

HOKKAIDO UNIVERSITY

Title	Basic Data for CO2 Flux Monitoring of a Young Larch Plantation: Current Status of a Mature, Mixed Conifer- Broadleaf Forest Stand
Author(s)	Koike, Takayoshi; Hojyo, Hajime; Naniwa, Akihiko; Ashiya, Daitaro; Sugata, Sadao; Sugishita, Yoshiyuki; Kobayashi, Makoto; Nomura, Mutsumi; Akibayashi, Yukio; Nakajima, Jyunko; Takagi, Kentaro; Shibata, Hideaki; Satoh, Fuyuki; Wang, Wengie; Takada, Masayuk
Citation	Eurasian Journal of Forest Research, 2, 65-79
Issue Date	2001-03
Doc URL	http://hdl.handle.net/2115/22132
Туре	bulletin (article)
File Information	2_P65-79.pdf

Basic Data for CO₂ Flux Monitoring of a Young Larch Plantation

- Current Status of a Mature, Mixed Conifer-Broadleaf Forest Stand -

KOIKE Takayoshi^{1*}, HOJYO Hajime², NANIWA Akihiko², ASHIYA Daitaro², SUGATA Sadao², SUGISHITA Yoshiyuki², KOBAYASHI Makoto², NOMURA Mutsumi², AKIBAYASHI Yukio², NAKAJIMA Jyunko³, TAKAGI Kentaro³, SHIBATA Hideaki³, SATOH Fuyuki³, WANG Wengie^{1,4}, TAKADA Masayuki⁵, FUJINUMA Yasumi⁵, SHI Fuchen^{1,6}, MATSUURA Yojiro⁶ and SASA Kaichiro¹

> ¹ Hokkaido University Forests, Sapporo 060-0809, Japan
> ² Teshio Experiment Forest of Hokkaido University, Horonobe 098-2943, Japan
> ³ North Research Center of the Hokkaido University Forests, Nayoro 096-0071, Japan
> ⁴ On leave from the Open Research Laboratory of Forest Plant Ecology, Northeast Forestry University, Harbin 150040, P. R. China
> ⁵ Center for Global Environmental Research, NIES, Tsukuba 305-0053, Japan
> ⁶ Forestry and Forest Products Research Institute (FFPRI).

> > Hokkaido Research Center, Sapporo 062-8516, Japan

Abstract

A yearly increase in atmospheric CO2 is leading to global warming. To moderate global greenhouse conditions, forest ecosystems are expected to act as CO₂ sinks. The forest stand structure of a mixed conifer-broadleaf forest was analyzed to gather the basic information needed to evaluate the CO_2 sink capacity of the stand. The total area of the Teshio Experimental Forest of Hokkaido University, located in northern Hokkaido near the border between Japan and the Russian Far East (45°N, 142°E), was 13.71ha. A forest area of 0.25 ha (50m x 50m) was selected for this study. In the site, there were a number of individual species, 2 species of conifers and 13 species of deciduous hardwoods. The frequency distribution of the diameter of breast height (DBH) of the trees exhibited an L-shape. Oak and fir were distributed uniformly while willow and magnolia showed a clump distribution. The total number of trees in the selected area was 155 and the total volume was 52.23m³. There were 19 evergreen conifers and 136 deciduous broadleaf trees with total volumes of 11.69m³ 40.54m³, respectively. Dominant species in the order of volume were oak $(16.4m^3)$, fir, mountain birch, kalopanax, white birch, willow and maple $(2.5m^3)$. There was a positive correlation between DBH and crown projection area (CPA). The increment of regression line between DBH and CPA was steeper in the early- and late-successional species than that in the increment of gap-phase species and conifers. However, the largest DBH was 41cm for early successional species and 60-67cm for late successional species and conifers. Based on the specific gravity of each species, at present, the amount of CO₂ stored in stems was estimated to be 1702.9ton (124.2ton $CO_2 \cdot ha^{-1}$; 84.5ton $\cdot ha^{-1}$ for above ground biomass). The need for further studies to estimate biomass of Sasa sp. and net ecosystem production are discussed.

Key words: CO₂ flux monitoring, mixed conifer-broadleaf forest, northern Japan, biomass

Introduction

The atmospheric concentration of CO_2 is increasing at a rate of 1.5ppm per year (IPCC 1995). During the past 30 years, it has increased from 300ppm to 355ppm. After the international meeting for global CO_2 stabilization in 1997 (the COP3 meeting, sometimes referred to as Kyoto Protocol or Kyoto Forest), we expect that forest would be CO_2 sink. However, we don't have enough data to evaluate the real capacity of a forest to act as a CO_2 sink.

According to the Kyoto Protocol (IGBP 1998), seedlings planted in afforestation projects will be

regarded as new CO_2 sinks. In Hokkaido, a prefecture in northern Japan, larch and fir plantations were intensively started around 1960 (Hokkaido Region Government 1987, Koike *et al.* 2000). These larch plantations have replaced from many private hardwood forests because of their high biomass productivity in larch species.

On the eastern Eurasian continent where permafrost is the defining geographic feature, the dominant tree species are the genus *Larix* (Gower and Richards 1990, Schmidt and McDonald 1995, Koike *et al.* 1998, 2000). It is urgent that we evaluate the

 CO_2 sink capacity of these larch forests to judge their ability to moderate global warming through CO_2 fixation and storage in the forest ecosystems. However, it is very difficult for us to get reliable data on the CO_2 sink capacity of larch ecosystems on the eastern Eurasian continent because of its huge area and the numerous political and transportation difficulties involved. Therefore, we would like to use data from a larch stand in northern Japan to create a model for CO_2 fixation and storage capacity that can be applied to the eastern Eurasian continent.

The final goal of this project is to estimate the CO_2 sink capacity of a young larch plantation at northern Japan. For approaching this goal, we are preparing to establish a research site for CO_2 flux monitoring in the Laoschen Experimental Forest Plantation (LEFP) of the Northeast Forestry University (NEFU), China located on the southern edge of a discontinuous permafrost region (Shi *et al.* 2001).

We will establish a monitoring site for estimation of net ecosystem production (NEP) so as to ascertain the carbon balance in the watershed. Prior to establishing this new study site, we have evaluated the present status of CO_2 fixation and the storage capacity of a mixed conifer-broadleaf forest to use as baseline data.

