of the bundle-
over-P1 type.

2 Overview

We state our main results and methods in this section. Throughout, we take
Xk = O(k) ⊕ O(−2 − k) → P

1 and equip the bundle with a torus action with
weights (λ1, λ2). Let tk to be the Kähler class of P

1 ↪→ Xk.

2.1 Curves

We consider first the antidiagonal action λ1 = −λ2 case. This is the com-
putation which is of interest to physicists, and is the so-called equivariantly
Calabi–Yau setting. We can exhibit the Calabi–Yau property by observing
that the sum of the column vectors of the matrix of charge vectors for Xk

is zero when λ1 = −λ2:

(
1 1 k −2 − k

0 0 λ1 λ2

)
(2.2)

Mirror symmetry was of course first observed for Calabi–Yau manifolds,
and many of the nice structures associated to quantum cohomology, etc.
owe themselves to this property. As such, although equivariant Gromov–
Witten invariants for Xk have been to this point not well understood, one
may hope that equivariantly Calabi–Yau spaces possess the same structure.
We have found that in fact this is the case:
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Conjecture 1. For Xk = O(k) ⊕ O(−2 − k) → P
1 with antidiagonal torus

action (λ, −λ) on the bundle, the mirror map is given by

q
dtk
dq

=
1 + (−1)k+1(k + 1)2q

1 + (−1)k+1q
(2.3)

and the rational B model Yukawa coupling, by the formula

Y k
qqq =

−1
k(k + 2)

(
q
dtk
dq

)2

. (2.4)

In particular, this implies that we have the following Picard–Fuchs equation
describing mirror symmetry for Xk:

∂t1

(
1

Y k
t1t1t1

)
∂2

t1 = θ2
(

q
dtk
dq

)−1

θ. (2.5)

As mentioned in the introduction, the mirror map above was found in [14]
as a ‘natural’ variable for this calculation, and it was then speculated in [14]
based on integrality properties that this formula might be interpreted as a
mirror map. Here, we have found directly from mirror symmetry that this
is indeed the mirror map, though technically, the mirror map of a different
space (see Proposition 1 below).

We note in particular that this formula implies that the constant term of
the A model Yukawa coupling will be fractional:

Y k
tktktk

=
∂3Fk

∂t3k
=

(
q
dtk
dq

)−3

Y k
qqq =

−1
k(k + 2)

+ O(et). (2.6)

where Fk is the prepotential for Xk. This is precisely the value that was
predicted (through entirely different considerations) in [2]. As this constant
has the interpretation of being the triple intersection number of P

1 ↪→ Xk, we
see the fractionality of intersection numbers which was observed previously
in [11, 7, 8]. We note that this choice of triple intersection number is not
the unique one that gives a rational Yukawa coupling; however, this choice
gives the simplest form of the B model Yukawa coupling and Picard–Fuchs
equations, hence making it natural from the B model perspective.

This same elementary structure is also present at genus 1:

Conjecture 2. The genus 1 Gromov–Witten potential of Xk with the antidi-
agonal torus action is given in B model variables by the closed formula

Gk =
11
24

log(1 + (−1)k+1(k + 1)2q) +
(

− 5
12

+
(k + 1)2

24

)

× log(1 + (−1)k+1q) − 1
2

log
(

q
dtk
dq

)
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This formula was derived, in a slightly different form, in [14], by looking
directly at the A model calculation. Here, we have found this through mirror
symmetric methods, by interpreting the singular points of the mirror map
as the discriminant locus.

These conjectures were arrived at by use of the following proposition:

Proposition 1. The equivariant Gromov–Witten invariants of

Xk = O(k) ⊕ O(−2 − k) → P
1 (2.7)

with action (λ1, λ2) on the bundle are the same as those of the total space

X ′
k = ⊕k

1O(1)
⊕

⊕2+k
1 O(−1) → P

1 (2.8)

with (

k︷ ︸︸ ︷
λ1 · · ·λ1;

2+k︷ ︸︸ ︷
λ2 · · ·λ2) acting on the bundle.

This ‘factorization’ of the bundle of Xk into a sum of O(1) and O(−1) terms
has the effect of dramatically simplifying the mirror map in the case of the
antidiagonal action. We will see that this proposition is actually the natural
generalization of the results found in [9]. Thus, the ‘mirror map’ we have
found above for the antidiagonal torus action is actually the mirror map of
X ′

k, rather than Xk.

