

HOKKAIDO UNIVERSITY

Title	International Family Test of Eurasian Larch Species
Author(s)	MARTINSSON, Owe; TAKATA, Katsuhiko
Citation	Eurasian Journal of Forest Research, 8(2), 97-103
Issue Date	2005-12
Doc URL	http://hdl.handle.net/2115/22196
Туре	bulletin (article)
File Information	8(2)_P97-103.pdf

International Family Test of Eurasian Larch Species

MARTINSSON Owe¹* and TAKATA Katsuhiko²

¹ Swedish University of Agricultural Sciences,

Jamtland County council Institute of rural Development 840 73 Bispgarden, Umeå, Sweden

² Institute of Wood Technology, Akita Prefectural University 11-1 Kaeiezaka, Noshiro 016-0876, Japan

Abstract

Larch (*Larix sp.* Mill.) is a natural element of the boreal forest. Different species of Larix dominates the boreal forests of Eurasia. Larch also had a natural distribution in Scandinavia nine thousand years ago but disappeared for unknown reasons in prehistoric time. It was reintroduced by man in the 18th century and has for a long time attracted interest from forestry in Scandinavia. One major obstacle for reintroduction of Siberian larch in Scandinavia has been availability of seed sources for establishing test plantations. A co-operation between three Russian research institutes on one side and two organisations in Scandinavia on the other started in 1996. Seed was collected from 1005 individual trees distributed over 17 regions and 45 larch stands from Kamchatka in the east to Onega in the west. Seedlings were produced in 2002 and family field tests of 1005 families were established in Sweden and Norway in 2003. In addition to 7 family test plantation areas in Scandinavia similar test plantations are being established in northwest Russia (Komi and Archangelsk), China, Japan, Alaska, Saskatchewan, Minnesota, Quebec, Iceland and Finland. The results of this seed collection in Russia and establishment of international test plantations will be of big importance for the optimal selection of seed source, ecologic adaptation and economic use of Siberian larch species in the northern hemisphere.

Key words: International family test, Larch (Larix sp. Mill,), survivability, growth rate, adaptation

Introduction

Larch (*Larix sp.* Mill.) is a natural element of the boreal forest. Different species of *Larix* dominates the boreal forests of Eurasia (Milyutin & Vishnevetskaya 1995, Putenikhin & Martinsson 1995, Abaimov *et al.*1998). Larch also had a natural distribution in Scandinavia nine thousand years ago but disappeared for unknown reasons in prehistoric time (Kullman 1998). It was reintroduced by man in the 18th century and has for a long time attracted interest from forestry in Scandinavia (Martinsson 1992). One major obstacle has been availability of seed sources for establishing test plantations. A co-operation between four Russian research institutes on one side and two organisations in Scandinavia one in Japan and one in the USA on the other started in 1996 (Table 1).

The objectives of this study were to report the details of the three test plantations established in Sweden and to evaluate survivability and growth performance after two growing seasons. This paper is a sequel of the previous report (Abaimov *et al.* 2002).

Materials and Methods

In phase 1 of the project seed was collected in 17 regions and 1005 individual trees from Kamchatka in the east to Onega in the west (Figure 1). Although there are several different definitions of scientific name for larch species in Siberia (Schmidt 1995), we obeyed the definition described by Abaimov *et al.* (1998).

Materials for the Swedish and Norwegian field experiments were brought up in 2002 in Alstahaug nursery in central Norway. In addition to this, seed of the same material was distributed to 9 more participants resulting in a circumpolar participation of this progeny series of Eurasian larch species (Table 2).

In the spring of 2003, one-year-old container-seedlings were planted on three main sites and ten small sites in Sweden. The three main sites for field experiments in Sweden are located in Österbymo, Särna and Järvträsk. The properties of the three sites are explained in Table 3.