Materials and Methods

1) Location and topography: The study site is located in the Compartment No.151 of Katoh 51 Forest Compartment of Teshio Experimental Forest of Hokkaido University Forests in northern Hokkaido near the border of Japan and the Russian Far East (45°N, 142°E, 20-580m a.s.l.; Fig. 1). The study site is situated on a gentle slope on a ridge located in the "Yatsumeno-Sawa" watershed. There are a few small streams in the study site. So, we can monitor the carbon dynamics of a watershed (Fig. 2). Bedrock is the sedimentary rock of the Cretaceous period (Takaoka and Sasa 1996a, b). The total study area was 13.71ha, and we selected a 0.25ha (50m imes50m) area for detailed study in the center of the Compartment No. 151 of Teshio Experimental Forests.

2) Meteorological survey: All meteorological data were collected by an auto-sampling meteorological

Fig. 1. Location of the study site in the Teshio Experimental Forests.

Fig. 2. Topography and road map of the study site.

equipment. Annual precipitation (Precipitation meter, KONA system, Sapporo), mean temperature (HMP45D, Vaaisala, Finland), wind speed and direction (Model 05103, Young Co. with KADEC-KAZE, KONA system, Sapporo) were monitored on the meteorological balcony near the main building of the Teshio Experimental Forest in Toikanbetsu Town. 3) Stand characteristics: The study site was belonging to the preserved stands after the fire occurred in 1929 (Takaoka and Sasa 1996 b). The 0.25ha study site was established in 1999 and a biomass estimate was carried out during April 26 when deep snow covered the ground vegetation of Sasa bamboo (Photo. 1 and 2). The position of individual trees (tree distribution map), species identification, number of trees (alive and dead) and size distribution were surveyed. We estimated the biomass of the stand according to the harvesting table (Nakajima 1958; Table 1),.

The crown projection area (CPA) was estimated using the following equation;

CPA =
$$((R_1+R_2+R_3+R_4)/4)^2 \times \pi$$

where $R_{1\sim4}$ is the radius of the tree crown in each direction (north, east, south and west), and π is pi (the ratio of the circumference of a circle to its diameter).

Based on the specific gravity of trees (Kijima *et al.* 1962, Nakai and Yamai 1982, Wood Tec. and Wood Utilization Div. 1982; Table 2), we also estimated the CO_2 storage of a stand using the following procedure (Koike 1993);

1) Chemical reaction of photosynthetic rate in green plants is as follows;

$$CO_2 + 12H_2O \rightarrow C_6H_{12}O_6 + 6H_2O + 6O_2$$

molecular weight of CO_2 is 44 and $C_6H_{12}O_6$ is assumed to be 180 because it stands for glucose. Therefore, $C_6H_{12}O_6$ is assumed to be produced by 6 CO₂ molecules (molecular weight; MW = 44 × 6 = 264). In general, the final products of photosynthesis are a mixture of glucose and starch $(C_6H_{10}O_5)_n = 162$, but we employed them as glucose (MW=180).

2) CO_2 content (kg) of wood of one cubic meter $(1m^3)$ is strongly affected by the specific gravity. We can estimate CO_2 (kg) in $1m^3$ "wood" as follows;

 $CO_2 = 264/180 \times "wood"$

where the unit of "wood" is $(m^3 \times kg \cdot m^3)$.

3) However, specific gravity of the wood is usually expressed as oven dry mass, which means ca. 85% of the air-dry mass (Kijima *et al.* 1962). Value of "wood" was expressed as the dry mass.

Results

1. Temperature

The first year results are shown in Figure 2. Mean annual temperature was 5.9°C and maximum value was 31.6°C on August 8, 1999, and minimum value was -31.0 °C on January 27, 2000. As compared with

Photo. 1. Overview of the study site in late-April.

Photo. 2. Deep and tall Sasa bamboo in the study site.

Photo. 3. A dam for measuring water flow.

Fig. 7. Distribution map of standing trees in the selected study site.

DBH	Conife	er Type l	Conife	er Type 2	Broadle	af Type 1	Broadle	af Type 2
(cm)	Height(m)	Volume(m3)	Height(m)	Volume(m3)	Height(m)	Volume(m3)	Height(m)	Volume(m3)
10	9	0.04	9	0.04	10	0.04	11	0.04
12	10	0.07	10	0.07	11	0.06	12	0.07
14	11	0.09	11	0.09	12	0.09	13	0.10
16	12	0.13	12	0.13	13	0.12	14	0.13
18	13	0.18	13	0.18	14	0.17	15	0.18
20	14	0.23	14	0.23	15	0.22	16	0.24
22	15	0.30	15	0.30	16	0.28	17	0.30
24	16	0.37	16	0.37	16	0.34	18	0.38
26	17	0.46	17	0.46	17	0.42	19	0.46
28	18	0.56	17	0.53	18	0.51	20	0.57
30	19	0.67	18	0.64	18	0.59	21	0.68
32	20	0.79	19	0.76	19	0.70	21	0.77
34	21	0.93	20	0.89	19	0.79	22	0.91
36	21	1.04	20	0.99	20	0.93	22	1.01
38	22	1.20	21	1.15	20	1.03	22	1.13
40	23	1.38	22	1.33	21	1.12	23	1.30
42	23	1.52	23	1.52	21	1.32	23	1.43
44	24	1.73	23	1.67	22	1.51	23	1.57
46	24	1.88	24	1.88	22	1.64	23	1.71
48	25	2.12	25	2.12	22	1.79	24	1.94
50	25	2.29	25	2.29	23	2.02	24	2.10
52	26	2.56	26	2.56	23	2.18	24	2.27
54	26	2.75	26	2.75	23	2.34	24	2.44
56	26	2.96	27	3.05	24	2.62	24	2.62
58	26	3.16	28	3.37	24	2.81	24	2.81
60	27	3.49	28	3.59	24	3.00	25	3.11
62	27	3.72	29	3.94	24	3.20	25	2.32
64	27	3.96	29	4.20	25	3.53	25	3.53
66	27	4.20	30	4.58	25	3.76	25	3.76
68	27	4.45	30	4.85	25	3.97	25	3.97
70	28	4.85	31	5.27	25	4.20	25	4.20
72	28	5.12	31	5.57	25	4.44	25	4.44
74	28	5.40	32	6.02	25	4.68	25	4.68
76	28	5.68	32	6.34	26	5.11	25	4.93

Table 1. Yield table of Nakajima for Compartment of No. 149.150 and the rest stands

*1 Tree height was estimated by the growth function calculated by Hokkaido University Fororest (Rule 24th Chapter 3).