To see why the above proposition is true, we have the following argument
due to Iritani. Let p be the Kähler class measuring the volume of the P

1.
Then we compare the equivariant Euler class of the bundle of Xk:

eT (O(k) ⊕ O(−2 − k)) = (kp + λ1)((−2 − k)p + λ2) = (2.9)(
kλ2 − (2 + k)λ1

)
p + λ1λ2 (2.10)

to that of X ′
k:

eT (⊕k
1O(1)

⊕
⊕2+k

1 O(−1)) = (p + λ1)k(−p + λ2)2+k = (2.11)

((kλ2 − (2 + k)λ1)p + λ1λ2)λk−1
1 λ2+k−1

2 (2.12)

where we have imposed the cohomology relation p2 = 0. Then we see that
these are effectively the same (up to the multiplicative factor λk−1

1 λ2+k−1
2 ,

which can be thought of as simply a product of trivial bundles). As the
theorem of [5] uses only this equivariant Euler class as input, one con-
cludes that the equivariant Gromov–Witten invariants of both spaces must
be equal.
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Although we can prove the proposition this way, this equivalence was
originally deduced through more geometric considerations, which are described
in the body of the paper. Yet even with this proposition in hand, it is
quite nontrivial that we find the remarkable structure listed above for the
antidiagonal action, i.e., the simplified mirror map and, most dramatically,
the existence of the rational Yukawa coupling.

The diagonal action λ1 = λ2 unfortunately does not possess the nice struc-
ture observed above. This is not terribly surprising, as this case is manifestly
not Calabi–Yau. Nonetheless, we find the following phenomenon:

Conjecture 3. The equivariant mirror symmetry computation on Xk with
the diagonal torus action is the same as that of P(O ⊕ O(k) ⊕ O(−2 − k)).
That is, the mirror maps and Gromov–Witten invariants are equal.

We can gain some understanding of how this comes about by examining
the charge vectors of the projective bundle spaces:

P(O ⊕ O(k) ⊕ O(−2 − k)):
(

1 1 k −2 − k 0
0 0 1 1 1

)
(2.13)

By looking at this matrix and then back at (2.2), we see that the toric data
of these two spaces is essentially equivalent, and since the I functions are
determined entirely from the above matrices, it is not too outlandish that we
should find the same mirror maps and Gromov–Witten invariants between
these examples.

2.2 An singularities and toric trees

In [9], it was suggested that the Gromov–Witten invariants that physi-
cists use are often actually equivariant Gromov–Witten invariants. Here,
we realize this idea by computing the prepotential and genus 1 Gromov–
Witten potential for An singularities and for three-folds X satisfying dim
H4(X, Z) = 0.

In [8], we showed that one could compute the prepotential of a noncompact
Calabi–Yau three-fold up to polynomial terms of degree 2 by using various
compactifications. However, particularly in the no 4 cycle dimH4(X, Z) = 0
case, this approach is not satisfactory, since we deliberately use a compactifi-
cation known to reproduce the physically expected answer. Here, we will see
that through the equivariant formalism, physical Gromov–Witten invariants
appear naturally.
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We first consider the An singularity. This geometry is described by the
n × (n + 2) matrix

⎛
⎜⎜⎜⎜⎝

1 −2 1 0 0 · · · 0
0 1 −2 1 0 · · · 0
...
0 0 0 · · · 1 −2 1

⎞
⎟⎟⎟⎟⎠ (2.14)

This space has n 2 cycles arranged along a line corresponding to the Dynkin
diagram of An; we label these sequentially by C1 · · ·Cn. Let t1 · · · tn be the
complexified Kähler classes corresponding to these curves. Then we work
with the equivariant theory

⎛
⎜⎜⎜⎜⎜⎜⎝

0 λ1 λ2 · · · λn−1 λn 0
1 −2 1 0 0 · · · 0
0 1 −2 1 0 · · · 0
...
0 0 0 · · · 1 −2 1

⎞
⎟⎟⎟⎟⎟⎟⎠

(2.15)

The idea behind this choice is the same as that of the O ⊕ O(−2) → P
1 case

considered in [9]: each −2 entry corresponds to a noncompact divisor, so
we ‘compactify’ these divisors by adding in an equivariant parameter for
each. Then, we simply use the equivariant I function to extract Gromov–
Witten invariants via mirror symmetry. The result for the prepotential is
the following:

FAn =
n∑

i=1

Li3(eti) +
n−1∑
i=1

Li3(eti+ti+1) + · · · + Li3(et1+···+tn). (2.16)

Later in the paper, we use this instanton expansion, together with the dis-
criminant locus computed from a P

1 fibration over the A2 singularity, to
exhibit mirror symmetry at genus 1 on A2.

Now let X be any noncompact Calabi–Yau three-fold with no 4 cycles,
such that X is described by symplectic reduction via a matrix Mab. As is
well known, by making appropriate choices of curves C1 · · ·Cj and divisors
D1 · · ·Dk in X, the entries of Mab give intersection numbers between curves
and divisors. Suppose that D1 · · ·Dl is a basis of noncompact divisors of
X. Then as above, we consider the equivariant Gromov–Witten theory of
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X with exactly one equivariant parameter inserted for each noncompact
divisor: ⎛

⎜⎜⎜⎜⎝

λ1 · · · λl 0 · · · 0
m1,1 · · · m1,l m1,l+1 · · · m1,k

...
mj,1 · · · mj,l mj,l+1 · · · mj,k

⎞
⎟⎟⎟⎟⎠ (2.17)

Again, only the equivariant I function is required to compute Gromov–
Witten invariants. The result for the prepotential is nearly the same as the
above: we get one term in the prepotential for each curve in the geometry.
However, there is one important difference: by tuning the equivariant param-
eters, we can arrange things so that the curves with normal bundle O(−1) ⊕
O(−1) and those with normal bundle O ⊕ O(−2) have either the same rel-
ative sign, or the opposite relative sign. Moreover, the choice in which the
curves have opposite relative sign corresponds to the physical ‘anti-diagonal
action’ case, which is consistent with physically computed prepotentials.
However, from the equivariant point of view, either sign convention is equally
acceptable, as was suggested in [8].

