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Abstract: Nation-wide studies of organic aerosols were conducted on a molecular level in 

15 Chinese cities. The results showed strikingly high levels of organic compounds (e.g., 

annual concentrations of polycyclic aromatic hydrocarbons, phthalates, sugars and diacids 

are 110, 370, 400 and 830 ng m
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-3, respectively), especially in the mid-west region during 

winter (up to 125 µg m-3 organic carbon). Fossil fuel combustion and/or biomass burning 

products are 3−30 times more abundant in winter than in summer. In contrast, significant 

quantity of phthalates (168−2200 ng m-3) was detected in summer. Concentrations of the 

pollutants are generally 1−3 orders of magnitude higher than those in developed countries. 

Their source strengths are characterized in winter by fossil fuel combustion, followed by 

secondary oxidation, plant wax emissions and biomass burning, whereas in summer by 

secondary oxidation, followed by fossil fuel combustion and plastic emissions.    
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1.  Introduction     64 
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One fourth of primary anthropogenic organic aerosols on the globe is generated in 

China [Cooke et al., 1999]. A steep increase in the concentrations of NOx, volatile organic 

compounds, particles, and ozone has been considered as the result of heavy usage of coals 

and the rapid growth of the number of vehicles in the urban areas, especially in the mega-

cities [Akimoto, 2003; Richter et al., 2005]. China is the largest user of coal in the world, 

consuming 1.2 billion tons of coal in 2002, most of which are burned without efficient 

controls. Its annual usage is predicted to increase by 3 times in 2020 [Aldhous, 2005]. 

Traditional Chinese style of domestic energy utilization (i.e., coal and biofuel usage) 

combined with its vigorous expansion of economy and number of motor vehicles make its 

air pollution problems different from those of any other countries in the world. 

           To better understand the current status of air pollution in China, a nation wide 

survey of organic aerosols was conducted on molecular levels in its 15 cities during 

summer and winter. Here, we highlight the anthropogenic compounds (i.e., polycyclic 

aromatic hydrocarbons (PAHs), phthalates, and biomass burning products) and 

photochemical oxidation products (i.e., dicarboxylic acids) and discuss their molecular 

compositions, seasonal and spatial distributions, and source strengths. 

 2.  Experiment       

PM2.5 atmospheric aerosols were collected for 24hr using pre-combusted quartz 

filter.  Two days of the samplings in 14 Chinese cities except Nanjing were 

simultaneously performed on January 13th and 14th, 2003 for winter campaign, but on 

different days for summer campain in June/July, 2003 to avoid any wet deposition. While 

a week term of aerosol collection in Nanjing was conducted in summer and winter 2004, 

respectively. The filter aliquot was extracted with a mixture of methanol/dichloromethane 
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(2:1, v/v), followed by concentration, and derivatization with N,O-bis-

(trimethylsilyl)trifluoroacetamide prior to GC/MS determination. Another aliquot of the 

sample was extracted with pure water to isolate low molecular weight dicarboxylic acids, 

which were concentrated and reacted with BF
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3/n-butanol before GC analysis. More details 

about the sample collection and determination can been seen in the previous papers 

[Kawamura and Yasui, 2005; Wang et al., 2006a; Wang et al., 2006b]. 

3.  Results and discussion 

            A total of 129 organic compounds were detected, including n-alkanes (C16−C31), 

PAHs (18 species), hopanes (C27−C32), phthalates (6 species), fatty acids (C10−C34), fatty 

alcohols (C12−C32), sterols (4 species), lignin and resin products (3 species), sugars (8 

species), polyols/polyacids (4 species), and dicarboxylic acids (C2−C11). Levoglucosan 

was found as the dominant species in winter, followed by oxalic, octadecenoic and 

hexadecanoic acids, whereas oxalic acid was found as the dominant in summer, followed 

by bis(2-ethylhexyl)phthalate, hexadecanoic acid and dibutyl phthalate. Concentrations of 

the organic compounds detected in Chinese aerosols are 1−3 orders of magnitude higher 

than those in developed countries, especially in cold seasons due to the usage of coal for 

house heating (Table 1).  

Concentrations of ∑PAHs were found to be significantly higher in winter (14−701 

ng m-3, average 198 ng m-3) than in summer (2−168 ng m-3, average 29 ng m-3) (Figure 

1a). Their concentrations are generally 1−2 orders of magnitude higher than those reported 

in Los Angeles (12 ng m-3) [Rogge et al., 1993b], London (17 ng m-3) [Baek et al., 1992], 

and Tokyo (20 ng m-3) [Kawamura, 1989]. The highest concentrations were obtained in 

the mid-west China, i.e., Xi’an and Chongqing (Figure 1a). In winter, 
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benzo[b]fluoranthene (BbF) was found as the dominant PAH in all the cities studied (56.8 

± 53.4 ng m

111 

112 

113 

114 

115 

116 

117 

118 

119 

120 

121 

122 

123 

124 

125 

126 

127 

128 

129 

130 

131 

132 

-3), accounting for 30.1 ± 4.9 % of ∑PAHs. In summer, BbF was also the most 

abundant (9.3 ± 14.3 ng m-3), except for Hong Kong, Xiamen and Jinchang. Indeno[1,2,3-

cd]pyrene (IP) and benzo[ghi]perylene (BghiP) were the second most abundant PAHs in 

both seasons.  

