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Barley (Hordeum vulgare L.)—a major cereal crop—has low Pi demand, which is a

distinct advantage for studying the tolerance mechanisms of phosphorus deficiency. We

surveyed dynamic protein succinylation events in barley roots in response to and recovery

from Pi starvation by firstly evaluating the impact of Pi starvation in a Pi-tolerant (GN121)

and Pi-sensitive (GN42) barley genotype exposed to long-term low Pi (40 d) followed

by a high-Pi recovery for 10 d. An integrated proteomics approach involving label-free,

immune-affinity enrichment, and high-resolution LC-MS/MS spectrometric analysis was

then used to quantify succinylome and proteome in GN121 roots under short-term Pi

starvation (6, 48 h) and Pi recovery (6, 48 h). We identified 2,840 succinylation sites (Ksuc)

across 884 proteins; of which, 11 representative Ksuc motifs had the preferred amino

acid residue (lysine). Furthermore, there were 81 differentially abundant succinylated

proteins (DFASPs) from 119 succinylated sites, 83 DFASPs from 110 succinylated sites,

93 DFASPs from 139 succinylated sites, and 91 DFASPs from 123 succinylated sites

during Pi starvation for 6 and 48 h and during Pi recovery for 6 and 48 h, respectively.

Pi starvation enriched ribosome pathways, glycolysis, and RNA degradation. Pi recovery

enriched the TCA cycle, glycolysis, and oxidative phosphorylation. Importantly, many

of the DFASPs identified during Pi starvation were significantly overexpressed during

Pi recovery. These results suggest that barley roots can regulate specific Ksuc site

changes in response to Pi stress as well as specific metabolic processes. Resolving

the metabolic pathways of succinylated protein regulation characteristics will improve

phosphate acquisition and utilization efficiency in crops.

Keywords: Pi stress, Hordeum vulgare L., germplasm, metabolism, succinylated protein

INTRODUCTION

Phosphorus (P)-absorbed in the inorganic form of phosphate (Pi) by plants-is a limiting factor
for plant growth and crop production worldwide (Mora-Macías et al., 2017; Pan et al., 2019). Pi
is an essential constituent of fundamental molecules, including nucleic acids, ATP, and membrane
phospholipids, and its low availability in soil often results in Pi deficiency in plants. In general,
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crops assimilate about 20–30% of the Pi from applied P
fertilizer (Lopez-Arredondo et al., 2014). The application of large
quantities of P fertilizers in soil is not only unsustainable due to
the gradual depletion of phosphate rock but also causes serious
water and soil pollution due to the unused P (Cordell et al., 2009;
Kochian, 2012; Pan et al., 2019). Understanding the molecular
mechanism of the phosphate starvation response (PSR) in plants
and improving Pi acquisition and utilization efficiency are critical
for developing Pi-efficient crop varieties.

Plants have evolved a set of adaptive responses to improve Pi
uptake by roots and recirculate Pi from storage compartments
and senescent tissues under Pi starvation (Lopez-Arredondo
et al., 2014; Péret et al., 2014; Lambers et al., 2015; Pan et al., 2019;
Oldroyd and Leyser, 2020). These measures include modifying
root system architecture (RSA), secreting organic acids and
Pi-releasing enzymes, regulating the expression and activity
of Pi transporters, and reprogramming associated metabolism
pathways (Lan et al., 2018).

The Pi-starvation response in Arabidopsis is divided into
locally and systemically regulated groups according to external
and internal Pi status, respectively. The local regulation
response mainly involves root developmental adaptations,
whereas internal Pi homeostasis is regulated at the systemic
level (Rouached et al., 2010; Thibaud et al., 2010). Modifications
to RSA, including primary root growth inhibition, lateral root
formation and elongation, and root hair proliferation, improve
the root surface area for exploration in shallow soil and promote
topsoil foraging upon Pi depletion (Mora-Macías et al., 2017).
In many species, these alterations to RSA are associated with
alternative strategies to cope with Pi limitations.

Over the past decade, Pi sensing and signal transduction
and the key roles of several Pi-starvation response (PSR) genes
in regulating RSA upon Pi starvation have been defined and
reviewed (Svistoonoff et al., 2007; Péret et al., 2014; Puga
et al., 2017; Wang et al., 2018). Post-translational modifications
(PTMs) are dynamic and reversible protein processes that
modulate the activity of target proteins by regulating their
stability, activity, localization, and signaling pathway (Mann
and Jensen, 2003; Rao et al., 2014), including characterized
phosphorylation, ubiquitination, methylation glycosylation, and
carbonylation, and newly defined succinylation, nitrosylation
and crotonylation (Xu W. et al., 2017). Extensive evidence
has revealed that PTMs play an essential role in regulating
RSA under Pi stress. Plant protein PTMs via ubiquitination
is well-characterized and mainly involves the auxin signaling
pathway [e.g., SIZ1 (Miura et al., 2005), TIR1 (Pérez-Torres
et al., 2008), MAX2 (Mayzlish-Gati et al., 2012), BES1 (Singh
et al., 2014), PIN2 (Leitner et al., 2012)] and autophagy activation
[e.g., NLA (Kant et al., 2011), LPR2 (Svistoonoff et al., 2007),
UBP14 (Li et al., 2010), OTU5 (Suen et al., 2018)] to regulate
RAS remodeling copy with Pi starvation. Only a few genes
encoding proteins involved in RSA are represented in the
other PTM types. Pi deficiency enhanced phosphoenolpyruvate
carboxylase (PEPC) activity in Lupinus albus roots (Johnson
et al., 1996). Michael et al. revealed that in vivo PEPC activation
via phosphorylation contributes to organic acid synthesis and
exudation that dominates carbon metabolism in proteoid roots

in Pi-deficient harsh hakea (Hakea prostrata) (Shane et al., 2013).
Indirect evidence indicated that phosphorylation of transcription
factors by a novel P-starvation tolerance 1 (PSTOL1) gene that
encodes PSI protein kinase regulated gene expression to enhance
early root growth in rice under P-deficient soils (Gamuyao et al.,
2012). Histone deacetylase HDA19 controls the epidermal cell
length of roots, and regulates genes encoding SPX domain-
containing proteins and those involved in membrane lipid
remodeling during acclimation to Pi deficiency (Chen et al.,
2015). The functional significance of PTMs in the RSA response
to Pi starvation and the intricate crosstalk between PTM types
needs to be investigated.