Each experimental sites were established as 60 sub-plots of 30x40 m on each site. 300 seedlings, representing one region, were planted in each subplot with spacing 2x2 m (Figures 2, 3 and 4). One family (progeny of one selected tree) was represented by 3 or 4 seedlings. All regions were replicated three times in three sub-plots. Three commercial Swedish and Finnish seed sources and two Russian collections (No 18-22) were included as standards in the experiments. All seed sources and their origins are explained in Table 4.

Results and Discussion

In October 2004 the survival rate was recorded (Table 5). In Österbymo also the tree height was assessed. However the period is still too short for this estimation, only two growing seasons after plantation.

^{*} Corresponding author: owe.martinsson@jll.se

The average survival rate two growing seasons after plantation was between 70 and 90 %. The highest average survival rate was recorded in Österbymo and the lowest in Särna. The lower survival in Särna and Järvträsk was mainly due to attack by *Hylobius abietis*. The material planted on these two sites were not treated with *Hylobius* repellents, while the material of Österbymo was treated in the nursery and two times in the summers of 2003 and 2004. Another reason, especially in Särna, was care of plantation. In several cases the seedling was planted outside the site prepared spot in Särna.

Height growth

Estimated mean heights for provenances in Österbymo were between 20 and 100 cm, two growing seasons after plantation. Shortest mean height had Yakutiya and the five tallest mean heights were provenances 14. Chabarovsk, 1. Nishnij Novgorod, 21. Maglehem, 6. Perm and 15. Sachalin. The tallest individual tree, 175 cm, was found in provenance 14. Chabarovsk.

Conclusion

Only two growing seasons is a too short period for estimation of survival, growth rate and adaptation to the three sites. The survival rate is so far very good in the most southern site Österbymo and acceptable in the two sites Särna and Järvträsk. The seedlings from provenances 17. Evenkia and 5. Salechard were already at nursery smaller than average and this my have influenced the survival. The local hybrid larch 21. Maglehem does not fit in the northern locations and has therefore a low survival. Larch from 12. Yakutiya and 17. Evenkia are adapted to a more continental climate than anywhere in Sweden. The very fast growth and vitality of 14. Chabarovsk, 16. Kamchatkta and 15. Sachalin are interesting. The long term vitality and fast growth of these provenances should be followed up carefully before any assessment can be done.

References

- Abaimov, A.P., Barzut, V.M., Berkutenko, A.N., Buitink, J., Martinsson, O., Milyutin, L.I., Polezhaev, A., Putenikhin, V.P., Takata, K. (2002) Seed collection and seed quality of Larix spp. From Russia – Initial phase on the Russian-Scandinavian Larch Project, Eurasian J. For. Res. 4, 39-49.
- Abaimov, A. P., Lesinski, J. A., Martinsson, O. and Milyutin, L.I. (1998) Variability and ecology of Siberian larch species. Swed. Univ. Agric. Sci., Dep Silviculture, rep 43, 123 pp.
- Kullman, L. (1998) Paleoecological, biogeographical and paleoclimatological implications of early Holocene immigration of *Larix sibirica* into the Scandes mountains, Sweden. Global Ecology and Biogeography Letters, 5.
- Martinsson, O. (1992) 30 years of provenance research on larch in Sweden. In: Weissgerber, (editor) Results and future trends in larch breeding on the basis of provenance research. IUFRO Centennial meeting of the IUFRO working party S2.02-07., 22-36.
- Milyutin, L.I. & Vishnevetskaia, K. D. (1995) Larch and Larch forests of Siberia In: Ecology and Management of Larix Forest: A look Ahead. USDA Forest Service, Intermountain Research Station, GTR-INT-319, 50-57
- Putenikhin, V. P. & Martinsson, O. (1995) Present distribution of *Larix sukaczewii* Dyl. in Russia. Swed. Univ. Agric. Sci., Dep Silviculture, rep 38,78 pp.
- Schmidt, W. C. (1995) Around the world with Larix: an introduction. In Schmidt, W.C. and Mcdonald, K.J. eds. Ecology and management of Larix forests: A look ahead. 6-18

Table 1. Participating organisations of phase 1 of the Russian-Scandinavian LarchProject - Seed Collection 1996-2001.