*2 Volume of trees was calculated by the Nakajima's equation (1958).

*3 Classification of tree types is as follows; Conifers type 1; fir, type 2; spruce,

Brodleaf type 1; Oak, kalopanax, ash, Kastura (*Cercidiphyllum japonicum*), Monarch birch, basswood

Broadleaf type2; the rest hardwood species including Taxus cuspidata

the temperature in large cities in Hokkaido, namely Sapporo, Asahikawa and Wakkanai (Table 3), Teshio Experimental Forest (Toikanbestu Town) has greater temperature differences because Toikanbetsu is located inland. The range between maximum and minimum daily temperature of Toikanbestu was 10.2°C and the maximum temperature was 26.5 °C

2. Wind

Mean wind speed of Toikanbetsu was 2.0 m·sec⁻¹ during April 1999 to March 2000 (Fig. 3). The strongest winds were recorded during winter (late-January and early-February). However, this value was smaller when compared with Wakkainai and Sapporo (Table 3). The frequency distribution of wind direction showed that the dominant wind direction was from the northeast through all seasons (Fig. 4). **3. Precipitation**

There were heavy rains in late-July, 1999 in the Toikanbetsu region. The total amount of precipitation was 1010.5mm. A large amount of precipitation was also recorded during May and from late-September to mid-November (Fig. 5). As shown in Table 3, precipitation in northern Hokkaido was relatively larger that in inland of Hokkaido. Snowfall at _____

Species	common name	(SS)	mean	(min-max) (g \cdot cm ⁻³)
Taxus cuspidata	Japanese yew	L	0.54	<u> </u>
Abies sachalinensis	Sakhalin fir	М	0.40	0.39-0.41
Picea glehnii	Sakhalin-spruce	M-L	0.43	0.41-0.46
Picea jezoensis	Ezo-spruce	L	0.41	0.40-0.43
Larix kaempferi	Japanese larch	Е	0.50	0.53-0.59
Larix gmelinii	Kurile larch	Ε	0.55	
Salix bakko	willow	Е	0.45	0.49-0.59
Alnus hirsuta	alder	Ε	0.50	0.40-0.60
Betula ermanii	mountain birch	Е	0.68	
Betula maximowicziana	Monarch birch	E-G	0.67	0.50-0.78
Betula platyphylla var. japonica	white birch	Ε	0.64	
Quercus mongolica var. grosserrata	Mizunara-oak	Μ	0.68	0.45-0.90
Ulmus davidiana var. japonica	elm	Μ	0.63	0.42-0.71
Magnolica obovata ¹⁾	magnolia	G	0.49	0.40-0.61
Hydrangea paniculata		Е		
Prunus sargentii	cherry	L	0.62	
Prunus ssiori	Shiuri-cherry	G-L	0.67	
Sorbus alnifolia		L	0.68	0.65-0.80
Sorbus commixta	Japanese rowan	Ε	0.68	0.65-0.85
Pherodendron amurense	Amur cork-tree	G	0.49	0.38-0.57
Acer mono	maple	L	0.60	0.58-0.77
Tilia japonica	basswood	L	0.50	0.37-0.61
Acanthopanax sciadophylloides		G	0.48	
Kalopanax pictus ²⁾	kalopanax	G	0.52	0.40-0.69
Cornus contravasa	dogwood	G	0.64	
Fraxinus mandshurica var. japonica	ash	G	0.55	0.43-0.74

Table 2.	Specific gravity	of various tree sp	pecies as over	n dry mass.				
(af	ter Kijima <i>et al</i> .	1962, Nakai and	Yamai 1982,	Wood Tech.	& Wood	Utilization [Div. 1982	!)

Note; SS means the successional status in a forest

Current Latin name; 1) Magnolia hyporeuca and 2) Kalopanax septemlobus Common name is followed by Sato (2000)

Toikanbetsu started in late-November and ceased in late-April. Maximum snow depth reached 118cm similar to Asahikawa City (Table 3).

4. Water balance

The value of water depth shown is from just after the weir for gauging water flow (Photo. 3) was established (Fig. 6). Water flow ceased from December to March because the streams water were frozen. The snow started to melt around mid April. Data is not complete enough to for make a hydrograph, however, the pattern of water runoff was similar to the previous data obtained in Teshio Experimental Forest.

5. Stand structure

One population of fir was found, however, other conifer individuals were scattered throughout the selected 0.25ha study site (Fig. 7). Both types of birch were distributed uniformly in the study site while willow and alder were found along the streams. The oak trees were distributed uniformly while magnolias

	Cit				
Climate factors	Sapporo	Asahikawa	Wakkanai	Toikanbetsu	
Location	43°N, 141°E	44°N, 142°E	45°N, 142°E	45°N, 142°E	
Altitude (m a.s.l.)	17m	112m	3m	40m	
Temperature (°C)					
Mean	9.4	7.1	7.1	5.9	
Max. temp.	35.2	34.3	28.7	31.6	
Min. temp.	-14.7	-24.9	-14.3	-31.0	
Dif. in mean	7.7	10.0	5.2	10.2	
Dif. in max.	18.5	20.0	18.5	26.5	
Wind speed $(m \cdot sec^{-1})$	2.6	1.8	4.5	2.0	
Precipitation (mm)	679.5	689.0	1079.0	1010.5	
Max. snow depth (cm)	142	112	75	118	

Table 3. Climatic condition of Toikanbestu and representative cities in Hokkaido, northern Japan.

Fig. 3. Wind speed at Toikanbetsu during 1999 and 2000

Fig. 4. Frequency distribution of wind direction around Toikanbetsu.

Fig. 8. Frequency distribution of diameter at breast heught.

Fig. 9. Relationship between DBH and CPA (crown projection area).

Fig. 10. Relationship between CPA and biomass of volume.

grew in clumps. The frequency distribution of DBH of early successional trees showed a typical L-shaped distribution and the maximum DBH reached 42cm, however, most of them were less than 16cm (Fig. 8). Gap-phase trees and late successional trees were distributed uniformly, and the maximum DBHs were 58cm and 68cm, respectively. Conifers except for fir also were uniformly distributed and the maximum

DBH was 60cm.

There was a positive relationship between DBH and CPA (Fig. 9). The regression line between conifers and gap-phase species was steeper than that of early- and late-successional trees. Conifers and gap-phase trees had smaller CPA than early- and latesuccessional trees. Except for a few individual trees, there was a positive relationship between CPA and stem biomass volume(Fig. 10). Only gap-phase trees showed a positive correlation between CPA and biomass volume, however, these tendencies were not clear.