Barley (Hordeum vulgare L.) is a major cereal crop grown
worldwide that has distinct advantages as a model species for
studying the mechanisms of tolerance to P deficiency due to low
Pi demand. Our previous study revealed that barley genotype
GN121 has high phosphorus utilization efficiency (PUE); low P
conditions significantly enriched differentially expressed genes
involved in P metabolism in GN121 (Ren et al., 2018), but
the regulatory role of PTMs in RSA of barley in response to
Pi limitations is unknown. Antibody-based affinity enrichment
and highly sensitive mass spectrometry can be used to identify
most expressed proteins and for the global analysis of protein
succinylation with good accuracy and reproducibility (Aebersold
and Mann, 2016; Zhou et al., 2018).

In the present study, we present an integrated whole-
genome quantitative succinylation (Ksuc) proteomic approach
to compare the response to Pi starvation in high PUE barley
roots during the short-term and during a recovery course. Our
results reveal a very distinct global “omic” quantitative profile and
succinylated proteins in response to Pi stress. Furthermore, our
dynamic proteomic profile identified the regulatory Pi starvation
and recovery response pathways, as well as distinct features of
succinylation in response to Pi stress.

MATERIALS AND METHODS

Materials and Pi Starvation Treatment
Conditions
Two spring barley genotypes—GN121 (low-Pi-tolerant) and
GN42 (low-Pi-sensitive)—were used (Ren et al., 2016). Seeds
of GN121 and GN42 were obtained from Gansu Agricultural
University (Lanzhou, China). These seedlings and plant growth
in hydroponic culture conditions are described elsewhere under
long-day (16 h light/8 h dark cycle) conditions at a temperature
20± 5◦Cwith 50–70% relative humidity and irradiation intensity
of approximately 300 µmol m−2 s−1 (Ren et al., 2018). Briefly,
seeds were surface sterilized and pre-germinated; on day 10, after
removing the endosperms, the seedlings were transplanted into
a modified Hoagland hydroponic solution containing 0.39mM
KH2PO4 (high Pi,+Pi) or 0.039mM KH2PO4 (low Pi, –Pi).

For long-term Pi starvation, GN121 and GN42 were grown
under low Pi for 40 d and then resupplied with high Pi for 10 d.
Control plants were grown for 50 d with high Pi. The nutrient
solutions were renewed weekly to avoid nutrient depletion below
70% of the initial concentration. Plants were sampled every 10
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days to monitor root development. Five biological replicates
were collected for each time point. The fresh roots from 10
individual plants of each biological replicate were scanned using
an EPSON1680 scanner (Epson, Long Beach, CA, USA) at
300 dpi. The scans were analyzed using WinRHIZO software
(Regent Instruments Inc., Quebec, ON, Canada) to quantify total
root length, surface area, and volume, and were then used to
determine fresh weight of the roots.

For short-term Pi starvation, low-Pi-tolerant GN121 was
grown under low Pi for 48 h and then resupplied with high Pi for
48 h. Roots were harvested on four occasions in three biological
replicates for protein extraction: (1) Pi-starvation phase, 6 h and
48 h after exposure to low Pi; (2) Pi-recovery phase, 6 and 48 h
after being resupplied with high Pi.

Protein Extraction
Proteins were extracted as described elsewhere (Zhou et al.,
2018). Briefly, the root samples were ground in liquid nitrogen
and then homogenized in lysis buffer containing 8M urea, 1%
Triton-100, 10mM dithiothreitol, and 1% protease inhibitor
cocktail. The mixtures were sonicated three times on ice before
removing the remaining debris by centrifugation at 20,000 g for
10min at 4◦C. Soluble proteins were precipitated with cold 20%
trifluoroacetic acid (TCA) for 2 h at −20◦C. After centrifugation
at 12,000 g for 10min at 4◦C, the supernatant was discarded.
The protein precipitates were washed three times with ice-
cold acetone. The proteins were dissolved in 8M urea, and the
concentrations were determined using a BCA (Pierce, Bonn,
Germany) kit according to the manufacturer’s instructions.

Immunoblot
Proteins were isolated from the roots of GN121 in the Pi-
starvation phase (0, 3, 6, 12, 24, 48, 72 h, 5 d, and 7 d) and Pi-
recovery phase (3, 6, 12, 24, 48 h and 72 h). For immunoblotting,
20 µg protein from each sample was separated using 12% SDS-
PAGE and electroblotted onto polyvinylidene fluoride (PVDF)
membrane. The blot was detected by the pan anti-succinyllysine
antibody (1:1000 dilution; PTM Biolabs, Hangzhou, China),
washed extensively with PBS buffer plus 1% Tween 20, and then
probed with alkaline phosphatase conjugated goat secondary
anti-mouse IgG peroxidase antibody (1:5000 dilution; Thermo
Fisher Scientific, Pierce, USA).

Trypsin Digestion
The protein solution was reduced by adding 10mM DTT and
incubating at 37◦C for 1 h. Proteins were then alkylated with
20mM iodoacetamide at room temperature for 45min in the
dark. For trypsin digestion, the protein was diluted by adding
100mM TEAB to urea (<2M) before adding trypsin at 1:50
trypsin:protein mass ratio for the first digestion overnight and
1:100 trypsin:protein mass ratio for the second 4 h digestion.

Affinity Enrichment
For succinylation, the tryptic peptides were dissolved in IP
buffer (100mM NaCl, 1mM EDTA, 50mM Tris-HCl, 0.5% NP-
40, pH 8.0). The supernatant was transferred to pre-washed
antibody beads (PTM Biolabs, Hangzhou, China) to bind Ksuc

peptides. The mixtures were gently shaken at 4◦C overnight.
The beads were then washed four times with IP buffer and
twice with ddH2O. Finally, 0.1% trifluoroacetic acid was added
three times to elute the bound peptides, which were vacuum-
dried. The resulting peptides were desalted with C18 ZipTips
(Millipore), according to the manufacturer’s instructions for LC-
MS/MS analysis.

LC-MS/MS Spectrometric Analysis
The tryptic peptides were dissolved in solvent A (0.1% formic
acid, 2% acetonitrile/ in water), directly loaded onto a PTM
Biolabs-made reversed-phase analytical column (ReproSil-Pur
C18-AQ, 1.9µm; Dr Maisch; 25 cm length, 75µm i.d.). Peptides
were separated with a gradient from 6 to 22% solvent B (0.1%
formic acid in acetonitrile) over 70min, 22 to 32% in 14min and
climbing to 80% in 3min then holding at 80% for the last 3min,
all at a constant flow rate of 300 nL/min on a nanoElute UHPLC
system (Bruker Daltonics).