Coals are commonly used in China for heating and cooking, in which combustion 

efficiency is very low. Around 5000 tons of PAHs were emitted in 2000 from combustion 

of Chinese household honeycomb-briquette that are made of coal, in which BbF gives the 

highest emission factor [Chen et al., 2005]. BbF was found as the dominant PAH in the 

soot deposits from coal-burning stoves in China [Wornat et al., 2001]. Previous PAH 

studies also showed the predominance of BbF in Chinese continental [Guo et al., 2003; 

Wang et al., 2006a] and coastal marine aerosols [Simoneit et al., 2004b]. All the data 

including those in this study (except the Hong Kong summer samples) demonstrated that 

BbF is the most abundant PAH in aerosols all over China mainly due to incomplete 

combustion of coals. This is different from the cases in other countries, where PAHs are 

largely derived from incomplete combustion of petroleum, and IP or BghiP is the 

dominant PAH [Menichini et al., 1999; Rogge et al., 1993a]. PAHs ratios are also used to 

discuss the sources of combustion-derived PAHs [Yunker et al., 2002]. Ratio of BbF/(IP + 

BghiP) in the 15 Chinese cities was 1.2 ± 0.4 in summer and 1.8 ± 0.4 in winter. They are 

much higher than those reported in developed countries (e.g., 0.3 ± 0.2 in USA) [Rogge et 

al., 1993a], further suggesting the difference in the PAH sources between China and other 

countries. 
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Extremely high levels of phthalates (up to 2200 ng m-3) dominated by bis(2-

ethylhexyl), dibutyl and diisobutyl phthalates are detected in the aerosols,  especially in 

hot seasons (Table 1), probably due to an enhanced evaporative release from plastics, 

followed by adsorptive deposition on pre-existing particles (Figure 1b). Phthalate 

concentrations in Chinese aerosols are 1−3 orders of magnitude higher than those in 

Belgium [Kubátová et al., 2002], Sweden [Thuren and Larsson, 1990] and France [Teil et 

al., 2006] (Table 1 and Figure 1b). Phthalates are carcinogenic and endocrine-disrupting, 

and PAHs are mutagenic/carcinogenic as well. Their ubiquitous and abundant occurrences 

in the Chinese atmosphere may have a significant adverse impact on the local human 

health. 

133 

134 

135 

136 

137 

138 

139 

140 

141 

142 

143 

144 

145 

146 

147 

148 

149 

150 

151 

152 

153 

154 

155 

Levoglucosan (dehydrated sugar) is a major burning product of cellulose, whereas 

dehydroabietic acid is produced by burning conifer resin. Concentrations of these biomass 

burning products in winter were found to be several times greater than those in summer 

(see Figure 1c, only for levoglucosan). In mid-west cities (Chongqing and Xi’an), their 

wintertime concentrations are much higher than those reported in USA, Belgium and 

Amazonia [Simoneit et al., 2004a].  This study clearly shows that biofuel combustion is 

another important source for organic aerosols in China. 

Homologous dicarboxlylic acids (C2-C11) were detected in the aerosol, dominated 

with oxalic acid followed by malonic and succinic acids. Their concentrations (200−2150 

ng m-3, average 840 ng m-3) are lower than those from Los Angeles in 1984 [Kawamura 

and Kaplan, 1987], but are similar to those from Amazonia in 1999 [Graham et al., 2002] 

and Tokyo in 1989 [Kawamura and Yasui, 2005] (Table 1 and Figure 1d). Diacids are 

more abundant in summer than in winter in most north cities and vice versa in most south 
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cities. Diacids can be produced primarily from vehicular exhaust, but the major portion is 

secondary oxidation products of the organic precursors [Kawamura and Kaplan, 1987; 

Kawamura and Yasui, 2005]. Ratios of total diacids on a carbon basis to organic carbon in 

the 15 cities were all higher in summer (6.8 ± 2.5%) and lower in winter (4.0 ± 2.0%), 

indicating the enhanced photochemical oxidation in summer. The more abundant 

wintertime diacids in the south cities were probably caused by the accumulation within the 

inversion layers that are frequently developed in winter. Diacids and sugars are water-

soluble, and thus have been recognized as active cloud condensation and ice formation 

nuclei [Sun and Ariya, 2006].  