6. CO₂ storage capacity of Teshio Experimental Forest

The biomass volume of each species was estimated by using Nakajima's harvesting table (Table 1). The number of species and the biomass volume are shown in Table 4. The number of conifers and hardwood trees was 1,449 and 3,543 and total biomass volume was 950,96m³ and 2192,32m³, respectively. The proportion of dead stems to the total number of trees was 2.0% for the number of trees and 1.2% for biomass volume.

The total amount of CO₂ stored was estimated to be 1,702.9ton (124.2 tonCO₂ \cdot ha⁻¹; 84.5 ton \cdot ha⁻¹ for aboveground biomass). For conifers, it was about 532.1 tonCO₂ (38.8 tonCO₂ \cdot ha⁻¹), while hardwoods reserved 1,170.9tonCO₂ (85.4tonCO₂ \cdot ha⁻¹).

Discussion

1. Environmental condition

The climate of Teshio Experimental Forest is classified as continental, as compared with the city of Wakkainai City or Sapporo City because of its large temperature differences and higher maximum

Table 4. Number of species and biomass volume of dominant (D) and suppressed trees (S) in the whole study site

Species		Tree Num	ber;		Volume (m ³)			
	D	S	Total	D	S	Total		
Taxus cuspidata	8	1	9	1.6	0.9	2.5		
Abies sachalinensis	886	9	895	647.4	3.7	651.1		
Picea glehnii	134	0	134	. 59.5	0	59.5		
Picea jezoensis	411	0	411	237.9	0	237.9		
Conifers	1439	10	1439	946.3	4.6	951.0		
Salix bakko	166	13	179	22.2	2.0	24.2		
Alnus hirsuta	222	34	256	29.1	5.6	34.7		
Betula ermanii	500	6	506	246.7	1.5	248.2		
Betula maximowicziana	29	0	29	24.2	0	24.2		
Betula platyphylla var. japonica	1441	22	1463	303.2	2.3	305.5		
Quercus mongolica var. grosserrata	383	2	385	347.3	5.3	352.6		
Ulmus davidiana var. japonica	18	0	18	2.34	0	2.4		
Magnolica obovata ¹⁾	71	2	73	12.9	0.4	13.4		
Hydrangea paniculata	1	0	1	0.8	0	0.8		
Prunus sargentii	7	0	7	6.1	0	6.1		
Prunus siorii	10	0	10	2.2	0	2.2		
Sorbus sargenti	11	0	11	3.2	0	3.2		
Sorbus commixta	155	3	158	34.8	0.4	35.3		
Pherodendron amurense	117	4	121	16.3	0.3	16.6		
Acer mono	163	1	164	72.5	0.9	73.4		
Tilia japonica	12	0	12	3.8	0	3.8		
Acansanopax sciadophylloides	52	0	52	11.6	0	11.6		
Kalopanax pictus ²⁾	87	2	89	79.4	3.0	82.4		
Cornus contravasa	7	0	7	0.7	0	0.7		
Fraxinus mandshurica var. Japonica	2	0	2	0.3	0	0.3		
Broadleaf trees	3454	89	3543	1219.6	21.7	1241.6		
Total	4893	99	4992	2165.9	26.3	2192.6		

Notes: D; dominant trees, S; suppress trees or dead trees

Current Latin name; 1) Magnolia hyporeuca and 2) Kalopanax septemlobus

temperatures in summer. As shown in Figure 2, the minimum temperature of -31°C, which makes the Toikanbetsu region one of the coldest areas in Japan. Snow is one of the most important sources of water. As compared with the city of Wakkanai located along the Okhotsk Sea and Asahikawa City located inland of Hokkaido, Toikanbestu region had similar pattern of temperature, wind and snowfall and its amount in the city of Asahikawa. Other environmental features were similar to those of Asahikawa City located inland of Hokkaido.

2. Vegetation characteristics

Stand structure of the selected 0.25ha site has a similar co-existence pattern as a northern mixed forest, especially for fir and oak (Yajima 1982, Hiura *et al.* 1995, Hiura and Fujiwara 1999). Fir and oak have quite different capacities of longevity and shade tolerance; with fir having a high shade tolerance and oak With a rather broad range of shade tolerance. These growth pattern of each species seem to provide the two species for coexisting in the same stand (Yajima 1982). The relative growth rate of the two species was similar but mortality of size class in oak was lower than in fir (Hiura and Fujiwara 1999). This difference may account for the duration of co-existence of the two species. This stand had a similar co-existence pattern to other oak-fir forests.

Alder and willow were mainly distributed along the streams because both species prefer mesic conditions (Sakagami 1985). Magnolia usually appeared in clumps because of its tendency to grow from one central trunk with many suckers. According to the distribution pattern, the 0.25ha stand showed bimodal pattern of DBH class, which may be attributed to the effects of harvesting because early successional trees. such as mountain birch and white birch, invaded the gap created by timber harvests. Large trees may act as mother trees in the stand. Of course, a thick, tall layer of Sasa bamboo inhibits the regeneration of trees, however, the Sasa community's photosynthetic production, which seems to be larger during the leafless period of the top layer, may also act as a CO₂ sink (Lei and Koike 1998). It is important to evaluate the photosynthetic production of these undergrowth plants.

Increased atmospheric CO_2 usually reduces stomatal conductance (Koike *et al.* 1996, 2000), which may decrease the size of the vessels of ring porous wood. Recently, it has been found that the wet deposition of nitrogen oxide in forest ecosystems acts as a kind of nitrogen fertilizer. Enhanced nitrogen fertilizer increased ring width and seedling growth of Norway spruce (*Picea abies*) which doubled CO_2 storage capacity (Hattenschwiler *et al.* 1996). Therefore, we should not only monitor CO_2 flux but also the input and output of nitrogen compounds supplied by wet or dry deposition. Moreover, we should check the specific gravity of stem (dry mass per volume) because it increases with atmospheric CO_2 concentration (Telewski *et al.* 1999). The value of specific gravity of stems should be re-evaluated using a current materials of "wood". Based on the revised data, we will re-calculate the CO_2 storage capacity of trees and the 0.25ha stand. The net ecosystem production (NEP) estimate should also be accompanied by a soil respiration measurement.

