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Snow as a Locking Material 
- High Pressure Properties of Snow-

S. HANAGUD 

Stanj01-d Resem-ch Institute, Menlo Park, Cabfo17lia, U.S,A. 

Abstract 

This paper discusses the properties of snow at high pressures. In particular the possibility 
of considering snow as a multistage inhomogeneous locking material under high pressures and 
impact loading has been investigated. Some uniaxial wave propagation problems under these as­
sumptions have been considered. Finite displacements and inhomogeneous distribution of initial 
density have been considered. The behavior of snow under these assumptions and subjected to 
impact loading has been discussed. The resulting stresses and velocities have been calculated by 
numerical methods. 

Also the possibility of using impact tests and shock propagation to determine the mechanical 
properties of snow has been discussed. 

Locking material is an ideal material or a mathematical approximation of certain real materials. 
These materials are characterized by the particular property that they offer on increasing to defor­
mation as the deformation increases. They may also be called as foamed or compactible materials. 

I. Introduction 

Extensive investigations have been conducted III the past to determine the me­

chanical properties of snow. Most of ~he work concerns the determination of the 

properties, such as the modulus of elasticity, Poisson's ratio, shear strength, tensile 

strength, creep properties, acoustic properties, etc. Some of the application of such 

investigations have been the prediction of settlement of structures supported by dry ice 

caps (Costes, 1963; Anderson and.Benson, 1963), to develop techniques of producing high 

strength snow by compaction (Wuori, 1963). 

In these studies the magnitude of pressure has been very small; \ for example, the 

maximum compressive stress in Mellor's (Mellor, 1962) work was only about 44 atmos­

pheres. It is well known, however, that the properties of materials can be studied at 

very high pressures and under high rates of loading. 

Such a study will be very useful in predicting the dynamic behavior of snow under 

the application of very high pressures. These investigations might provide answers to 

many practical problems, such as the effect of a sudden application of pressure on pro­

tective structures, shock wave propagation, and attenuation of peak pressures in snow. 

The purpose of this paper is then to discuss the basic problems involved in the 

study of the properties of snow and the dynamic response of snow at high pressures. 

II. Constitutive Relations 

The properties of snow as required in this study can be specified by a set of con-
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stitutive relations. To be· very precise, these - relationships must include the thermo­

dynamic effects. A mathematical formulation of such relationships would need some 

mechanical or thermodynamic variables. These variables can be selected from: 

1. The stress tensor Q 

2. The strain tensor s 

3. The temperature e 
4. The specific entropy TI 

5. The internal energy e 

Specification of certain relationships between these variables, must be based on 

thermodynamic principles and experimental evidence. It can be assumed: 

1. That there exists a relationship among the stress, strain, and specific entropy. Such 

a relationship, may include stress rates, strain rates, or the effects of memory (Noll and 

Truesdell, 1964). 

2. That furthermore, the temperature can be assumed to be a function of strain and 

specific entropy. These two relationships are written in the form of equations as 

Q = Q (s, TI) , (1) 

(2) 

Sometimes, the variable temperature e is replaced by the variable internal energy e. 

A relationship among the internal energy, the strain, and the entropy is assumed to 

exist. This relationship is usually called the caloric equation of state. 

e = e (s, TI) • (3) 

Very often equations such as 

Q =Q(e, e), (4) 

which relate the stress tensor, strain tensor and internal energy are very useful in the 

study of shock propagation. Such equations can be called incomplete equations of 

state or mechanical equations of state. 

In addition to the aforementioned relationships the following are necessary: 

3. A relationship among the heat flux, temperature gradient, strain, and specific entropy 

to complete the set of constitutive relations.· 

4. Certain requirements through which the constitutive relations satisfy the usual princi­

ples of invariance (Noll and Truedell, 1964). 

III. Structure of Snow 

In the absence of experimental results it is very difficult to write the explicit forms 

of eqs. (1)-(4). However constitutive relationships can be built on the available knowledge 

of the physical properties of snow. These relationships can be improved later to suit 

the realistic behavior of snow. 

According to the observed physical properties, initially the polar snow has the con­

sistency of table salt (Mellor, 1962) with a grain size of approximately 0.1 to 1 mm. 

However, after deposition the intergranular bonds begin to form with sublimation. Such 

growth of grain and the bond development changes snow from the consistency of the 
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table salt to that of styrofoam. Snow in this state can actually be sawed into blocks 

like styrofoam. Snow is then a porous solid. 