The succinylation peptides were also dissolved in solvent A
(0.1% formic acid, 2% acetonitrile/ in water), directly loaded
onto a PTM Biolabs-made reversed-phase analytical column
(ReproSil-Pur C18-AQ, 1.9µm; Dr Maisch; 25 cm length, 75µm
i.d.). Peptides were separated with a gradient from 6 to 22%
solvent B (0.1% formic acid in acetonitrile) over 43min, 22–30%
in 13min and climbing to 80% in 3min then holding at 80%
for the last 3min, all at a constant flow rate of 450 nL/min on
a nanoElute UHPLC system.

The peptides were subjected to CaptiveSpray source followed
by the timsTOF Pro (Bruker Daltonics) mass spectrometry.
The electrospray voltage applied was 1.60 kV. Precursors and
fragments were analyzed at the TOF detector, with a MS/MS
scan range from 100 to 1700 m/z. The timsTOF Pro was
operated in parallel accumulation serial fragmentation (PASEF)
mode. Precursors with charge states 0–5 were selected for
fragmentation, and 10 PASEF-MS/MS scans were acquired per
cycle. The dynamic exclusion was set to 30 s.

Database Search
The resulting MS/MS data were processed using the MaxQuant
search engine (v.1.6.6.0; Max Plank Institute of Biochemistry,
Germany). Group-specific parameters and fractions were defined
for the whole proteome and succinyllysine-enriched samples,
respectively. Tandem mass spectra were searched against the
Hordeum vulgare L. protein database (https://webblast.ipk-
gatersleben.de/barley_ibsc/downloads; 39,743 protein entries,
downloaded at July 23th, 2019) with the following parameters:
(1) Trypsin/P specified as the cleavage enzyme allowing up to
two missing cleavages; (2) mass tolerance for precursor ions
set as 20 ppm in the first and main search, and 0.02 Da
for fragment ions; (3) carbamidomethyl on Cys as a fixed
modification, and (4) oxidation on Met and acetylation on
the protein N-terminus specified as variable modifications. For
succinylation peptides, succinylation on Lys was also specified
as variable modifications. False discovery rate thresholds for
protein, peptide, and modification sites were adjusted to <1%.
The minimum peptide length was set at 7. The site localization
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probability was set as >0.75. The minimum score for modified
peptides was set >40.

Label-free quantification (LFQ) was based on extracted ion
currents (XICs) of peptides, and the intensity-based absolute
quantification (iBAQ) in MaxQuant was used to quantify
succinylated protein abundance (Cox et al., 2014).

Bioinformatics Annotation Analysis
For protein LFQ, the iBAQ approach was used to calculate
protein abundance based on the extracted ion currents (XICs)
of peptides (Schwanhäusser et al., 2011). Only the abundance
succinylated peptides with consistent fold-changes in at least two
of the three (not a NaN) replicates were counted. The significance
of the change in abundance among samples was evaluated as
differentially expressed by a fold-change in abundance > 1.5
with a P-value < 0.05 according to one-way analysis of variance
followed by Student’s t-test.

The Kyoto Encyclopedia of Genes and Genomes (KEGG,
http://www.kegg.jp/) database was used to annotate the
significantly enriched protein pathways with a corrected P <

0.05. For each GO category, a two-tailed Fisher’s exact test
was used to calculate the enrichment of each identified protein
against the GO database (P < 0.05). InterProScan (http://www.
ebi.ac.uk/interpro/) was used for protein domain annotation.
Conserved amino-acid sequence motifs of succyl-21-mers
(ten amino acids upstream and downstream of the site) were
analyzed using Motif-X (http://meme-suite.org/tools/momo)
with P < 0.000001. Furthermore, all protein sequences in
the barley database were used as the background database
parameter. A subcellular localization predication soft WoLF
PSORT (http://www.genscript.com/psort/wolf_psort.html) was
used to predict subcellular localization of the protein. The R
package Mfuzz was used for hierarchical clustering analyses
(HCL) of the differentially succinylated sites based on the
relative succinylation intensity. Protein–protein interaction
(PPI) network analysis was obtained using STRING software
(v.10.5) according to a confidence score >0.7 and visualized
by Cytoscape software (version 3.6.1). A graph-theoretical
clustering algorithm, molecular complex detection (MCODE),
was used to analyze densely connected regions.

RESULTS

Plant Growth Response to Changes in
Plant Pi Status
Plant root architecture adjustment is a crucial adaptive response
during Pi deficit. For long-term Pi starvation, barley seedlings
of GN121 (Pi-tolerant) and GN42 (Pi-sensitive) were submitted
to a range of Pi regimes, including grown under low Pi for
40 d and followed by a recovery with high Pi for 10 d. We
compared the root architecture, including root length, surface
area, volume, and biomass, of two low-Pi tolerance barley
genotypes under low P stress to identify changes triggered by
Pi starvation (Figure 1). Phosphate depletion changed the RSA
of the two barley genotypes, which was more evident with the
continuous low-Pi stress. Low-Pi stress significantly decreased
seedling root length, surface area, volume, and biomass, relative

to the high-Pi control, more so in the low-Pi-sensitive GN42 than
the low-Pi-tolerant GN121 (Figure 1). The Pi-recovery phase
induced a partial recovery in root development, especially in
GN121, indicating that it is an ideal genotype for studying root
developmental adaptations and identifying important regulators
under low Pi.

Protein Lysine Succinylation in GN121
Roots Under Different Pi Conditions
We investigated global succinylated protein-level changes under
different Pi conditions. Proteins were isolated from the roots
of GN121 under Pi starvation (0, 3, 6, 12, 24, 48, 72 h, 5
d, and 7d) and Pi recovery (3, 6, 12, 24, 48, and 72 h).
The protein samples were analyzed using highly sensitive and
lysine succinylation-specific pan-antibodies. The immunoblot
results revealed succinyllysine proteins with a wide range of
molecules that differed between the Pi-starvation and Pi-recovery
phases (Figure 2). Importantly, roots during Pi starvation
displayed more signals 10–25 kD and less specific signals
among 55–100 kD compared with Pi recovery (Figure 2).
The overall succinylated protein levels increased with the
duration of Pi starvation/recovery, relative to the 0 h control,
suggesting that lysine succinylation regulates different protein
functions and succinylation levels at different times during
Pi starvation/recovery. The most significant differences in
succinyllysine levels occurred within 48 h of Pi starvation and Pi
recovery, relative to the 0 h control (Figure 2).