The biomass of the 0.25ha stand was estimated to be 84.5 ton \cdot ha⁻¹. This value is one fourth of the mean biomass of cool temperate deciduous forests (mean value =200ton \cdot ha⁻¹; Satoo 1973). However, we could not take into account the biomass production of Sasa bamboo. The thick layer of Sasa may be important for forests. Further studies will be needed to evaluate photosynthetic production of Sasa biomass (Oshima 1961, Lei and Koike 1998) and its potential as a large CO₂ sink.

3. Growth characteristics of larch

Japanese larch (Larix kaempferi) is not native to Hokkaido, but was transplanted from the central part of Japan nearly 50 years ago because of its higher growth rate (Hokkaido Regional Government 1987, Koike et al. 2000). In the beginning of larch plantations, the seedlings suffered from shoot blight and damage by red-back voles (Koike et al. 2000). Therefore, the F1 hybrid larch (Larix gmelinii from Sakhalin x Larix kaempferi) was introduced. Heterosis of this F1 is highly resistant to several biological stresses, moreover, this species has a relatively high stem bulk density (Kijima et al. 1962; 0.55 for L. gmelinii, 0.50 for L. kaempferi). In addition, a hybrid larch acclimates more easily to low photon flux density (Kitaoka et al. 2000) and it has a slender crown shape in L. gmelinii (Gower and Richards 1990). Plantation of hybrid larch will allow for a higher stand density which increases higher CO₂ storage capacity. Further monitoring study will be needed to evaluate CO₂ fixation and the storage capacity of areas planted with hybrid larch.

Acknowledgements

We thank Environment Agency of Japan, National Institute of Resources and Environment (by Dr. S. Yamamoto) and the Japanese MESSC for partly supporting this survey. Prof. F. Shi is acknowledged to Eco-Frontier Fellowship of NIES.

Literatures

- Gower, S.T. and Richards, J.H. (1990) Larches: deciduous conifers in an evergreen world. BioScience 40: 818-826.
- Hattenschwiler, S., Schweingruber, F. H. and Körner, Ch. (1996) Tree ring responses to elevated CO₂ and increased N deposition in *Picea abies*. Plant Cell Environ., 19: 1369-1378.
- Hiura, T., Fujiwara, K., Hojyo, G., Okada, J., Udo, H., Okuyama, S., Morita, H., Fukuda, H., Fujito, E., Fukui, T., Takahata, M., Arikura, K., Sugiyama, H. and Takeda, T. (1995) Stand structure and

long-term dynamics of primeval forests in Nakagawa Experimental Forest, Hokkaido University. Res. Bull. Hokkaido Univ. Forests., 52: 85-94. (in Japanese with English summary)

- Hiura, T. and Fujiwara, K. (1999) Densitydependence and co-existence of conifer and broad-leaved trees in a Japanese northern mixed forest. J. Veg. Sci., 10: 843-850.
- Hokkaido Regional Government (1987) Manual for Plantation and Tending in F1 Larch Plantations. Hokkaido Forestry Promotion Society, Sapporo, pp. 165 (in Japanese).
- IGBP (1998) The terrestrial carbon cycle: implications for the Kyoto Protocol. Science 280: 1393-1394.
- IPCC (1995) Climate Change, CUP, London.
- Kijima, T., Okamoto, S. and Hayashi, S. (1962) Atlas of woods in color. (Genshoku Mokuzai Dai-Zukan), Hoikusha Co, Osaka, pp. 204 (in Japanese)
- Kitaoka, S., Mori, S., Matsuura, Y., Abaimov, A. P., Sugishita, Y., Satoh, F., Sasa, K. and Koike, T. (2000) Comparison between the photosynthetic characteristics of larch species grown in northern Japan and central Siberia. Proced. Joint Siberia Permafrost Studies 8: 49-54.
- Koike, T. (1993) The significance of CO₂ fixation and storage capacity of representative tree species of natural forests in Northern Japan. Hoppo Ringyo (Northern Forestry) 46: 127-130 (in Japanese).
- Koike, T., Mori, S., Takahashi, K. and Lei, T.T. (1996) Effects of high CO₂ on the shoot growth and photosynthetic capacity of seedlings of Sakhalin fir and Monarch birch native to northern Japan. Environ. Sci., 4: 93-102.
- Koike, T., Mori, S. and Matsuura, Y. (1998) Effect of global warming on the forest dynamics of eastern Siberian region. Hoppo Ringyo (Northern Forestry) 50: 241-244 (in Japanese).
- Koike, T., Yazaki, K., Funada, R., Maruyama, Y., Mori, S., and Sasa, K. (2000) Forest health and vitality in northern Japan- A history of larch plantation-. Res. Notes, Fac. Forestry, Univ. Joensuu 92: 49-60.
- Lei, T. T. and Koike, T. (1998) Functional leaf phenotypes for shade and open environments of a dominant dwarf bamboo (*Sasa senanensis*) in northern Japan. Int. J. Plant Sci., 159: 812-820.
- Nakajima, H. (1958) Volume Table in Hokkaido, 6ed. Forestry Cooperative Society in Hokkaido Forest Management Office, Sapporo. (in Japanese).

Nakai, T. and Yamai, R. (1982) Properties of the

important Japanese woods – The mechanical properties of 35 important Japanese woods– Bull. Forest For. Prod. Res. Inst., 319: 13-46. (in Japanese with English summary).

- Sakagami, Y. (1985) Growth characteristics of representative tree species in natural forests in Hokkaido. In: Samejima, J. and Sakagami, Y. eds. Consideration of Natural Forests in northern Japan. Association of Hoppo Ringyo (Northern Forestry), 124-128. (in Japanese).
- Sato, T. (2000) Trees and shrubs in Hokkaido. Arisusha, Sapporo, pp. 303 (in Japanese).
- Satoo, T. (1973) Plant production of terrestrial plant communities. Kyoritsu-Shuppan, Tokyo, pp. 95. (in Japanese).
- Schimdt, W. C. and McDonald, K. J. (1995) Ecology and management of Larix forests; A look ahead, Proceedings of an international symposium. pp.521. General Technical Report, GTR-INT-319, USDA Forest Service.
- Shi, Fuchen, Wang, Wenjie and Zu, Yangang (2001) Introduction to the larch-dominant site for CO_2 flux study in a forest of the Laoshen Experimental Station in northeast China. AsiaFlux Symposium 1: in press
- Oshima, Y. (1961) Ecological studies of Sasa communities. I. Productive structure of some of the Sasa kurilensis in Japan. Bot. Mag. Tokyo 74: 199-210.
- Takaoka, S. and Sasa, K. (1996a) Landform effects on fire behavior and post-fire regeneration in the mixed forests of northern Japan. Ecol. Res., 11: 339-349.
- Takaoka, S. and Sasa, K. (1996b) Fire history of the Teshio Experimental Forest of Hokkaido University in Hokkaido, northern Japan. Res. Bull. Hokkaido Univ. For., 53: 245-268. (in Japanese with English summary).
- Telewski, F. W., Swanson, R. T., Strain, B. R., and Burns, J. M. (1999) Wood properties and ring width responses to long-term atmospheric CO₂ enrichment in field-grown loblolly pine (*Pinus taeda* L.). Plant Cell Environ., 22: 213-219.
- Wood Technology and Wood Utilization Division (1982) Properties of the important Japanese woods table of the properties of woods. Bull. Forest For. Prod. Res. Inst., 319: 85-126. (in Japanese with English summary).
- Yajima, T. (1982) Study on the growth of main tree species in the mixed forest of needle-leaved and broad-leaved trees. Res. Bull. Hokkaido Univ. Forests 39: 1-54. (in Japanese with English summary).