When new layers of snow are deposited, the older layers of snow are buried. The 

buried snow is then compressed, and this compression results in a porous solid whose 

porosity varies with the depth. The density at the surface is about 0.35 to 0.4 g/cm3 

but about 30 m below the density can vary between 0.6 and 0.9 g/cm3
• 

Yosida (1962) has made a valuable contribution to our knowledge of the physical 

properties of snow. He has been able to observe the microstructure of a thin slice and 

has shown that the structure of snow is made of thin needles of ice linked together. 

This shows that snow, is in fact, a porous solid of varying porosity with a micro­

structure, being made of thin needles of ice linked together. Graphite foam, in fact, 

has a similar microstructure to snow. 

IV. Behavior of Snow under Hydrostatic Pressure 

The mechanical behaviour under the application of uniform hydrostatic pressure can 

now be discussed. The application of the pressure reduces the volume. As the pressure 

is increased, the needle-like structure of the snow collapses, and the porosity decreases 

appreciably under a moderate increase of pressure. During this process of deformation, 

a small amount of pressure will produce an appreciable amount of decrease in the 

volume. However, as the volurrie decreases and the pore spaces collapse, the snow be­

comes denser, and it becomes harder and harder to compress and further reduce the 

volume. 

At high values of pressure the snow attains the density of the ice, or a value very 

near to that. Additional pressure will cause the material to deform like ice. In this 

process, the temperature variation has not been considered. It has been assumed that 

the temperature remains the same and that the rate of loading is slow enough for the 

process to be considered static loading. 

This behavior has· been illustrated by lines AB of Figs. 1-3. The initial density of 

snow is 0.4 glcc in Fig. 1. If the initial density were different, the curve on the p-v 
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diagram would be different, as shown in Fig. 2 for an initial density of 0.5 g/cc. However, 

as the compressive stress increases the density of ice is attained in both cases. The 

figure has been platted as a p:"""v diagram with pressure in kg/cm2* and the specific 

volume v in cm3/g. 

After the material has att~'ined the density of ice, the material can be expected to 

deform like ice. This behavior depends very much on the temperature (Bridgeman, 1912) 
and exhibits different types of phase transition (Bridgeman, 1912, 1914, 1937, 1941). 

In Fig. 1, it is assumed that the temperature is -30°C and that it remains the same 

as the snow is compressed. As was explained above, the material will attain the density 

of ice or a value very near to that at a pressure Pl' Later snow at this temperature 

and pressure can be considered to be in the form of ice I (Bridgeman, 1911). The curve 

BD indicating the deformation of ice I is from Bridgeman's data. However, the slopes 

of the curves are based on the data along the equilibrium curves. When the value of 

the hydrostatic pressure attains"a value ot 2150 kg/cm2
, a phase change transforms the 

material from the ice I to ice III, and a sudden reduction in specific volume of 0.192 cm3/g 

takes place. Such phase changes occur as changes of volume under constant pressure 

(Bridgeman, 1912) when the rate of application of pressure is slow enough for the process 

of loading to be considered static. This behavior is shown by the straight line DE of 

Fig. l. 

Further increases in pressure will result in a phase change from ice III to ice II 

at a pressure of about 2 300 to 2400 kg/cm2• This phase change results in a sudden 

reduction of the specific volume of 0.0l7 cm3/g at constant pressure. This is shown by 

the straight line FG of Fig. l. 

As the pressure is increased beyond the value of 2 400 kg/cm2 and if the tempera­

ture still remains at -30°C, a phase change will take place at a pressure of about 

3700 kg/cm2, changing ice II to ice V. This phase change causes a reduction of the 

volume by an amount of 0.04 cm3/g. This is shown by the line HI of Fig. l. 
Another phase change will occur at a pressure of 6300 kg/cm2

, changing the ice 

V to ice VI and reducing the specific volume by about 0.038 cm3/g. The phase change 

from ice VI to ice VII at a pressure of about 22 300 kg/cm2 has not been shown in the 

figure. This phase change will cause a reduction of the specific volume by about 

0.054 cm3/g. 

Thus, the compression of snow at -30°C from 0 to 10000 kg/cm2 follows the path 

AB, BD, DE, EF, FG, GH, HI, IJ, JK and KL of Fig. l. 