Organisations	Countries
Swedish University of Agricultural Sciences, Umeå	Sweden
Helegland Forest Society	Norway
V N Sukachev Institute of Forest, Krasnoyarsk	Russia
Arkhangelsk State Enginering Society	Russia
Institute of Northern Biological Problems, Magadan	Russia
Bashkirian Botanical Garden Institute, Ufa	Russia
Kyushu University, Fukuoka	Japan
The University of Minnesota, Minneapolis	USA

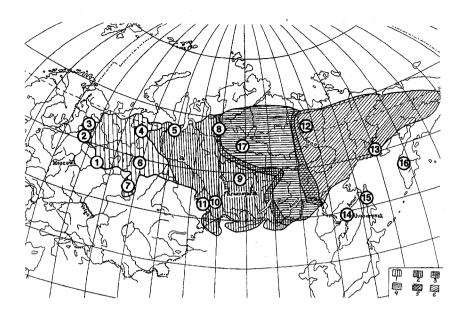
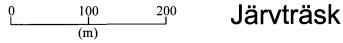
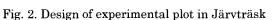


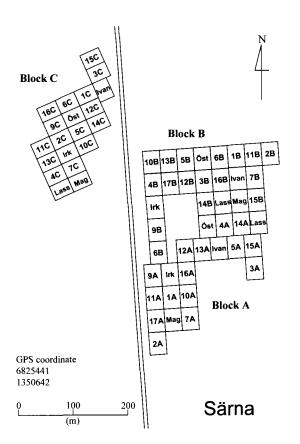
Fig. 1. 17 seed collection regions in Russia. The six different patterns are indicating larch species and their hybridisation zones 1= Larix sukaczewii Dyl., 2=Larix sibirica Ledeb., 3=Larix czekanowskii, 4= Larix gmelinii Rupr., 5=Larix gmelinii x Larix cajanderii, 6= Larix cajanderii Mayr.

Country, province	Organisations, city	Contact persons		
Norway	Helgeland Forest Society, Mosjöen	Jaap Buitink		
		Gisle Skaaret		
Sweden	SLU; Umeå	Owe Martinsson		
Arkhangelsk	NFRI, Arkhangelsk	Natalia Demidova		
		Vladimir Barzut		
Komi	Komi Science Centre, Syktyvkar	Aleksey Fedorkov		
Japan	Akita Prefectural University,	Katsuhiko Takata		
China	Beijing University, Beijing	Shen Xi Huan		
Alaska	U S Forest Service, Alaska, Fairbanks	John Alden		
Saskachewan	Agriculture and Agri-Food Canada, Indian Head, Saskatchewan	Bill Schroeder		
Minnesota	University of Minnesota	Andrew David		
Quebec	Ministry of Forest, Quebec	Gaston Lapointe		
lceland	Iceland Forest Service	Thröstur		

Table 2. Participants of the International Progeny test of Eurasian Larch Species.


Table 3. Localities and site properties of the three main test sites in Sweden.


Locality	Latitude, N	Longitude, E	Altitude, m	Topography	Soil
Österbymo	57°47'	15°37'	250	Slight southern slope	Gravelly morain
Särna	61°31'	13º00'	540	Slight western slope	Stony morain
Järvträsk	65°11'	19º31'	410	Steep eastern slope	Sandy morain


Ν

Block A					lock A Block B						Block C		
13A	4 A	Öst	10A	16B	14B	9B	Mag	6C	Öst	10C	11C		
2A	16A	5A	3A	4B	Lass	15B	10B	3C	7C	5C	Irk		
7A	Ivan	9A	1 4 A	13B	7B	Öst	12B	Ivan	12C	2C	4C		
lrk	12A	6A	15A	11B	2B	6B	3В	9C	1C	16C	13C		
11A	Mag	1A	Lass	lrk	5B	1B	Ivan	15C	Lass	14C	Mag		