Species	Number of individual	Volume (m ³)		
Abies sachalinensis	17	11.21		
Picea jezoensis	2	0.48		
Conifers	19	11.69		
Salix bakko	16	2.65		
Alnus hirsuta	2	0.11		
Betula ermanii	42	5.21		
Betula platyphylla var. japonica	16	3.54		
Quercus mongolica var. grosserata	31	16.36		
Magnolica obovata ¹⁾	7	1.10		
Hydrangea paniculata	1	0.02		
Prunus sargentii	3	2.05		
Sorbus commixta	1	0.02		
Pherodendraon amurense	4	1.77		
Acer mono	10	2.54		
Kalopanax pictus ²⁾	2	5.15		
Cornus contravasa	1	0.02		
Hardwood	136	40.54		
Total	155	52.23		

Table 1. Specific gravity of species in the selected study site

Appendix

Current Latin name; 1) Magnolia hyporeuca and 2) Kalopanax septemlobus

Tree species	DBH	D	Volume	Crown 1	Crown 2	Crown 3	Crown 4	X axis	Y axis	Z axis	Note
	(cm)	2cm ro	unding	(m)	(m)	(m)	(m)				
Mountain birch	31	32	0.77	2.6	1.1	3.1	3.2	5.387	2.437	-0.026	
Mountain birch	25	26	0.46	2.5	2.0	0.8	1.0	7.220	4.917	0.240	
Mizunara-oak	10	10	0.04	1.9	1.8	2.2	0.9	6.992	5.241	0.459	
white birch	8	8	0.02	0.5	0.3	1.3	1.1	8.007	4.810	0.055	
Mizunara-oak	14	14	0.09	2.4	2.6	2.6	2.5	3.822	10.053	0.433	
Mizunara-oak	67	68	3.97	4.8	3.8	2.8	3.8	1.071	5.013	0.325	
Mizunara-oak	11	12	0.06	1.9	1.8	2.1	1.9	3.586	13.338	0.258	
white birch	41	42	1.43	1.4	3.2	5.4	2.0	3.891	14.442	0.098	
Sakhalin fir	6	6	0.01	1.0	0.9	1.0	0.8				
Mizunara-oak	9	10	0.04	0.5	0.4	1.1	1.6	2.747	16.612	0.392	
Sakhalin fir	10	10	0.04	1.1	0.9	0.8	1.2	4.819	16.718	-0.134	
Mizunara-oak	10	10	0.04	1.0	1.3	2.4	2.5	2.233	17.819	0.013	
Mizunara-oak	8	8	0.02	1.5	1.8	1.3	1.1	2.406	18.953	-0.019	
Sakhalin fir	7	8	0.02	1.4	0.8	1.4	1.1	2.188	19.683	-0.102	
Mountain birch	35	36	1.01	2.3	5.2	1.8	2.8	5.615	20.155	0.370	
Sakhalin fir	6	6	0.01	0.9	0.6	0.9	0.8	5.725	19.277	-0.164	
Sakhalin fir	7	8	0.02	1.0	0.9	0.7	1.1	5.459	18.717	0.075	
Sakhalin fir	8	8	0.02	1.3	0.8	1.2	1.2	6.797	17.831	0.078	
Mountain birch	34	34	0.91	3.4	3.8	3.0	3.9	7.577	17.485	0.184	
Mizunara-oak	33	34	0.79	4.6	3.3	2.5	5.6	9.380	18.976	0.194	
Mizunara-oak	50	50	2.02	4.0	4.8	6.1	5.7	2.426	23.081	-0.131	
maple	6	6	0.01	1.9	1.7	1.5	1.3	1.782	24.703	0.079	
Mountain birch	6	6	0.01	1.9	1.4	0.2	0.8	7.480	28.572	0.449	
Mountain birch	10	10	0.04	2.8	0.5	0.6	3.0	6.635	31.773	0.294	
Mountain birch	14	14	0.10	2.6	2.6	2.4	2.4	6.020	31.821	0.334	
Mountain birch	6	6	0.01	0.3	1.9	0.8	0.5	3.476	32.435	0.216	
white birch	17	18	0.18	2.1	1.4	1.2	2.5	2.040	39.707	-0.045	

Table 2. Diameter at breast height, volume, crown size and position of the study site