V. Properties at Different Temperatures 

Figure 2 illustrates the compression of snow at -22°C. As in the preceding case, 

the snow compresses to ice I along a path, such as AB. Then the material follows the 

curve BD as Ice I until the occurrence of the phase change from ice I to ice III at 

a pressure of about 2100 kg/cm2
. However, in this case, the phase change will not 

occur from ice III to ice II. The material will continue to behave like ice III up to 

3500 kg/cm2
• When a phase change occurs from ice III to V, reducing the specific 

* Kilogram (weightl/cm2 = 0.96784 atmosphere = 14.223Ib/in2• 
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volume by about 0.054 cm3/g. Later, the behavior is very similar to that illustrated in 

Fig. 1 for a temperature of -30°C. 

A comparison of Figs. 1 and 2 shows that the behavior is slightly different because 

of the phase change from III to II. Of course, the reduction of the specific volume 

during this change is very small compared to that during other phase changes. The 

p- V curves at these temperatures (-22 and -30°C) do not differ much. However, the 

P- V curve for a temperature of O°C is quite different from the P- V curves in Fig. 

1 or 2. The initial compression of snow to ice is very similar to that of Figs. 1 and 2. 

However the ice I immediately changes to water. Later the material compresses like 

water until a pressure of about 6 300 kg/cm2 is reached. At this pressure water changes 

to ice VI. Later the material behaves like ice VI. These processes are illustrated by 

the lines AB, BC, CD, DE and EF in Fig. 3. The line DE illustrates the phase change 

from water to ice VI. The reduction in specific volume is 0.09 cm3/g. 

Figures 1-3 illustrate that the thermodynamic effects are important if the tempera­

ture change caused by the shock wave is more than a few degrees centigrade. 
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VI. Shock Waves and the Constitutive Relations 

If a knowledge of the constitutive relations is available, the shock velocity and the 

particle velocity behind the shock wave can be predicted. However, if the shock ve­

locity, particle velocity, and other changes across the shock wave can be measured, con­

stitutive relations can be obtained. Such techniques have been used by measuring steady 

state shock in certain materials (Rice et at., 1958; Duvall, 1962 a, 1962 b; Doran and 

Linde, 1966). However in cases such as snow some more knowledge regarding the 

general form constitutive relationship might be necessary before such measurements can 

be used to determine the constitutive equations precisely. This knowledge, however, 

requires experimentation. By a suitable cooperative experimental and theoretical study 

and the use of the shock wave techniques, the constitutive relations can be determined. 

VII. Snow as a Locking Material 

In the absence of any such experimental results the following approach has been 

selected to predict the dynamic behavior of snow at high pressures. 

1. It will be assumed that the temperature changes due to the shock wave are so 

small that the thermodynamic effects can be neglected. This means that for a given 

initial temperature a definite relationship between the pressure and the specific volume 

is given. In practice, there will be a temperature change across the shock wave. This 

effect, if appreciable, will be observable in experiments, as a deviation from the theory. 

The theory in turn could later be improved. 

2. The static behavior discussed in the preceding sections will be assumed to be 

valid during dynamic changes. This is also not true in general. However the static 

behavior usually provides steady state stress profiles. These results can be used to 

improve the theory (Duvall, 1963; Hanagud, 1966) and build in dynamic transient response. 

3. Furthermore the curves will be approximated by straight lines, as shown in Fig. 4. 

Figure 4 shows the diagram with the straight lines Be, DE and FG parallel to the 
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axis representing pressure. This means that snow on application of pressure collapses 

along AB to become ice I. Later the specific volume remains at the value VI corre­

sponding to ice I until the pressure reaches a value of P2 and the ice I suddenly changes 

to ice III. The specific volume now corresponds to the value V2 and does not change 
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until the hydrostatic pressure has been increased to the value of P3, when the ice III 

will change to ice V and the new specific volume will be V3 • Similar change from ice 

V to ice VI takes place at a pressure P4 • 

Such an approximation would be valid for a temperature range between -22 to 

-30°C. The ideal material resulting from such an approximation and shown in Fig. 4 

can be called a multistage locking material. The meaning of this term will be explained 

in the next section. 

YIII. Locking Material 

Locking or compactible materials (Prager, 1956 a, 1956 b; Grigorian, 1956; Flugge 

and Hanagud, 1963) are idealizations of real material. Such an idealization simplifies 

the analysis while keeping some essential physical characteristics of the real material. 

A single stage locking material can be explained by considering the following example. 