As the prepotential cannot be written in a concise form, we will instead
work out the explicit example of the trivalent (−1,−1) curve in the text,
computing the prepotential and subsequently exhibiting genus 1 mirror sym-
metry.

3 Equivariant local mirror symmetry of curves

3.1 Review of previous results

We begin with an overview of the findings of [9]. What was shown was
essentially that we can use the equivariant version of the Givental I function
to compute equivariant Gromov–Witten invariants of Xk with the general
torus action (λ1, λ2) on the bundle. For X−1, the equivariant I function
reads

Iλ
−1 = ep log q/�

∑
d≥0

∏
i=1,2

∏0
m=−d+1(−p + m� + λi)∏d

m=1(p + m�)2
qd (3.18)

and on X0,

Iλ
0 = ep log q/�

∑
d≥0

∏0
m=−2d+1(−2p + m� + λ)∏d

m=1(p + m�)2
qd. (3.19)
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These I functions are annihilated by the following two equivariant differential
operators, respectively:

D−1 = θ2 − q(θ − λ1)(θ − λ2), (3.20)

D0 = θ2 − q(2θ − λ)(2θ − λ + �). (3.21)

where θ = �qd/dq. As was shown in [9], these two I functions agree up to the
mirror map and equivariant mirror map if we take λ1 = λ2 = λ in Iλ

−1. This
means that the two equivariant differential equations D−1f = 0,D0f = 0
generate the same quantum cohomology ring when λ1 = λ2.

We note one unusual feature of Iλ
0 which will be key to the derivations that

follow. The issue is that the I function is unable to detect the trivial C factor
of X0 = O ⊕ O(−2) → P

1. This implies two things. First, the I function
cannot be used to compute the minus sign on the instanton expansion of X0
claimed by physicists for the antidiagonal action (e.g. [14]). Secondly, the
point which is central to this paper: Iλ

0 is actually the equivariant I function
of the A1 singularity. In other words, the equivalence between Iλ1=λ2

−1 and
Iλ
0 in [9] is an equivalence of equivariant quantum cohomology rings between

the three dimensional space X0 and the two dimensional A1 singularity. The
natural generalization of this observation is the proposition of the previous
section. We will see how this can be derived for O(1) ⊕ O(−3) → P

1 with
the antidiagonal action later in the paper.

As one final remark on the above, we compare the equivariant charge
vectors of X−1 and the A1 singularity:

X−1:
(

1 1 −1 −1
0 0 λ λ

)
(3.22)

A1:
(

1 1 −2
0 0 λ

)
(3.23)

From this vantage, the calculation on X−1, while equivalent to that of A1,
is slightly simpler, because there is no mirror map. So, the dimension of
the space has gone up, and the complexity of the mirror map has gone
down. This is the first example of the ‘factorization of the bundle’ stated in
Proposition 1.

Moving on, from [9] we have the equivariant I function for Xk for k ≥ 1:

Iλ
k = ep log q/�

∑
d≥0

∏0
m=(−2−k)d+1((−2 − k)p + m� + λ2)∏d
m=1(p + m�)2

∏kd
m=1(kp + m� + λ1)

qd. (3.24)
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Then we proposed that the equivariant Gromov–Witten invariants of Xk

could be recovered by first expanding Iλ
k about λ1 = ∞, then perform-

ing Birkhoff factorization of the result (to remove positive powers of �),
and finally by inverting the mirror map and equivariant mirror map of the
Birkhoff factorized function (which we called the J function).

We briefly recall the Birkhoff factorization procedure. Since the only
examples we work with will be curves, we can give an especially simple
formulation. Suppose we have an equivariant I function representing some
bundle over a curve, and that after expansion about the equivariant param-
eters λ = ∞, we obtain I ∈ C[�, �−1]. Since such a power series expansion
strictly speaking does not make sense, we have to remove positive powers of
� from the I function before extracting mirror symmetry data. This is done
by a theorem in [5]: there exist functions c0, c1 such that

c0(q, �)I(q, �, �−1) + c1(q, �)�q
d

dq
I(q, �, �−1) = J(q, �−1) (3.25)

and J is independent of �. We then obtain the mirror map, etc. by looking
at the �

−1 expansion of J .