To comprehensively assess lysine succinylome dynamics in
roots of Pi-tolerant barley variety GN121 under different Pi
conditions, we designed a short-term Pi starvation approach
with a Pi-starvation phase (6, 48 h) and Pi-recovery phase (6,
48 h). An integrated proteomics approach involving label-free,
immune-affinity enrichment, and high-resolution LC-MS/MS
spectrometric analysis was used to quantify the succinylome and
proteome of GN121 roots under different Pi levels to investigate
the changes in specific increased or decreased and succinylated
proteins. The general experimental workflow is shown in
Figure 3. The mass spectrometry data of the succinylome and
proteome have been deposited at the ProteomeXchange with
dataset identifier PXD022052 and PXD022053, respectively.

Identification and Characterization of
Succinylome in Roots During Pi Starvation
and Recovery Phases
We identified 2,840 Ksuc sites across 884 proteins with a high
score (>60) and a high confidence localization score (>0.75),
of which 2,137 succinylated-lysine sites from 697 proteins
were quantified (Figure 4A). To understand the regulation
and amino acid residue preference at the sites surrounding
the succinylated lysine, we carried out succinylation site motif
analysis by examining the sequences from −10 to +10 of the
2,840 succinylation sites using the Motif-X program. There were
11 distinguished motifs identified—all with the preferred amino
acid residue of lysine—including K−10/−9/−8/−7/−6/−5/−4Ksuc
and K+10/+9/+8/+7Ksuc (Figure 4B). The frequency of amino
acid residues flanking succinylated lysine was analyzed to

Frontiers in Plant Science | www.frontiersin.org 4 March 2021 | Volume 12 | Article 649147

http://www.kegg.jp/
http://www.ebi.ac.uk/interpro/
http://www.ebi.ac.uk/interpro/
http://meme-suite.org/tools/momo
http://www.genscript.com/psort/wolf_psort.html
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles


Wang et al. Succinyl-Proteome of Short-Term Phosphate Stress

FIGURE 1 | Root characteristics of two barley lines with different low-Pi tolerance in response to Pi starvation and recovery. (A) GN121 (Pi-tolerant) and GN42

(Pi-sensitive) seedlings grown in normal P (+, 0.39mM Pi) and low P (–, 0.039mM Pi) for 10, 20, 30, or 40 d, followed by recovery P (+, 0.39mM P) for 10 d; (B) total

root length, (C) root surface area, and (D) root volume of GN121 seedlings; (E) total root length, (F) root surface area, and (G) root volume of GN42 seedlings; (H,I)

are plant and root fresh weights of GN121 and GN42 seedlings, respectively. Data are means ± SD (n = 5); * Indicates significant differences (one-way ANOVA,

Duncan, P ≤ 0.05) between normal and Pi treatments.
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FIGURE 2 | Dynamics of protein succinylation in roots of GN121 seedlings under Pi starvation and recovery using the anti-suc-lysine antibody. For immunoblot

results, proteins were collected from (A) low-Pi (0.039mM Pi) at 0, 3, 6, 12, 24, 48, 72 h, 5 d, and 7 d, and (B) Pi recovery (0.39mM Pi) at 3, 6, 12, 24, 48, and 72 h.

The same amount of protein (25 µg per lane) was loaded in each panel.

FIGURE 3 | Workflow used to analyze lysine succinylation in seedling roots in response to Pi starvation and recovery.

investigate the enrichment or depletion of various amino
acids (Figure 4C). Lysine (K) from −4 to −10 and +4 to +10
positions, valine (V) from +1 to +2 positions, arginine (R)
from −7 to −8 positions, and alanine (A) from +2 to +3
positions were preferred, and these patterns agreed with the
identified conserved motifs reported in this study. After setting a
quantification ratio of >1.5 and P < 0.05 as cutoff, we identified

difffrentially abundant succinylated proteins (DFASPs) and sites
within each group. Compared with the control, there were 81
DFASPs from 119 succinylated sites during Pi starvation (6 h),
83 DFASPs from 110 succinylated sites during Pi starvation
(48 h), 93 DFASPs from 139 succinylated sites during Pi recovery
(6 h), 91 DFASPs from 123 succinylated sites during Pi recovery
(48 h) (Figure 4D). The average degree of succinylation in these
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FIGURE 4 | Properties of the succinylated peptides in barley roots. (A) Summary of the succinylome identified and quantified; (B) motif analysis of identified

succinylated sequence by Motif-X software. The motifs with high significance (P < 0.000001) are shown; (C) position-specific amino acid composition around the

succinylation sites. The –log10 (Fisher’s exact test P-value) for every amino acid in each position (from −10 to +10) is shown; (D) overview of the differentially

succinylated sites and proteins (fold change > 1.5, P < 0.05).

DFASPs ranged from 1.33 to 1.49, indicating that most of the
succinylated proteins contained only one Ksuc site and that one
Ksuc site can affect protein function (Supplementary Table 1).
Moreover, at least five heavily succinylated proteins
contained ≥4 Ksuc sites, including adenosylhomocysteinase
(HORVU2Hr1G110120.3, SAHase, five sites), glyceraldehyde-
3-phosphate dehydrogenase C2 (HORVU6Hr1G054520.3,
GAPDH C2, four sites), and mitochondrial ADP/ATP carrier
protein (HORVU6Hr1G070780.1) during Pi starvation, and
ATP synthase subunit beta (HORVU1Hr1G083840.2, four sites),
fructose-bisphosphate aldolase 2 (HORVU3Hr1G088540.1,
four sites), and the mitochondrial ADP/ATP carrier

protein (HORVU6Hr1G070780.1) during Pi recovery
(Supplementary Table 1). The mitochondrial ADP/ATP
carrier protein catalyzes the ADP import from the cytosol and
ATP export from the mitochondrial matrix (Dahout-Gonzalez
et al., 2006), which had the most succinylated-lysine sites, being
five, six, six, and seven in a single protein during Pi starvation
(6 h), Pi starvation (48 h), Pi recovery (6 h), and Pi recovery
(48 h), respectively (Supplementary Table 1).