Consider sponge or polyurethane foam and apply hydrostatic compression to such 

a material. Initially a small amount of pressure will produce an appreciable amount of 

deformation or reduction in volume. As the pressure is increased the density of the 

material continues to increase with the increase in density, the material offers an in­

creasing amount of resistance to deformation, ultimately the sponge or polyurethane 

foam will attain a state in which very large amounts of pressure will produce very little 

reduction in volume when compared with similar reductions in volume at the initial 

states. Such a relationship can be qualitatively shown in the form of Fig. 5. The curve 

OEC illustrates the possible experimental curve. Such a curve can be approximated by 

C B C' 
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two straight lines OA and AB. This means that the sponge can be compressed along 

OA until the specific volume attains a value of Vz• Later the specific volume remains 

at the value of VI while pressure can increase indefinitely. Such a mqterial is called 

ideal locking material. Often the small decrease in specific volume after locking cannot 

be neglected. Then the curves can be approximated by two straight lines, such as OA' 

and AB' (Fig. 6). Such a material is called non-ideal locking material. These are single 

stage locking materials whereas snow (Fig. 4) is a multistage locking material, because 

the material locks at specific volumes (Vb V2, V3, V4) only during a certain pressure 
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range, such as between PePz, P Z-P3 , P3-P4 etc. At the values of pressure Pz, P3 and 

P4 the material suddenly collapses into a different locked state. For example, when the 

pressure attains a value of PI the snow is said to be locked in the state of ice 1. Simi­

larly the snow will be locked in the state of ice III when the pressure Pz is attained. 

In this paper only two stage locking will be considered. This means the pressure 

will be limited to about 4000 atmospheres at a temperature between -22 to -30°C. 

At higher pressures the consideration of temperature changes across the shock wave 

might be important. 

Furthermore the initial density will be assumed to vary with the position in space. 

This will take care of the varying density with depth in snow. Thus the idealization 

of snow considered in this paper is an inhomogeneous, multistage ideal locking material. 

Further improvements can later be done to improve the theory. 

IX. Case of Uniaxial Strain and Finite Deformations 

Most of the experiments (Rice et al., 1958; Duvall, 1962 a, 1962 b; Doran and Linde, 

1966) in the study of shock waves in solids have been conducted under conditions which 

simulate uniaxial strain. Let x be the axis of a cartesian coordinate system x, y, z along 

which the material is pe;mitted to strain. Then the conditions of uniaxial strain are 

u ~u(x, t), (5) 

\ v=w=O, 

where u, v and ware velocities in x, y and z directions, and x is the Eulerean coordinate. 

The only nonzero component of the rate of strain IS 

. au 
ex = ax . (6) 

Other strain rates are equal to zero. 

ey=e.=tXy=ty.=tzx=O. (7) 

The nonvanishing components of stress tensor are ox, Oy and oz. They can be written as 

where 

Ox = -P+Dx , (8) 

Oy = o. = -P+}zDx , (9) 

-P = (ox+2oy)/3, 

Dx = 2 (ox-oy)/3 , 

(10) 

(11) 

Oy=Oz under conditions of uniaxial strain because the velocities III Y and Z directions 

are zero, and the direction of Y or Z is arbitrary with respect to the X direction. The 

deformations can be quite large because of the possible large reductions in specific 

volume, as shown in Figs. 1 to 3. Therefore instead of the usual assumption of infini­

tesimal displacements finite deformations will be considered. 

Furthermore, the initial density Po will be assumed to be a function of x; i. e., 

p(t = 0, x) = Po (x) . (12) 

This will represent a one-dimensional sample of snow with x-axis III the direction of 
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the depth. 

X. Stress-Strain Relationship 

The relationship between P= -(ax +2ay)/3 and the density variation will be according 

to the assumption of multistage locking material (Fig.4).* In the first case to be con­

sidered the material will be assumed to have no shear resistance, i. e., 

aX-ay = 0 . (13) 

Later an elastic-plastic behavior will be assumed. More realistic behavior would need 

a complicated relationship between (ax-ay) and the rate of shear strain. 

XI. Problem of Finite Amplitude Wave Propagation 

In the one-dimensional system under conditions of uniaxial strain, a stress ax = - P (t) 
IS assumed to be applied at the time t=O at the left boundary x=a(t). Initially for 

t=O the material is assumed to be at rest, stress free, and a(O)=ao, 

As a result of the applied pressure certain regions of the material will be disturbed. 

The disturbed region may consist of one or many discontinuity surfaces or shock waves. 