Then the above process of equivariant mirror symmetry, given in slightly
more detail, proceeds by performing the series expansion and Birkhoff
factorization, from which we find

J = 1 +
tλ1(q)p + tλ2(q)

�
+

W λ
1 (q)p + W λ

2 (q)
�2 + · · · (3.26)

Then by multiplying J by e−tλ2 (q) and inverting the mirror map tλ1(q), we can
read off the instanton information from the Wi(q). It was then shown that
if λ1 = λ2, the resulting functions are independent of k, and for λ1 = −λ2,
physical Gromov–Witten invariants for Xk could be computed.

Unfortunately, this method produces no closed formulas, and requires
serious computer power even to obtain results up to degree 6. Moreover, the
resulting mirror maps have incredibly complicated formulas. For example,
on the X1 geometry with the diagonal torus action, the formula for the
mirror map is given by

d log q

dt
=

3
8

(
1 +

sin(5/3 sin−1(
√

108q))√
108q

)
. (3.27)

These types of formulas have put the search for Yukawa couplings, as well
as the genus 1 computation, out of reach. We were unable to even identify
a discriminant for this case.
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These problems, and the desire to perform the B model at genus 1, led
us to search more carefully for the meaning of mirror symmetry for these
spaces. The first clue is given by a close look at Dn singularities.

3.2 Connection between X1 and D type singularities

In the previous section, we have explored the direct approach to mirror
symmetry for Xk via I functions, and have noted along the way that the X0
calculation can be viewed as equivariant theory on the A1 singularity. Next,
we claim that the equivariant Gromov–Witten invariants of X1 = O(1) ⊕
O(−3) → P

1 are the same as the equivariant Gromov–Witten invariants of
a certain partial resolution of the C

2/Dn singularity.

Recall that a simple singularity C
2/Dn,n ≥ 4, where Dn is the nth

dihedral group, can be realized as a hypersurface in C
3 [10]

f = x2
1x2 − xn−1

2 + x2
3 = 0. (3.28)

One can obtain a smooth variety in two ways. One way is complex defor-
mation: take a basis {μ1 · · ·μm} of the local algebra of the singular point

H =
C[x1, x2, x3]

〈∂x1f, ∂x2f, ∂x3f〉 (3.29)

and deform f as fλ = f +
∑m

j=1 λjμj . The second way is by blowing up
the n singular points; we end up with n curves of self-intersection −2, and
moreover, there is a special ‘central’ curve which intersects three other curves
exactly once. We call this the trivalent curve. Mirror symmetry for the Dn

singularity is then realized as the transformation between the blown up space
and the complex deformed space.

We next recall the work of Cachazo et al. [6], where it was shown (in the
so-called Laufer’s example section, pp. 37–40) that a certain monodromic
fibration of the Dn singularity over the plane, where only the trivalent curve
is blown up, is equivalent to the geometry X1 = O(1) ⊕ O(−3) → P

1. Now,
in our case, we cannot use this fact directly, because we are interested in
the mirror symmetry computation. From the vantage of mirror symme-
try, everything is much simpler if we stay in the realm of toric geometry.
Nonetheless, there is reason to suspect that we can still find a relationship
between X1 and Dn singularities at the toric level; see for example [12],
where the connection is described as follows. If we let X be a Calabi–Yau
three-fold with imbedded curve P

1 ↪→ X such that NP1/X
∼= O(1) ⊕ O(−3),

and we then shrink the P
1 to a point p, then under certain conditions the
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singularity type of the generic hyperplane section through the point p will
be of type D4.

Thus, we would like to consider the toric representation of the Dn geom-
etry in which only the trivalent curve is blown up. From [13], the Mori cone
vector corresponding to this trivalent curve is given by(

1 1 1 −2 −1
)
, (3.30)

and therefore we end up with a geometry defined by single Kähler parameter.
We call this the “D1 singularity”.

We now show that this is indeed the Mori cone generator of the trivalent
curve. Consider for simplicity the blown up D4 geometry, and let C1 · · ·C4
be a basis of curve classes, where C4 is the trivalent curve. We claim that
the toric data defining the blow up of the D4 singularity is given by the
matrix ⎛

⎜⎜⎜⎝
l1

l2

l3

l4

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

−2 0 0 1 0 1 0 0
0 −2 0 1 0 0 1 0
0 0 −2 1 0 0 0 1
1 1 1 −2 −1 0 0 0

⎞
⎟⎟⎟⎠ (3.31)

We can derive this matrix as follows. The rows of the matrix, as well as
the first four columns, correspond to the curves C1 · · ·C4, and entries of the
matrix give intersection numbers between curves and divisors in the geom-
etry. Hence the −2 entries are interpreted as the self-intersection numbers
C2

i = −2, and e.g., the meaning of the (4, 1) entry is C1 · · ·C4 = 1, which is
true because C4 intersects C1 · · ·C3 exactly once. Thus we see the necessity
of the three 1’s in the fourth row. Also, the last three columns represent
the (noncompact) normal bundles to the curves C1 · · ·C3 respectively, and
since the intersection number of each curve with its normal bundle is +1, we
obtain the entries of these columns. Finally, in order to impose the Calabi–
Yau condition on the space, we need to add the −1 in the fifth column (so∑

j lj4 = 0). Hence we arrive at the claimed form of the Mori vector (3.30).