Based on the organic tracers mentioned above and the classification by Simoneit et 

al [Simoneit et al., 2004b], averaged source strengths of organic matter in aerosols from 

the 15 cities are evaluated as follows. Firstly, contribution of fossil fuel usage (coal and 

petroleum) was defined as the sum of coal and petroleum derived n-alkanes, UCM, PAHs 

and hopanes. Polyacids and dicarboxylic acids were classified as secondary oxidation. 

Terrestrial natural background was defined as the sum of plant wax alkanes and higher 

molecular weight (HMW) fatty acids (C ≥ 15) and alcohols (C ≥ 22). The biomass burning 

contribution was calculated as the sum of levoglucosan, lignin and resin products, and 

sterols (e.g., β-sitosterols and ergosterol). Phthalates were categorized as plastics, while 

primary saccharides and reduced sugars were classified into the soil category. Finally, 

contribution of marine natural background was defined as the sum of lower molecular 

weight (LMW) fatty acids and alcohols, since the LMW fatty acids and alcohols were 

undetectable in most cases for the inland samples. 
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We found that fossil fuel usage is the dominant source in winter (Figure 2), 

contributing to nearly 50 % of total identified compound mass (TCM), followed by 

secondary oxidation products, terrestrial plant emissions, and biomass burning (Figure 2). 

As discussed above, coal burning is the overwhelming source of organic aerosols in winter, 

although numbers of automobiles have rapidly increased these days. In contrast, secondary 

oxidation (i.e., diacids) were found as the most important source of summer organic 

aerosols, contributing one third of TCM, followed by fossil fuel combustion, plastic 

evaporation, and terrestrial plant emissions. The important contributions of photochemical 

oxidation of organic precursors have been reported on urban aerosols from Tokyo and Los 

Angels [Kawamura and Yasui, 2005; Schauer et al., 1996]. Large contribution of plastic 

materials to summer organic aerosols may be characteristic to Chinese aerosols. 

4.  Conclusions 

               A heavy loading of organic pollutants has been confirmed as a common 

phenomenon in many regions of China, not only in the economically developed areas near 

the coast but also in the mid and western regions. However, it was found to be different 

from the satellite observation of tropospheric nitrogen dioxide over China [Richter et al., 

2005], whose column concentrations maximized in the economically developed eastern 

part mainly due to the intensified emissions of vehicular exhaust. The ground surface 

observations demonstrated that the Chinese organic aerosols are characterized by fossil 

fuel and biofuel burning in winter and secondary oxidation products in summer. The high 

loadings of Chinese organic aerosols probably influence the local human health and 

regional/global climate in a significant manner. 
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Figure Captions 
 
 
 
 
Figure 1. Seasonal and spatial distributions of organic compounds in the aerosols from 15 

Chinese cities (ng m-3). 

Figure 2. Source strengths of organic matter in aerosols from 15 Chinese cities. 

 
 
 
 
 
 
 
 
              
 
 

 14



 
 
Table 1.  Concentrations of organic compounds in aerosols (PM2.5) from 15 Chinese cities, 

and comparison with other cities and regions in the world (ng m-3) 

 

Compound  winter  summer Comparison with other cities and regions  
  range mean  range mean  

n-Alkanes(C16-C31)  195-1430 516  10-328 138 69, Los Angeles [Rogge et al., 1993a] 

UCMa  784-6050 2200  37-1520 586 880, Tokyo [Kawamura et al., 1995] 

PAHs  14-701 198  2-168 29 
12, Los Angeles [Rogge et al., 1993a]  
17, London [Baek et al., 1992]  
20, Tokyo [Kawamura, 1989] 

Hopanes(C27-C32)  3-60 18  0-15 3.1 2.6, Miami, Florida [Lang et al., 2002] 

Phthalates  62-445 196  168-2200 551 8.2, Paris [Teil et al., 2006] 

Fatty acids (C10-C34)  318-3240 1020  155-876 457 317, Los Angeles [Rogge et al., 1993a]  
330, Tokyo [Kawamura et al., 2003] 

Fatty alcohols (C12-C32) b  6-527 91  3-42 21  

Sterols  11-1450 297  0-81 19  

Lignin & resin products  5-333 63  1-53 9  

Sugars  64-3240 675  9-735 130 1920, Amazonia [Graham et al., 2002] 

Polyols & polyacids  33-439 120  41-195 110  

Diacids (C2-C11)  315-1920 867  198-2150 796 

1870, Los Angeles [Kawamura and Kaplan, 1987] 
678, Amazonia [Graham et al., 2002] 
636, Tokyo [Kawamura and Yasui, 2005] 
 

aUCM: unresolved complex mixture of hydrocarbons; bfatty alcohols with even carbon number. 
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(b) Phthalates

Figure 1. (Wang et al.)
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