GPS coordinate 1673395 7237107

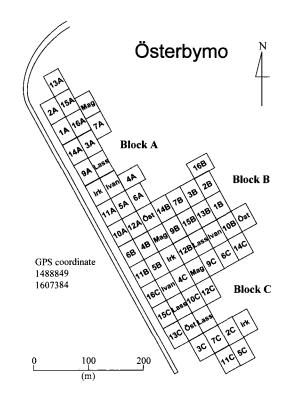


Fig. 4. Design of experimental plot in Österbymo.

Table 4. Seed sources and their origins in the three Swedish main test sites, Österbymo, Särna and Järvträsk.

Number of	Name of	Site	Nearest village	Latitude	Longitude	Elevation,	Number of	Species of larch
region	region			N	E	m	selected	
-				ļ			seed trees	
1	Nizhnij	A	Vetluga	57º 30'	45° 10'	-	7	Larix sukaczewii
	Novgorod							
		В	11	57° 30'	45° 10'		29	Larix sukaczewii
		С	11	57º 30'_	45° 10'		17	Larix sukaczewii
		D	"	57º 30'	45° 10'		13	Larix sukaczewii
2	Plesetsk	A	Emtsa	63° 05'	40° 21'	100	20	Larix sukaczewii
		В	Korasi	63º 00'	40° 25'	120	25	Larix sukaczewii
		С	Sheleksa	62° 09'	4 <u>0°</u> 19'	120	18	Larix sukaczewii
3	Onega	А	Leskhoz Onezhskii	64° 01'	<u>38° 15'</u>	110	7	Larix sukaczewii
4	Petchora	A	Usinsk	66° 00'	57° 48'		64	Larix sukaczewii
5	Salechard	A	<u>Beloyarsk</u>	<u>63° 41'</u>	<u>66° 44'</u>	60	20	Larix sukaczewii
		В	Kharp	66° 56'	<u>65° 45'</u>	130	20	Larix sukaczewii
		С	Labytnangi	66° 28'	<u>66° 39'</u>	40	20	Larix sukaczewii
6	Perm'	A	Okhansk, Yugo-	57º 19'	55° 27'	160	20	Larix sukaczewii
<u> </u>			Kamsky					
		В	Nyazepetrovsk,	56° 09'	59° 32'	460	20	Larix sukaczewii
			Uzaim					
	L	C	Kyshtym	<u>55° 43'</u>	60° 27'	480	20	Larix sukaczewii
		D	Nizhnij Tagil	<u>57° 30'</u>	<u>59° 48'</u>	350	12	Larix sukaczewii
		E	Sotrino	59° 27'	60° 59'	110	Mix of 30	Larix sukaczewii
							trees	
7	Ufa	A	Maginsk	55° 45'	56° 58'	370	1	Larix sukaczewii
							10	
		В	Miass	54° 58'	60° 07'	380	ſ	Larix sukaczewii
<u></u>							10	
			Zlatoust	55° 07'	59° 30'	600	20	Larix sukaczewii
	1	D	Ziliar	52º 13'	57° 25'	550	Mix of 10	Larix sukaczewii
			<u> </u>				trees	· · · · · · · · · · · · · · · · · · ·
		E	Bolshoy Iremel	54° 33'	58° 57'	1200	10	Larix sukaczewii