SAHase serves as a major regulator of SAM (S-
adenosylmethionine)-dependent biological DNA methylation
reactions by removing the SAH (S-adenosylhomocysteine)
product involved in the ethylene biosynthetic pathway, which
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regulates many aspects of growth and development (Ravanel
et al., 1998). Glyceraldehyde 3-phosphate dehydrogenase
(GAPDH) plays a key regulatory function in the glycolysis
pathway but may be a multifunctional protein involved in
various cellular processes, such as DNA repair and regulation
of redox homeostasis (Yuan et al., 2019a). The accumulation
of ATP synthase subunit beta (Atp2), as a negative plant
cell death regulator, enabled roots to grow rapidly during
Pi recovery (Chivasa et al., 2011). Fructose-bisphosphate
aldolase is another glycolytic enzyme, which catalyzes an aldol
cleavage of fructose-1, 6-bisphosphate to dihydroxyacetone-
phosphate and glyceraldehyde 3-phosphate and a reversible
aldol condensation; its activity increases in rice roots treated
with gibberellin (GA) (Konishi et al., 2004) and under salt
stress (Long et al., 2016). However, the role of succinylation
modification on these proteins in the root response to Pi
nutrition is unknown.

Enrichment analysis (P < 0.05) using the KEGG, GO, and
InterPro domain was undertaken to investigate the possible
roles of these DFASPs. The KEGG pathway enrichment
analysis showed a broad distribution of these DFASPs at
different Pi levels (Supplementary Table 2). The ribosome and
glycolysis/gluconeogenesis pathways were the most enriched
ones during Pi starvation, and the citrate cycle (TCA cycle),
glycolysis/gluconeogenesis, and glyoxylate and dicarboxylate

metabolism pathways were the most enriched ones during Pi
recovery (Figure 5).

The GO biological process category annotation
indicated a wide range of cellular and metabolic processes
that were susceptible to regulation by succinylation
(Supplementary Figure 1; Supplementary Table 3). The
subcellular localization prediction revealed about 90%
of the lysine-succinylated proteins were located in
chloroplasts, cytoplasm, mitochondria, and the nucleus
(Supplementary Figure 2). Interestingly, the enrichment
analysis of the InterPro domain showed that lysine-succinylated
substrates-ATP synthase alpha/beta family, beta-barrel domain,
and ATP synthase alpha/beta family, nucleotide-binding
domain—were enriched during Pi starvation and Pi recovery
(Supplementary Figure 3; Supplementary Table 4). These
results indicate that succinylation differs during Pi starvation
and recovery, and the enriched succinylation is vital for the
regulation of energy metabolism in the Pi-starvation response.

Succinylome Dynamics in Roots During Pi
Starvation and Recovery Phases
Quantitative succinylome profiling was undertaken to investigate
the effects of lysine succinylation on Pi starvation and
recovery. The profiling identified 78 increased DFASPs with
115 succinylation sites and three decreased DFASPs with four

FIGURE 5 | KEGG pathway enrichment analysis of DFASPs in roots under Pi starvation at 6 h (A) and 48 h (B) and Pi recovery at 6 h (C) and 48 h (D).
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succinylation sites in the Pi starvation (6 h) treatment, and 79
increasedDFASPs with 105 succinylation sites and four decreased
DFASPs with five succinylation sites in the Pi starvation
(48 h) treatment (Figure 4). The increased DFASPs were mainly
involved in the glycolysis/gluconeogenesis, ribosome, and RNA
degradation pathways (Supplementary Table 2; Figure 5). A
Venn diagram of DFASPs was constructed (Figures 6A,B),
which showed 61 increased DFASPs with 80 succinylation
sites co-expressed at the stage of Pi deficiency (Pi-responsive

DFASPs), which were associated with the ribosome and
glycolysis/gluconeogenesis pathways (Supplementary Table 5).

The hierarchical clustering analysis (HCL) divided the Pi-
responsive DFASPs into three clusters (Figure 6C). Cluster 1 was
the largest one with 28 increased proteins (32 Ksuc sites) that
peaked at 6 h during Pi starvation and remained steady thereafter;
proteins related to the ribosome, glycolysis/gluconeogenesis,
and carbon fixation in photosynthetic organisms pathways
were significantly enriched in this cluster. Cluster 2 contained

FIGURE 6 | Summary of the differentially succinylated proteins in response to Pi starvation. (A,B) Venn diagram of difffrentially abundant succinylated proteins (sites) in

response to Pi starvation; (C) functional clustering analyses (HCL) of the differentially succinylated sites based on the relative succinylation intensity, relative to the

control. Cluster identification and number of profiles included in each cluster are indicated on the left. A detailed view of individual profiles is in

Supplementary Figure 6; (D) KEGG pathway enrichment analysis of DFASPs in each cluster.
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14 proteins (20 Ksuc sites), which steadily increased during
Pi starvation; ribosome- and glycolysis/gluconeogenesis-related
proteins were significantly enriched. Cluster 3 contained 25
proteins (28 Ksuc sites), which steadily increased in the
first 6 h of Pi starvation, then decreased; ribosome- and
oxidative phosphorylation-related proteins were remarkably
overrepresented (Figure 6D).

There were 88 increased DFASPs with 134 succinylation sites
and five decreased DFASPs with five succinylation sites, relative
to the control, in the Pi recovery (6 h) treatment, and 83 increased
DFASPs with 115 succinylation sites and eight decreased DFASPs
with eight succinylation sites in the Pi recovery (48 h) treatment
(Figure 4D). These DFASPs were mainly enriched in the TCA
cycle, glycolysis/gluconeogenesis, and oxidative phosphorylation
pathways, which differed from the Pi-starvation phase, except
that all were involved in the glycolysis/gluconeogenesis pathway
(Supplementary Table 2; Figure 5). The Venn diagram showed
63 increased DFASPs with 81 succinylation sites co-expressed at
the stage of Pi deficiency (Pi-recovering DFASPs) (Figures 7A,B)
and associated with the glycolysis/gluconeogenesis and TCA
cycle pathways (Supplementary Table 5).