Since this is the matrix of intersection numbers of the space, we can
represent blown up D4 as a complex four dimensional space given by{

(z1 · · · z8) ∈ C
8 :

∑8
j=1 lji |zj |2 = ri, i = 1 · · · 4

}
(S1)4

(3.32)

where ri are real parameters and the action is given by

S1
i : (z1 · · · z8) −→ (el1i

√
−1θ1z1 · · · el8i

√
−1θ8z8) (3.33)
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We now return to the discussion of the relation between the D1 geometry
and that of X1. Notice that the charge vector of X1 = O(1) ⊕ O(−3) → P

1

is given as: (
1 1 1 −3

)
. (3.34)

If we stare at the vectors in equations (3.34), (3.30) and then look back at
equation (3.22), it is not hard to imagine that the following two equivariant
theories would give the same Gromov–Witten invariants:

D1:
(

1 1 1 −1 −2
0 0 λ1 λ2 λ2

)
(3.35)

X1:
(

1 1 1 −3
0 0 λ1 λ2

)
(3.36)

Indeed, direct computation verifies the equality of the Gromov–Witten invar-
iants. We note that as in the X−1/ A1 case, the dimension of the spaces
is different. The charge vector of the D1 geometry identifies the space as
O(1) ⊕ O(−1) ⊕ O(−2) → P

1, a complex four-fold, which is consistent with
the four-fold representation obtained for the D4 singularity above.

However, the mirror map on D1 and that on X1 are not the same. What
does this mean? Can we hope that the mirror map is somehow getting
simpler with increased dimension, as on the X−1 ∼= A1 example?

The answer, as well as the means of producing rational Yukawa couplings,
lies in specializing the torus weights to the equivariantly Calabi–Yau setting
λ1 = −λ2 = λ. Now consider the differential operator which annihilates the
I function of the D1 singularity:

DD1 = θ2(θ + λ) − q(−θ − λ)(−2θ − λ)(−2θ − λ − �) (3.37)

This operator can be factorized as

DD1 =
(
θ2 + q(−2θ − λ)(−2θ − λ − �)

)
(θ + λ) (3.38)

Then equation (3.20) asserts the equivalence of the operators θ2 +q(−2θ−λ)
(−2θ − λ − �) and θ2 + q(θ + λ)2, from which we expect that we can also
reproduce equivalent Gromov–Witten invariants by use of the operator

D′ = (θ2 + q(θ + λ)2)(θ + λ) (3.39)

= θ2(θ + λ) − q(−θ − λ)3. (3.40)

This last form of the D′ operator can be derived from the toric data(
1 1 1 −1 −1 −1
0 0 λ −λ −λ −λ

)
(3.41)

and corresponds to the total space O(1) ⊕ O(−1) ⊕ O(−1) ⊕ O(−1) → P
1

with a torus action (λ, −λ, −λ, −λ) on the bundle. Again, we may directly
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compute to verify that indeed the equivariant Gromov–Witten invariants
corresponding to this toric data agree with those of X1 with the antidiagonal
action.

Now we ask what we have gained through these geometric manipulations.
We consider the I function which generates the solution space of D′f = 0:

I ′ = ep log q/�
∑
d≥0

∏0
i=−d+1(−p − λ + m�)3∏d

i=1(p + λ + m�)
∏d

i=1(p + m�)2
qd (3.42)

We run I ′ through the same procedure described in Section 3.1: expand I ′

about λ = ∞ and then perform Birkhoff factorization of the result. After
this, we find the following incredible result:

J ′ = 1 +
p(log q + 3 log(1 + q)) + λ log(1 + q)

�
+ · · · (3.43)

In other words, the mirror map has taken on the nearly trivial form
t = log q + 3 log(1 + q), and moreover, the equivariant mirror map (the coef-
ficient of λ in equation (3.43)) is just a multiple of the regular mirror map.

3.3 Natural rational B model Yukawa couplings

We now argue that the natural choice of the triple intersection number of
the curve, from the perspective of the B model calculation, should be 1

k(k+2) .
This will give the simple form of the Picard–Fuchs equation and B model
Yukawa coupling of Conjecture 1. Moreover, this agrees with the predictions
of [2].