101

8	Norilsk		1				1	Larix sibirica
9	Boguchany	A	Boguchany	58° 39'	97° 30'	158	27	Larix sibirica
<u> </u>		B	Karabula	"	"	96	25	Larix sibirica
		lC			н		23	Larix sibirica
10	Novokuznetsk			53° 48'	88° 00'	mountain	20	Larix sibirica
		B		54º 12'	88° 42'	"	20	Larix sibirica
	_	Ĉ		52° 48'	87° 24'		20	Larix sibirica
11	Altai	Ā	Kosh-Agash	50° 16'	87° 54'	1630	26	Larix sibirica
		В	Kosh-Agash	50° 12'	87° 47'	1580	26	Larix sibirica
		{	Karnagalu					
		С	Kosh-Agash,	50° 14,5'	87° 3'	1630	26	Larix sibirica
			Turgune					
12	Yakutiya	A	Zhigansk	66° 45,5'	123° 22'	70	20	Larix cajanderi
		В	Zhigansk	66° 51'	12 <u>3°</u> 21'	80	20	Larix cajanderi
		С	Zhigansk	66° 45'	123º 22'	90	20	Larix cajanderi
13	Magadan	Α		59° 30'	15 <mark>0° 15'</mark>	60	25	Larix cajanderi
		В		59° 20'	15 <u>2</u> ° 30'	100	25	Larix cajanderi
		С		59° 30'	14 <u>8° 30'</u>	80	25	Larix <u>caj</u> anderi
14	Khabarovsk	A	Vaninskyi	49° <u>08</u> '	14 <u>9° 00'</u>	90	20	Larix gmelinii var olgensis
		В	Vaninskyi	49° 09'	149° 00'	100	20	Larix gmelinii var olgensis
		С	Vaninskyi	49° 12'	149° 00'	125	20	Larix gmelinii var olgensis
15	Sachalin (missing data)						60	Larix gmelinii var japonica
16	Kamchatka		1				60	Larix gmelinii var
	(missing data)							kamchatica
17	Evenkiya	A	Tura	64º 19'	100° 13'	285	25	Larix gmelinii
· ·		В	Tura	64º 19'	100° 14'	310	25	Larix gmelinii
		С	Tura	64º 17'	100° 16'	270	25	Larix gmelinii
18 Lassinmaa		See	d orchard (Fi)					Larix sukaczewii
19 Ivanov			ed stand (Ru)					Larix sukaczewii
20 Irkutsl			ed stand (Ru)					Larix sibirica
21 Magle			d orchard (S)	55° 46'	14 <u>° 10'</u>	20		Larix eurolepis
22 Östteg			d orchard (S)	63º 48'	20° 16'	10		Larix sukaczewii

102

Number Region/Provenance	Öster	rbymo	Järv	vträsk	Särna		
	Survival	N of	Survival	N of	Survival	N of	
	%	planted	%	planted	%	planted	
		seedlings		seedlings		seedlings	
18 Lassinmaa	93.6	900	86.9	885	87.4	900	
3 Onega	95.6	524	88.4	524	81.5	524	
19 Ivanov	97.3	823	88	900	76.4	900	
10 Novokuznetsk	97.4	900	90	900	72.7	900	
9 Boguchany	96	900	87.3	900	75.7		
2 Plesetsk	98.7	900	84.8	900	75.2	900	
16 Kamchatcka	97	900	82	900	78.7	900	
7 Ufa	96.4	900	87.8	900	72.6	900	
11 Altai	91.8	900	90.2	900	74.6	900	
13 Magadan	94.8	900	87.3	900	70.4	900	
4 Petchora	86.8	900	81.7	900	80.9	900	
6 Perm	96.6	900	82.7	900	68.8	900	
5 Salechard	79	900	89,2	900	79.6	900	
15 Sachalin	96.6	900	80.3	900	68.3	900	
1 Nishnij Novgorod	94.7	900	85.2	900	62.3	900	
20 Irkutsk	93.7	900	87.7	448	56.2	450	
22 Östteg	90.9	900	84.1	900	62.3	900	
14 Chabarovsk	97.8	900	80.1	900	42	900	
21 Maglehem	87.1	900	70.1	448	26	450	
12 Yakutiya	38.3	900	79.4	900	63.4	900	
17 Evenkia					26.8	235	
Total	90.9	17547	84.9	16705	69.4	16959	

Table 5. Rate of survival on three experimental sites two growing seasons after plantation.