white birch	11	12	0.07	1.7	1.0	0.5	2.2	1.822	43.181	-0.182	
Mountain birch	12	12	0.07	2.0	0.4	1.0	2.8	4.655	43.181	-0.371	
Mountain birch	11	12	0.07	1.7	0.5	0.2	2.3	6.159	42.964	0.050	
Sakhalin fir	26	26	0.46	3.1	2.6	2.5	3.6				···
Mizunara-oak	15	16	0.12	2.2	0.9	1.9	2.3	10.102	39.587	-0.068	
Sakhalin fir	22	22	0.33	3.2	2.5	2.7	3.0	12.736	43.872	-0.051	
white birch	21	22	0.30	3.8	3.6	1.3	1.2	12.779	46.053	-0.004	
white birch	6	6	0.01	1.6	0.6	0.3	1.4	11.431	47.843	0.320	
Mountain birch	15	16	0.13	1.1	2.0	2.2	0.8	11.431	47.843	0.320	
Mountain birch	6	6	0.01	0.7	0.7	0.2	1.1	9.660	45.635	0.230	
Mountain birch	8	8	0.02	2.1	3.0	1.9	0.7	8.613	46.819	0.356	
Mizunara-oak	47	48	1.79	5.9	5.1	4.3	4.3	4.791	44.931	-0.154	
Mountain birch	6	6	0.01	1.5	1.4	0.8	0.5	5.036	46.565	0.019	
Sakhalin fir	6	6	0.01	1.2	0.8	0.9	0.7	4.060	45.712	-0.205	
white birch	25	26	0.46	3.2	3.2	2.8	4.8	2.797	48.228	-0.013	
white birch	11	12	0.07	2.8	1.9	-0.1	-0.2	2.797	48.228	-0.013	
Mountain birch	12	12	0.07	3.2	3.6	0.8	0.3	14.449	47.797	0.281	
Mizunara-oak	8	8	0.02	0.8	1.2	2.8	2.4	19.050	49.068	0.026	
white birch	12	12	0.07	1.8	3.0	1.0	1.3	20.171	46.920	-0.112	
white birch	10	8	0.02	0.7	0.1	0.9	1.5	19.354	46.078	-0.242	
white birch	19	20	0.24	3.2	3.1	1.5	3.1	19.354	40.078	-0.242	
White birch	24	24	0.38	3.2	3.8	4.0	3.0	16.683	44.859	0.190	
Mizunara-oak	19	20	0.22	3.1	2.5	2.1	3./	16 705	44.039	0.190	·
Sakhalin fir	21	22	0.22	4.5	2.4	3.4 2.1	4.1	24.015	40.552	0.014	
Mountain hirch	10	10	0.04	2.6	1.0	2.1	1.3	24.013	46.677	-0.314	
Mountain birch	10	10	0.04	0.2	0.5	21	2 1	28 625	40.577	-0.109	
Mizunara-oak	21	22	0.22	31	22	2.1	4.8	29.939	50.039	-0.329	
Amur Cork tree	32	32	0.77	2.6	44	2.2	4.0	37 191	49 815	0.000	
Mountain birch	12	12	0.07	2.0	1.5	2.1	3.5	37.616	47.676	0.058	
maple	6	6	0.01	0.8	1.6	1.0	0.8	45.424	46.041	0.281	
maple	6	6	0.01	1.0	-1.0	2.4	3.1	43.500	44.525	0.311	
Mountain birch	8	8	0.02	0.9	1.4	1.8	0.5	44.633	39.280	0.243	
maple	9	10	0.04	-0.4	0.8	2.8	-1.0	40.494	38.132	0.496	- <u></u>
Mountain birch	7	8	0.02	1.1	1.2	1.3	0.9	40.474	36.800	0.313	
Mountain birch	7	8	0.02	2.2	0.8	-1.2	0.9	33.830	41.626	0.135	
Sakhalin Spruce	25	26	0.46	2.8	2.8	2.0	2.1	33.832	42.382	0.345	
willow	28	28	0.57	1.8	3.0	2.8	1.3	29.523	42.753	0.067	
Mizunara-oak	15	16	0.12	1.9	2.2	2.5	2.9	16.281	8.927	0.269	
Mizunara-oak	13	14	0.09	2.6	2.2	1.7	2.2	18.793	6.731	0.093	
maple	34	34	0.91	3.7	3.8	3.0	4.7	22.678	7.996	-0.013	
Sakhalin fir	50	50	2.29	2.4	3.9	1.3	1.6	26.226	5.624	-0.036	
dagwood	8	8	0.02	2.2	1.3	1.2	1.7	24.323	9.601	0.079	
magnolia	0	6	0.01	0.9	1.3	0.7	0.5	22.659	11.923	0.212	
kalopanax	58	38	2.81	4./	2.6	2.2	4.5	21.191	11.352	0.090	
magnolla		12	0.07	0.0	0.7	0.7	2.7	19.929	14.748	0.234	
Mizunoro ook	0	0	0.02	1.2	0.0	1.1	1.0	22.239	13.000	0.132	
Mountain birch	8	o Q	0.02	3.0	17	0.4	1.5	23.274	15.060	0.2.34	
Sakhalin fir	34	34	0.02	3.6	4.0	3.8	3.2	20.637	17 749	0.075	
Mizunara-oak	62	62	3.20	7.0	3.7	2.5	4.3	18.822	17.402	-0.034	
Sakhalin fir	54	54	2 75	5.0	51	3.2	2.8	20.058	24.523	0.110	
Mizunara-oak	14	14	0.09	2.3	2.2	2.2	1.6	14.082	26.374	-0.083	
Mizunara-oak	10	10	0.04	0.8	2.0	3.1	1.6	14.851	28.082	0.055	
Mountain birch	10	10	0.04	1.2	2.5	1.8	1.2	14.282	29.128	0.164	
Mountain birch	10	10	0.04	0.9	2.4	1.6	1.5	16.665	29.429	0.263	
Mountain birch	8	8	0.02	0.8	1.8	1.3	0.2	17.332	30.059	0.322	
Mountain birch	6	6	0.01	1.2	1.4	0.7	1.7	18.478	28.816	0.268	
Mizunara-oak	15	16	0.12	1.6	1.2	1.6	2.7	19.663	30.189	0.225	
Mizunara-oak	7	8	0.02	1.2	1.2	1.9	3.0	20.407	27.585	0.275	
Mountain birch	9	10	0.04	0.4	2.0	1.7	1.0	17.992	32.366	0.229	
Mountain birch	8	8	0.02	0.9	1.6	1.0	0.9	18.860	32.221	0.283	
Mountain birch	14	14	0.10	2.2	2.7	2.4	1.9	20.170	34.628	0.216	
Mountain birch	11	12	0.07	1.3	1.6	1.0	1.3	21.448	32.005	0.345	
Mountain birch	6	6	0.01	1.0	2.6	1.9	0.7	23.682	33.252	0.319	
Mountain birch	14	14	0.10	1.7	2.2	1.6	2.1	24.621	31.751	0.276	
Mountain birch	13	14	0.10	2.2	3.4	1.2	1.8	25.459	29.422	0.466	
Mizunara-oak	9	10	0.04	2.2	1.8	2.1	2.2	24.166	26.923	0.344	