We consider the prepotential of Xk with antidiagonal action and arbitrary
triple intersection number 〈C, C, C〉. Using the expansion of [14], this is

Fk = 〈C, C, C〉 t
3

3!
−

∞∑
d=1

(−1)kd((k + 1)2d − 1)!
d!d2(((k + 1)2 − 1)d)!

etd. (3.44)

The key to choosing the right intersection number now actually lies in look-
ing at the second derivative of this function. An easy computation shows
that

∂2Fk

∂t2k
= 〈C, C, C〉 log(q(1 + (−1)k+1q)k(k+2)) + log(1 + (−1)k+1q). (3.45)
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Then by setting the value

〈C, C, C〉 =
−1

k(k + 2)
, (3.46)

we immediately find the remarkably simple relation

∂2Fk

∂t2k
=

−1
k(k + 2)

log q. (3.47)

Rather than being merely the choice of intersection number which gives
the simplest expression of the above function, there are several other reasons
to expect that this is the correct choice (besides the fact that it was predicted
to be so in [2]). The first is by examining the form of the Picard–Fuchs
equation which results from the above Yukawa coupling. The Picard–Fuchs
equation describing mirror symmetry will be given by

∂tk

(
1

Ytktktk

)
∂2

tk
= θk(k + 2)q

dtk
dq

(
q
dtk
dq

)−1

θ

(
q
dtk
dq

)−1

θ (3.48)

= θ2
(

q
dtk
dq

)−1

θ. (3.49)

In other words, only the information of the mirror map is required to com-
pute all Gromov–Witten invariants of Xk. Said differently, mirror symmetry
is completely characterized by the integer k (since the mirror map is).

Another reason the above choice of intersection number is the most natu-
ral can be seen from the genus 1 function in the next section. First, note that
by using the above expression for ∂2F/∂t2, we have the B model Yukawa
coupling, as given in Conjecture 1:

Yqqq =
∂3F
∂t3

(
q
dtk
dq

)3

=
−1

k(k + 2)

(
q
dtk
dq

)2

. (3.50)

As is evident from the expansions of the next section, there are
two components of the discriminant locus, given by the numerator and
denomenator of the mirror map, respectively. Now, if we make any other
choice of triple intersection number, what happens is that the B model
Yukawa coupling will contain an extra polynomial factor. From the per-
spective of period integrals, this suggests that there will be an extra com-
ponent of the discriminant locus, which one would reasonably expect to
appear in the genus 1 function. However, as this extra component does not
appear, it is natural that the Yukawa coupling should have the same singular
points as the mirror map, thus lending support to our choice of intersection
number.
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Finally, we can also use the formula proposed in [8] for the computation
of triple intersection numbers. Adapted to the present case, this reads

〈C, C, C〉 =
∫

P1

J3

e(O(k) ⊕ O(−2 − k))

=
∫

P1

J3

J2k(−2 − k)
= − 1

k(2 + k)

∫
P1

J (3.51)

where J is the Kähler class satisfying
∫

P1 J = 1 and e() denotes the Euler
class. Hence we obtain the intersection number claimed.

3.4 Genus one

With such a simple form for the Yukawa coupling and mirror map at hand,
it is natural to suppose that we also have an elementary form for the genus
1 Gromov–Witten potential of Xk on the B model, which we denote by
Gk. In fact, our interest in doing the genus 1 computation was the original
motivation behind this project.

The A model function can be worked out by the topological vertex [1].
We are grateful to Konishi for providing us with a program for the vertex
calculation. Then, we need only compare the general form of the B model
genus 1 amplitude to see if it agrees with the A model answer. Recall [3]
that the B model function Gk has the general structure

Gk = log

(
qa

∏
i

Δbi
i Jk

)
(3.52)

where Δi is and irreducible component of the discriminant locus, Jk =
d log q/dtk is the Jacobian and a, b are rational numbers. We again spe-
cialize to the case X1 for clarity. Then we have J1 = (1 + q)/(1 + 4q), and
since this is the derivative of the mirror map, the singular points of J1 define
the discriminant locus:

Δ1 = 1 + q, Δ2 = 1 + 4q. (3.53)

Then a simple calculation verifies that G1 is given as

G1(q) =
11
24

log(1 + 4q) − 1
4

log(1 + q) +
1
2

log(J1). (3.54)

By substituting the inverse mirror map into G1, we find the expansion

G1(t) =
1
12

et − 1
24

e2t − 29
36

e3t +
499
48

e4t − 517
5

e5t + · · · (3.55)
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In exactly the same way, we find G2:

G2 =
11
24

log(1 − 9q) − 1
24

log(1 − q) +
1
2

log(J2) (3.56)

where now J2 = (1 − q)/(1 − 9q). This has expansion

G2(t) = − 1
12

et +
19
24

e2t +
899
36

e3t +
27259

48
e4t +

733289
60

e5t + · · · (3.57)

By checking a few more cases we have formulated Conjecture 2.

3.5 A word about the diagonal action

We now briefly consider equivariant mirror symmetry for Xk with the dia-
gonal torus action λ1 = λ2. We will see that this is very likely the same
calculation as the projective bundle Yk = P(O ⊕ O(k) ⊕ O(−2 − k)) → P

1.
Unfortunately, the techniques of the earlier sections do not give any simple
form for the mirror map or genus 1 expansion, but as Yk is not Calabi–Yau,
this is not entirely unexpected.