The HCL divided Pi-recovering DFASPs into four clusters
(Figure 7C; Supplementary Table 6). Cluster 4 was the largest
one with 26 increased proteins (29 Ksuc sites) that peaked at
6 h and remained steady thereafter; oxidative phosphorylation
and ribosome-related proteins were remarkably overrepresented.
Cluster 1 contained 18 proteins (19 Ksuc sites), which steadily
increased in the first 6 h, then decreased; ribosome-related
proteins were significantly enriched. Cluster 2 contained 24
increased proteins (30 Ksuc sites) that steadily increased during
Pi starvation; glycolysis/gluconeogenesis, TCA cycle, and carbon
fixation in photosynthetic organisms pathways were notably
identified in this cluster. Cluster 3 only contained three proteins
and no significant enrichment pathways (Figure 7D).

Proteome Profiling in Roots Under Pi
Starvation and Recovery Conditions
Our analysis yielded 6,734 proteins; of which, 4,920
proteins were precisely quantified with a high degree of
repeatability (Supplementary Figure 4). During Pi starvation
(6 h), 140 proteins (91 increased and 49 decreased) were
differentially abundant (DAPs), and enriched during
phenylpropanoid biosynthesis, glycolysis/gluconeogenesis,
cysteine and methionine metabolism, and carbon fixation in
photosynthetic organisms pathways. During Pi starvation
(48 h), only the phenylpropanoid biosynthesis pathway
was significantly enriched for the 105 identified DAPs (59
increased and 46 decreased). During Pi recovery (6 h),
78 proteins were differentially abundant (43 increased
and 35 decreased) (Supplementary Table 7), which were
significantly enriched in the glycolysis/gluconeogenesis,
cysteine, and methionine metabolism, MAPK signaling
pathways (Supplementary Table 8). During Pi recovery (48 h),
the phenylpropanoid biosynthesis, glutathione metabolism,
carbon fixation in photosynthetic organisms pathways
were significantly enriched in the 88 identified DAPs (44

increased and 44 decreased) (Supplementary Table 7). The
KEGG enrichment analysis revealed distinct differences
between succinylome and proteome in response to Pi
starvation/recovery, although individual processes of both
omics were overrepresented (e.g., glycolysis/gluconeogenesis)
(Supplementary Table 8). Furthermore, to determine whether
the observed changes in succinylation levels were caused
by protein abundance changes, we compared the quantified
succinylome and proteome. Only four proteins—oxidative
phosphorylation (HORVU2Hr1G072660.2) and solute
carrier family 25 (HORVU4Hr1G027150.1) in Pi starvation
(6 h), and ribulose-bisphosphate carboxylase large chain
(HORVU7Hr1G088190.6) and mugineic-acid 3-dioxygenase
(HORVU7Hr1G122350.2) in Pi recovery (48 h)—overlapped
the DFASPs (Supplementary Table 9), which only accounted
for 1.2 and 1.0% of the total DFASPs and DAPs, respectively
(Supplementary Figure 5). Therefore, a significant change in
succinylated peptides corresponded with proteins that did not
significantly change in abundance. This result indicates a very
weak correlation between the paired succinylation and protein.

PPI Networks of Succinylated Proteins in
Response to Pi Levels
To reveal the relationships between DFASPs involved in the
same biological process, the PPI networks were assembled for
all succinylated proteins in roots using Cytoscape software
under Pi starvation and recovery. During Pi starvation, the
PPI network consisted of 73 DEKSs as nodes, linked by
several identified direct physical interactions obtained from the
STRING database (Figure 8; Supplementary Table 10). Most
of the DFASPs were increased during Pi starvation. The
ribosome, TCA cycle, glycolysis/gluconeogenesis, and protein
processing pathways were enriched (see highlighted circles
of different sizes in Figure 8). In the Pi-recovery phase, 85
DFASPs were nodes, and only three DFASPs decreased, relative
to the Pi-starvation phase; proteins with the functional terms
“ribosome” and “glycolysis/gluconeogenesis” are highlighted
(Figure 9; Supplementary Table 10).

DISCUSSION

It is well-documented that the high developmental plasticity
of plant roots plays an important role in Pi acquisition for
coping with adverse environmental conditions (Gruber et al.,
2013; Sandhu et al., 2016; Wang et al., 2017; Silva Navas et al.,
2019). Plants adjust their RSA to Pi deprivation by inhibiting
primary root growth, increasing lateral root density, enhancing
root hair development, and forming cluster roots, all of which
enhance a plant’s soil exploration capacity by increasing the
root surface area in the top layers of the soil (Niu et al.,
2013; Mora-Macías et al., 2017). In this study, we analyzed
the morphology dynamics in barley seedling roots over a time-
course of Pi depletion and resupply. Longer exposure to Pi
depletion inhibited root development in both barley genotypes—
low-Pi-tolerant GN121 and low-Pi-sensitive GN42. Furthermore,
GN121 increased root length and lateral root growth more than
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FIGURE 7 | Summary of differentially succinylated proteins in response to Pi recovery. (A,B) Venn diagram of difffrentially abundant succinylated proteins (sites) in

response to Pi recovery; (C) functional clustering analyses (HCL) of the differentially succinylated sites based on the relative succinylation intensity, relative to the

control. Cluster identification and number of profiles included in each cluster are indicated on the left. Detailed view of individual profiles is in Supplementary Table 6;

(D) KEGG pathway enrichment analysis of DFASPs in each cluster.

GN42 during Pi starvation and recovery (Figure 1). These results
suggest that the root structure and morphology differ between
barley genotypes in response to low-P conditions, and Pi-tolerant
GN121 is advantageous for systematic research on root system
plasticity as it increases its root surface area in response to
P stress.

Several time-course transcriptome (Woo et al., 2012; Secco
et al., 2013; Ren et al., 2018), proteome (Iglesias et al., 2013; Jiang
et al., 2017), and metabolome (Alexova et al., 2017) studies on
Pi depletion and resupply are available. However, PTM studies
that focus on temporal development of the Pi-stress response
are limited to phosphorylation (Gregory et al., 2009; Yang J.
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FIGURE 8 | Protein–protein interaction (PPI) network of succinylated proteins in response to Pi starvation. All DFASPs were searched against the STRING database

(version 10.5) for PPIs and visualized using Cytoscape (version 3.6.1; http://www.cytoscape.org/). We collated all interactions with a high confidence score (>0.7). A

graph-theoretical clustering algorithm, molecular complex detection (MCODE), was used to analyze densely connected regions. The circle size represents the

numbers of DFASPs; red indicates increased and blue indicates decreased DFASPs. Further details are in Supplementary Table 10.

et al., 2019), ubiquitination (Iglesias et al., 2013; Ye et al., 2018;
Pan et al., 2019), and sumoylation (Kant et al., 2011; Feng
et al., 2017; Datta et al., 2018). Lysine succinylation-a ubiquitous
protein PTM pattern-plays a vital role in regulating protein
function in both eukaryotic and prokaryotic cells (Xie et al., 2012;
Weinert et al., 2013). However, its function in barley, a model
plant for Gramineous species with tolerance to poor nutrient
environments, is largely unknown.