		•	ام م	1.0			0.51	24 172	27 04 4	0.244
hydrangia	8	8	0.02	1.9	1.2	0.4	0.5	26.472	27.064	0.346
Mountain birch	7	8	0.02	1.5	0.9	0.2	0.9	27.982	25.343	0.403
white birch	15	16	0.13	2.1	2.6	1.8	2.2	28.210	27.817	0.419
Mountain birch	14	14	0.10	2.6	2.2	1.0	2.3	29.604	29.829	0.342
maple	9	10	0.04	2.0	0.9	1.5	2.1	25.132	36.070	0.279
Mountain birch	15	16	0.13	2.6	2.6	1.2	0.9	32.059	22.945	0.128
Mountain birch		12	0.07	1.1	2.4	1.3		32.554	23.173	0.012
Mountain birch	19	20	0.24	2.6	2.8	1.9	2.3	33.084	23.604	-0.067
kalopanax	54	54	2.34	5.6	1.2	0.6	4.6	31.296	11.391	-0.178 Dead tree
magnolia	10	10	0.04	-0.2	0.8	1.7	0.7	35.937	13.530	-0.008
magnolia	30	30	0.68	4.0	2.6	1.5	3.3	30.873	13.929	-0.314
magnolia	10	10	0.04	2.8	-0.4	-0.5	1.5	37.461	12.688	-0.316
magnolia	20	20	0.24	0.6	1.4	2.1	2.3	36.971	12.530	-0.307
Mountain birch	8	8	0.02	0.9	0.4	1.0	1.3	40.904	10.376	-0.442
Mountain birch	8	8	0.02	1.2	1.2	1.3	0.9	41.39/	10.822	-0.418
maple	20	20	0.24	2.2	2.5	1.7	2.1	43.085	5.392	-0.242
willow	8	8	0.02	2.4	0.8	0.5	0.8	34.516	5.123	-0.199
willow		8	0.02	1.8	0.8	0.6	1.6	33.990	3.938	-0.095
willow	6	6	0.01	1.2	1.8	0.6	0.8	32.706	4.341	-0.036
alder	9	10	0.04	1.0	2.0	2.1	1.3	31.621	4.773	0.026
Sakhalin fir	12	12	0.07	1.2	1.4	1.7	1.4	46.136	2.934	-0.086
Sakhalin fir	8	8	0.02	1.2	0.8	0.8	1.2	46.987	3.563	-0.489
Sakhalin Spruce	7	8	0.02	1.2	0,7	0.7	0.9	46.987	3.563	-0.489
magnolia	7	8	0.02	1.4	2.0	2.9	0.8	48.754	7.052	0.118
willow	7	8	0.02	1.4	1.4	1.6	2.1	43.802	13.007	-0.376
alder	11	12	0.07	1.8	1.4	1.3	2.6	44.547	13.858	-0.485
willow	12	12	0.07	1.1	1.8	2.3	3.0	45.673	12.757	-0.456
willow	7	8	0.02	2.2	0.3	-0.2	2.3	46.696	13.441	-0.446
willow	10	10	0.04	1.0	1.0	2.2	1.7	47.826	14.121	-0.420
willow	7	8	0.02	0.4	1.3	1.1	2.2	48.929	14.983	-0.447
willow	10	10	0.04	1.8	1.2	1.4	2.2	48.929	14.983	-0.447
white birch	8	8	0.02	1.3	1.2	0.7	0.8	46.508	15.624	-0.531
willow	7	8	0.02	1.6	1.6	0.5	0.9	49.502	16.839	-0.427
willow	11	12	0.07	1.6	1.2	2.6	1.6	49.017	18.085	-0.205
willow	7	8	0.02	1.4	1.0	1.1	0.7	48.679	18.891	-0.192
willow	7	8	0.02	1.1	1.4	1.8	1.4	48.034	21.551	-0.337
Mizunara-oak	54	54	2.34	3.4	4.8	4.3	5.0	42.573	17.004	-0.310
Sakhalin fir	24	24	0.37	3.6	3.2	2.3	3.1	42.573	17.004	-0.310
Mizunara-oak	14	14	0.09	3.2	1.2	2.2	2.6	37.626	24.695	-0.0/3
Mizunara-oak	14	14	0.09	2.2	2.6	2.5	3.0	38.271	25.860	-0.189
Mountain birch	12	12	0.07	1.9	1.8	1.2	2.8	41.534	27.055	0.096
Mizunara-oak	12	12	0.06	2.5	1.8	1.6	2.8	42.905	27.302	-0.038
cherry	47	48	1.94	5.0	3.0	3.8	5.0	43.444	31.036	-0.610
cherry		12	0.07	2.2	1.8	1.0	2.0	43.444	31.030	-0.010
Sakhalin fir	60			5.2	5.0	4.2	3.11	44.01/	34.302	-0.198
Mizunara-oak	10	10	0.12	1.2	4.2	5.1	3.5	42.073	22 100	-U.U72
mapie	58	58	1.13	2.2	1.8	-0.4	-0.4	40.109	32.199 20.165	0.058 dead tree
mapie	10	10	0.13	1.9	1.8	2.0	1.9	41.930	30.103	-0.110
cnerry	10	10	0.04	2.0	1.2	1.4	2.8	30.20/	27.43/	0.117
white birch	14	14	0.10	1.9	2.0	2.2	2.3	33.130 24 054	22 419	0.343
white birch	10	10	0.04	1.0	1.0	1.9	1.9	30.834	33.018	0.230
Amur Cork tree	19	20	0.24	2.7	1.1	0.9	0.9	20 409	30.714	0.405
Mountain birch		12	0.07	1.9	2.0	1.0	0.41	30.498	41.0/1	0.228
willow	30	30	0.08	1.5	1.9	0.9	1.3	29.301	37.330	0.210
Mizunara-oak	19		0.22	2.4	2.5	3.8		28.000	40.050	0.250
Amur Cork tree	26	26	0.46	0.8	1.5	4.4	1./	28.308	30.011 26.011	0.370
Amur Cork tree	21	22	0.30	0.4	0.2	3.9	3.8	28.568	30.011	0.370
willow	36	36	1.01	2.4	1.7	1.8	1.8	30.551	35.121	0.423
maple	8	8	0.02	1.8	1.8	1.3	2.0	38.311	33.149	0.240
Mizunara-oak	9	10	0.04	3.0	1.6	1.6	1.9	7.876	14.036	0.544
								50.000	0.000	0.000
			ł				İ	49.956	49.917	-0.230
								0.000	0.000	0.000
							1	0.056	49.905	0.146
	į									

 155本
 52.23

 Volume was estimated based on DBH of 2cm rounding

 Volume table was applied with the data of compartment of 149 and 150