We see some hint of the correspondence already between the spaces X−1
and Y−1. We have the expansion for the equivariant I function on X−1:

IX−1 = ep log q/�
∑
d≥0

∏0
m=−d+1(−p + m� + λ)∏d

m=1(p + m�)
qd (3.58)

= 1 +
p log q

�
+

λ2Li2(q) − 2pλLi2(q)
�2 + · · · (3.59)

and that on Y−1:

IY−1

= e(p1 log q1+p2 log q2)/�
∑
d≥0

∏0
m=−∞(−p1 + p2 + m�)∏d1

m=1(p1 + m�)2
∏−d1+d2

m=−∞
(−p1 + p2 + m�)

∏d2
m=1(p2 + m�)

qd1
1 qd2

2

= 1 +
p1 log q1 + p2 log q2

�

+
p2
2Li2(q1) − 2p1p2Li2(q1) + log q1 log q2 + (log q2)2/2

�2 + · · ·

The expansions disagree at higher order in 1/�, but one might simply
attribute this to the fact that IY−1 is considered as a cohomology valued
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hypergeometric series, taking values in the cohomology ring

C[p1, p2]
〈p2

1, p2(p1 − p2)2〉
, (3.60)

while the coefficients of IX−1 are only subjected to the relation p2 = 0. This
argument is strengthened if one looks at the next example:

IX0 = 1 +
p(log q + 2f(q)) − λf(q)

�
+ · · · , (3.61)

IY0 = 1 +
p1(log q1 + 2f(q1)) + p2(log q2 − f(q1))

�
+ · · · , (3.62)

where f(q) =
∑

n>0 qn(2n − 1)!/(n!)2. That is, the mirror maps are the
same, and moreover, the instanton expansions agree exactly after inversion
of the respective mirror maps.

The more nontrivial statement is that this correspondence holds even
across Birkhoff factorization. Namely, if we consider X1 with the diago-
nal torus action (λ, λ) and carry out Birkhoff factorization on the result-
ing I function, both the mirror map and the Gromov–Witten invariants
turn out to be exactly the same as those of the projective bundle Y1 =
P(O ⊕ O(1) ⊕ O(−3)) → P

1, where we have performed Birkhoff factoriza-
tion on the I function for Y1.

Unfortunately, we were unable to obtain nice formulas for any of the
quantities discussed in this paper on Yk. Hence, the analog of Picard–Fuchs
equations, etc. remains unclear.

4 Equivariant mirror symmetry for X with dim H4(X) = 0

We now show that equivariant techniques can be used to effectively compute
Gromov–Witten potentials not only for bundles over curves, but in fact for
any Calabi–Yau lacking four cycles.

4.1 A2

Consider the toric charge vectors for the standard A2 geometry(
1 −2 1 0
0 1 −2 1

)
(4.63)

This has two curve classes C1, C2 corresponding to the rows of the above
matrix. Also let p1, p2 be Kähler classes satisfying

∫
Ci

pj = δij . Note that
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for C1, the normal bundle direction is given by the second column of the
matrix, and for C2, the normal bundle corresponds to the third column. As
such, λ1 is the equivariant parameter corresponding to the C1 curve, and λ1
to C2.

Now, in order to exhibit equivariant Gromov–Witten invariants on the
A1 singularity, we simply added an equivariant parameter corresponding to
the normal bundle direction:

(
1 1 −2

)
−→

(
0 0 λ

1 1 −2

)
. (4.64)

Hence the most natural equivariant theory we can use to extract Gromov–
Witten invariants is

⎛
⎜⎝

0 λ1 λ2 0
1 −2 1 0
0 1 −2 1

⎞
⎟⎠ (4.65)

The strategy is then simple enough: just use the equivariant I function to
compute the mirror map and prepotential. The I function is

IA2 = e(p1 log q1+p2 log q2)/�
∑
d≥0

C(d1, d2, λ)qd1
1 qd2

2 (4.66)

where C(d1, d2, λ) =∏0
m=−∞(−2p1 + p2 + λ1 + m�)

∏0
m=−∞(p1 − 2p2 + λ2 + m�)∏d1

m=1(p1 + m�)
∏−2d1+d2

m=−∞ (−2p1 + p2 + λ1 + m�)
∏d1−2d2

m=−∞
(p1 − 2p2 + λ2 + m�)

∏d2
m=1(p2 + m�)

Recall that these coefficients are subjected to the cohomology relations p2
1 =

p1p2 = p2
2 = 0. Then we go through the usual motions of expanding this

function in powers of 1/� and inverting the mirror map and equivariant
mirror map, which are given by the coefficient of 1/�. Let t1, t2 be the
mirror map, and set x1 = et1 ,x2 = et2 . Let JAn be the function obtained
by coordinate change of IAn by the mirror map. Then we want to read
the instanton information from the coefficient W of 1/�

2 of JAn . There is
one minor point one needs to keep in mind when extracting the instanton
information: since the λ1 equivariant parameter corresponds to the curve
C1, there are certain ‘anomalous’ terms in W which mix the normal bundle
of C1 and the curve C2. We can cancel these terms by looking at one
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equivariant parameter at a time: if we set p2 = λ2 = 0, we obtain