We used antibody-based affinity enrichment, high-resolution
LC-MS/MS analysis and integrated bioinformatics analysis
to determine whether lysine succinylome (Ksuc) changed
in seedling roots of Pi-tolerant GN121 roots under Pi
starvation/recovery. An integrated proteomics approach was
used to further investigate the changes in succinylome and
proteome in barley roots under Pi starvation for 6 h or 48 h,
and recovery for 6 or 48 h. To the best of our knowledge,

lysine succinylome in barley has not been reported before
(Supplementary Table 11). This study identified 2,840 Ksuc sites
across 884 proteins with a high score and a high confidence
localization score, which is second only to Zhou et al. in
their report on rice leaves under oxidative stress (Zhou et al.,
2018). This study will greatly expand the knowledge of lysine
succinylation substrates and sites in barley roots in response to
Pi supply.

Pathway and Protein-Level Convergence
of Succinylation and Abundance Change
on Proteins Involved in Pi Stress
Quantitative time-course PTMome analyses identify plant
metabolism processes that are regulated under stress conditions
(Glen et al., 2019). A systems-level analysis of the root
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FIGURE 9 | Protein–protein interaction (PPI) network of succinylated proteins in response to Pi recovery. Same as Figure 8.

succinylome and proteome response to Pi stress was undertaken
to discern protein succinylation levels and/or abundance
change in proteins at the pathway and protein level. The
KEGG pathway enrichment results of DFASPs and DAPs
found that, while some pathways were overrepresented
with both omics (e.g., glycolysis/gluconeogenesis), protein
succinylation and abundance seem to be divided into distinct
metabolic pathways (Figures 6, 7). DFASPs were predominantly
involved in the ribosome, glycolysis/gluconeogenesis,
TCA cycle, and glyoxylate and dicarboxylate metabolism
pathways, while DAPs were involved in phenylpropanoid
biosynthesis, glycolysis/gluconeogenesis, and carbon fixation
in photosynthetic organisms pathways. At the protein
level, only four proteins overlapped between DFASPs and
DAPs, which belonged to different metabolic processes
(Supplementary Table 9). A quantitative ubiquitylomics analysis
of rice seed germination revealed that protein abundance in the
ubiquitylome is not correlated with that in the proteome (He
et al., 2020). Consistent with this phenomenon, we did not find
a significant correlation between the overlapping succinylations
and proteins (Supplementary Figure 5). Overall, these two

omics mainly intersected on different proteins in the same
metabolic pathway in response to Pi stress.

Motif Comparison of Identified
Lysine-Succinylated Peptides
The amino acid residue patterns at particular positions
surrounding succinylation lysine revealed a significant bias in
eukaryotes and prokaryotes (Park et al., 2013). In D. officinale,
two types of conserved succinylation motifs, K+6Ksuc, and
E−1Ksuc, were identified (Feng et al., 2017). Four preferred
succinylation motifs, P+1Ksuc, E+2Ksuc, E−3KsucK+1, and D+2

Ksuc, were found in Chinese hickory (Carya cathayensis) during
the grafting process (Yuan et al., 2019b). Six distinguished
succinylation motifs, including K−6Ksuc and R+7Ksuc, were
identified in developing rice seeds (Meng et al., 2019). In
our study, consensus peptide motifs for the Ksuc sites were
extracted by Motif-X software. Eleven representative Ksuc
motifs (K−10/−9/−8/−7/−6/−5/−4Ksuc and K+10/+9/+8/+7Ksuc)
were defined with the preferred amino acid residue of
lysine (Figures 4B,C). Similar results were reported in rice
leaves exposed to oxidative stress; of the 26 conserved
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succinylation motifs, one of the K−10/−9/−8/−7Ksuc motifs was
overrepresented (Zhou et al., 2018). Several representative amino
acids, including lysine (K), valine (V), alanine (A), isoleucine
(I), glycine (G), and tyrosine (Y), were highly enriched around
the succinylated-lysine sites. While the positions differed, these
amino acids were not unique but shared with other plants,
including Camellia sinensis (Xu Y. et al., 2017), rice (Zhou et al.,
2018), andDendrobium officinale (Feng et al., 2017). The analysis
of conserved motifs and amino acid preferences indicates that
protein lysine succinylation is a highly regulated modification
process that differs between species, organs, development stages,
environmental stimulus, etc.

Lysine-Succinylated Proteins in Pi Stress
Pi is an essential ingredient in key plant molecules, such
as nucleic acids, ATP, and membrane phospholipids (Plaxton
and Tran, 2011). Plants improve Pi acquisition and utilization
efficiency under Pi deficiency by modulating RSA, regulating
the expression and activity of Pi transporters, secreting organic
acids and enzymes, and modulating plant metabolic pathways
(Pan et al., 2019). To study whether Pi starvation and recovery
altered Ksuc, we exposed Pi-tolerant barley seedlings to low
Pi for 48 h, followed by Pi recovery for 48 h. Of the identified
Ksuc sites with a 1.5-fold change of modified peptides in
at least both replicates, relative to the control, about 3.78–
4.33% altered their protein abundance in response to Pi stress
(Figure 4A), with most (95.24–96.27%) increasing in abundance
(Figure 4D). Furthermore, analyzing the subcellular localization
of DFASPs revealed that these DFASPs were distributed across
diverse cellular components (Supplementary Table 2). However,
the KEGG enrichment analysis showed that these DFASPs
were only involved in a few metabolic processes, including
the ribosome and glycolysis/gluconeogenesis pathways during
Pi starvation, and the TCA cycle, glycolysis/gluconeogenesis,
and glyoxylate and dicarboxylate metabolism pathways during
Pi recovery (Figure 5). These results suggest that barley roots
regulate specific Ksuc site changes in response to Pi stress as well
as specific metabolic processes. Similar results were obtained in
a histone lysine acetylation analysis of rice seedlings during Pi
starvation and submergence (Lu et al., 2018).We aimed to extend
the current knowledge by focusing on succinylated proteins in
the response to and recovery from Pi starvation in plant roots.

Pi-Responsive DFASPs Regulated During
Pi Starvation
The 61 Pi-responsive DFASPs identified in barley
roots were significantly increased under Pi-starvation
(Supplementary Table 12). We divided these Pi-responsive
DFASPs into four main categories, according to the metabolic
pathways identified in the KEGG enrichment analysis (P <

0.05; Supplementary Table 13). Ribosomal proteins (RPs)
are essential components of ribosomes, which are ubiquitous
ribonucleoprotein bodies responsible for protein synthesis
(Opron and Burton, 2019; Ghulam et al., 2020). Plant cells
regulate protein synthesis in response to nutrients and stress
by controlling RP expression (Szakonyi and Byrne, 2011;
Karunadasa et al., 2020). In this study, the most prominent

cluster was related to ribosome function (Figure 8) and enriched
in the PPI network, suggesting an important role of ribosome
biogenesis/translation in the Pi-starvation response. Expression
of the 40S ribosomal protein S6 (PRS6) gene was induced by low
temperature in soybean (Kim et al., 2004). The 30S ribosomal
protein S9 (RPS9) plays a crucial role in ribosome biogenesis
and normal cell growth and proliferation (Qiu et al., 2018).
The 60 S ribosomal protein L6 (RPL6) directly interacts with
histone H2A and regulates the DNA damage response (Yang
C. et al., 2019), and ribosomal protein S4 (RPS4) playing a
regulatory role in ribosomal RNA operon antitermination
(Torres et al., 2001). Protein processing-related proteins,
especially those for regulating transcription, such as elongation
factor 1-alpha (EEF1A1), elongation factor Ts, and eukaryotic
translation initiation factor 5A-1 (EIF5A), also increased in the
succinyltome. Several glycolysis and TCA cycle metabolism-
related enzymes, including phosphoglycerate kinase (PGK),
enolase, isocitrate dehydrogenase (IDH), dihydrolipoyllysine-
residue acetyltransferase component of pyruvate dehydrogenase
complex, mitochondrial (DLAT), and pyruvate dehydrogenase
E1 component subunit alpha (PDHA1) were identified as
DFASPs (Supplementary Table 12). Notably, the pyruvate
dehydrogenase complex catalyzes the overall conversion of
pyruvate to acetyl-CoA and CO2, thereby linking the glycolytic
pathway to the TCA cycle. Succinylation is also involved in
oxidative phosphorylation metabolism coupled to ATP synthesis
through an electrochemical transmembrane gradient (Yang
and Gibson, 2019). Increases in the expression of ATPase
subunits have been related to the need for more ATP synthase
to export protons out of cells (Rott et al., 2011). Our results
showed that β (AtpB), d (AtpB) subunits of FoF1-ATPase and
NDH-1 subunit F, and NADH-ubiquinone oxidoreductase 75
kD subunit, mitochondrial, V-type proton ATPase subunit E,
V-type ATP synthase alpha chain increased Ksuc levels under
Pi starvation. Proteins related to other metabolic pathways,
such as carbon fixation in photosynthetic organisms, glyoxylate,
and dicarboxylate metabolism pathways, were identified in
DFASPs. Of these, 17 DFASPs did not respond to Pi recovery
(Supplementary Table 14), and were mainly involved in
protein processing, glycolysis, and TCA cycle pathways. Most
notably, the succinylation level of protein processing, especially
60S ribosomal protein L4-1(RPL4), was increased 7.21- and
6.91-fold during Pi starvation at 6 h and 48 h, respectively
(Supplementary Table 14).

Pi-Responsive DFASPs Regulated During
Pi Recovery
We identified 63 succinylated proteins that were co-
expressed differentially in roots during Pi recovery
(Supplementary Table 12) and divided into four main
categories with the KEGG enrichment metabolic
pathway (P < 0.05; Supplementary Table 13). Forty-
four DFASPs overlapped during Pi starvation. Similar to
Pi starvation, the metabolic pathways of the TCA cycle,
glycolysis/gluconeogenesis, glyoxylate and dicarboxylate
metabolism, and oxidative phosphorylation were prominently
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FIGURE 10 | Major succinylation-mediated metabolic processes and proteins involved in short-term Pi starvation and recovery, as depicted by succinyl-proteome

analyses. For details of the proteins and their abbreviations, see Supplementary Table 14.

represented (Supplementary Table 13). Among these DFASPs,
18 did not respond to Pi starvation (Supplementary Table 14)
and are mainly involved in protein processing, glycolysis,
and TCA cycle pathways. Especially, the succinylation level
of a protein disulfide-isomerase (PDR) of protein processing,
whose major function is to catalyze disulfide bond formation
in newly synthesized proteins and respond to biotic (Li
et al., 2020) and abiotic (Hashimoto and Komatsu, 2007)
stresses, was increased 3.78-fold during Pi recovery (6 h)
(Supplementary Table 14). Overall, analysis of the succinylated
proteins in response to Pi starvation and recovery revealed
that the DFASPs involved in metabolic pathways during Pi
starvation differed from those during Pi recovery. Hence,
this study focused on characterizing the succinylated protein
response to and recovery from Pi starvation (Figure 10).
The biological function and functional interplay among
succinylated proteins in response to Pi starvation requires
further investigation.

CONCLUSION

Specific PTMs control the structure and function of proteins
that respond to the environment and metabolic stimuli. In this
study, we presented the plant regulation processes of protein

succinylation in roots in response to and recovery from Pi
starvation by profiling the dynamic succinylome and proteome in
a Pi-tolerant barley genotype (GN121). We identified 2,840 Ksuc
sites across 884 proteins. The Ksuc motifs are preferred amino
acid residue of lysine, and protein lysine succinylation is a highly
regulated modification process. Of these, 61 and 62 increased
succinylated proteins were co-expressed during Pi starvation
and Pi recovery, respectively. These Pi- responsive succinylated
proteins that regulate Pi starvation and recovery mainly involved
Pi starvation metabolic pathways. Taken together, this study
provides essential data resources for exploring the roles of Ksuc in
regulating plant root responses to Pi starvation, including protein
processing, glycolysis, and TCA pathways, and has extended
our knowledge on important, yet relatively poorly characterized,
PTMs of succinylation in plants.
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