W |λ2=0,p2=0 = λ2
1(Li2(x1) + Li2(x1x2)) + p1λ1(2Li2(x1)

+ Li2(x1x2) − Li2(x2)) (4.67)

= λ2
1
∂F
∂t1

+ p1λ1

(
2
∂F
∂t1

− ∂F
∂t2

)
(4.68)

where
F = Li3(x1) + Li3(x2) + Li3(x1x2). (4.69)

Note that this is just as one would expect from local mirror symmetry cal-
culations, since the coefficient of p1λ1 of equation (4.67) features a linear
combination of prepotential derivatives determined by the second column of
the matrix (4.65).

Now that we know the instanton expansion, we can use this to work
out mirror symmetry at genus 1 for the A2 singularity. Unfortunately, the
geometry of the mirror of (4.65) is degenerate, which means we cannot easily
extract the discriminant locus from the mirror manifold. Hence, we instead
use a P

1 fibration over A2⎛
⎜⎝

1 1 −2 0 0 0
0 0 1 −2 1 0
0 0 0 1 −2 1

⎞
⎟⎠ (4.70)

We then compute the discriminant locus from the mirror manifold, and then
take the limit as the first curve disappears. The result is

Δ = 1 − 8q1 − 8q2 + 68q1q2 + 16q2
1 + 16q2

2 − 144q1q
2
2 − 144q2

1q2 + 270q2
1q

2
2

+ 216q3
1q

2
2 + 216q2

1q
3
2 − 972q3

1q
3
2 + 729q4

1q
4
2,

from which we can immediately exhibit genus 1 mirror symmetry:

GA2 =
t1
12

+
t2
12

− 1
12

log((1 − et1)(1 − et2)(1 − et1+t2))

= log

(
q
1/12
1 q

1/12
2 Δ−7/24

(
∂ log q

∂t

)1/2
)

. (4.71)

∂ log q/∂t is the Jacobian of the mirror map. The coefficient of −7/24 is
also the same for the A1 singularity, suggesting that this behavior may be
universal for An singularities.

4.2 The trivalent (−1,−1) curve

Since this example is closely related to the above, we give only the briefest
discussion, merely indicating the points at which this differs from An. The
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geometry we are considering has three curves with normal bundle O(−1) ⊕
O(−1) and all three curves intersect at a single point. The equivariant
theory we use is thus ⎛

⎜⎜⎜⎝
0 0 0 λ1 λ2 λ3

1 0 0 1 −1 −1
0 1 0 −1 1 −1
0 0 1 −1 −1 1

⎞
⎟⎟⎟⎠ (4.72)

since the last three columns correspond to noncompact divisors. Then, as
above, we can use the equivariant I function to work out mirror symmetry.
Let W be the coefficient of 1/�

2 of the mirror map transformed J function.
Then we restrict to the curve C1 corresponding to the second row of the
above matrix by setting λ1 = p2 = p3 = 0. If we choose the diagonal action,
for which λ2 = λ3 = λ,

W |λ1=p2=p3=0,λ2=λ3=λ = λ2 ∂F1

∂t1
+ p1λ

(
2
∂F1

∂t1
− ∂F1

∂t2
− ∂F1

∂t3

)
(4.73)

and for the antidiagonal action,

W |λ1=p2=p3=0,λ2=−λ3=λ = λ2 ∂F2

∂t1
+ p1λ

(
∂F2

∂t3
− ∂F2

∂t2

)
(4.74)

where

Fk =
3∑

i=1

Li3(xi) + Li3(x1x2x3) + (−1)k+1(Li3(x1x2)

+ Li3(x1x3) + Li3(x2x3)). (4.75)

In other words, the use of the diagonal versus antidiagonal action changes
the relative sign between (−1,−1) curves and (0,−2) curves. Naturally,
this means that neither sign choice is preferred equivariantly, and indeed
this continues to hold true at genus 1.

5 Conclusion

In this paper, we have uncovered a surprisingly simple structure underlying
mirror symmetry in genus 0 and 1 on Xk = O(k) ⊕ O(−2 − k) → P

1 with
antidiagonal action. Although one would expect some simplification of the
calculation using the factorization of the bundle as described in Proposition
1, the miraculous appearance of a rational Yukawa coupling points toward
some deeper structure behind the problem.
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There are several possible directions for future work. One obvious prob-
lem is the extension of these results to higher genus on the B model, which
involves the computation of the holomorphic anomaly at each genus. One
might also consider whether there is some nice form for the B model compu-
tation on P(O ⊕ O(k) ⊕ O(−2 − k)), or equivalently Xk with the diagonal
action. We were able to derive rational B model couplings for P(O ⊕ O ⊕
O(−2)), but the complexity of the mirror map for k ≥ 1 poses a major obsta-
cle. Finally, one could also include open strings into the computation. We
expect to address these issues in future work.
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