XII. Case of P<P2 

If the stress (-ax) applied at x=a(t) is less than Pz, there the region will consist 

of only one shock wave. Let the position of the shock wave front be denoted by x = 
k(t). Then in the region a(t)<x<k(t), the following equation of motion can be written. 

(a) Newton's law 

p( ~+~) = aax 
u ax at ax' (14) 

(b) Conservation of mass 

_~( ~+~) = au 
P U ax at ax . (15) 

For any pressure P> PI (PI has been assumed to be equal'to zero). The material 

is in the locked state, i. e., in the disturbed region a(t)<x<k(t) 

P = PlI , (16) 

where Pn is a constant and is equal to the first stage locking density. Then eq. (15) 

can be integrated to yield 

U = f(t). (17) 

Then eq. (14) becomes 

aax = P j (t) (18) 
ax ' 

where the dot represents differentiation with respect to time. Then 

ax = pllxj (t)+ g (t) . (19) 

* PI has been assumed to be zero. On any increase of pressure the material is assumed to coll­
apse from any initial density po to the locking density Pl. 
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g(t) is an arbitrary function of time. 

The functions: f(t), g(t), k(t) and a(t) muSt 'qe det.ermined by appropriate boundary 

conditions. 

and 

At the left boundary x=a(t) certain stress Ox= -P(t) is prescribed. 

Then g (t) = - J5'(t) - Pll a (t) j (t) , 

ax = Pll(x-a)j(t)-P(t). 

(20) 

(21) 

At x=k(t) the appropriate jump conditions should be satisfied. The two jump con­

ditions are 

(a) Conservation of mass 

x=k(t), 

(b) Conservation of momentum 

x=k(t), 

From eq. (22) 

x=k(t), u = k [1-P~l Po (k)] 

Hence from eq. (17) 

A simple variation of initial-density will be considered. 

PO (X)=po(l+a 1) 
= po(l+a) 

for x:::;,L, 

for xzL. 

(22) 

(23) 

(24) 

(25) 

(26) 

(27) 

When a=O the solution for constant initial density can be obtained. The discussion 

unless specifically mentioned will be restricted for x:::;,L. 
Equation (25) then becomes 

f(t) = k [1 - ~: (l+a 1)] (28) 

This equation can also be written as 

f(t) = Sk-"f}kk , (29) 

where 

(30) 

Then the expression for ax (eq. 21) becomes 

ax = Pl1 (x-a) (Sk-"f}k2-"f}kk)-.P (t) . (31) 

Equations (23) and (31) then result in the following equation: 

-Pll (k-a)(Sk-'I}kk-"f}k2)+'P(t) = Pll(k-Sk+"f}kk)(Sk-"f}kk). (32) 

Equation (32) is a differential equation in k(t) and a(t). a(t) can be eliminated from this 

equation by considering the conservation of mass of the region x<k(t). 



SNOW AS A LOCKING MATERIAL 817 

The displacement at the wave front x=k(t) is zero because of the continuity of 

displacement at the wave front. Therefore the mass occupied initially (t=O) in the 

region O<x<k(t) is now occupying the region a(t)<x<k(t). Therefore, 

[k(t) 

Jo Po (x) dx = Pll (k-'-a) . (33) 

For po(x) as assumed in eqs, (26) and (27) 

_ ( aP) Po k+ 2L =Pl1(k-a). (34) 

~quation (32) now can be written as 

(k+ ak2) (1- Y- k) k- (k+ ak2) Y-k2+ k2 (1 + 7) ~11 k) (1-~ k) = i!. (t). (35) 
2L {3 2L {3 Po (3 Po{3 

If eq. (35) can be solved for k(t) subject to appropriate initial conditions, ax, u and a 

can be obtained from eqs. (31), (24) and (34). The initial conditions are 

t=O, k=O, . = (P(O) )1/2 

k - CJ • 
PoP 

(36) 

Solution of eq. (35). Two cases will be studied. The first case will consider a con-

stant initial density Po. The second case will consider the variation of density as specified 

in the preceding section. The stress boundary condition will be 

(37) 

Case of constant density. 

eq. (36) becomes 

When the initial density is constant a=O and 7}=0. Then 

For O<t<l the solution is simply 

or 

. = ( p.- )1/2 
k - CJ ' PoP 

( 
P )112 

k = po{3 t. 

(38) 

(39) 

(40) 

The shock wave propagates at a constant velocity. 

kk+k2 = O. 

For t> l, eq. (38) becomes 

This equation can be integrated once with respect to t to yield 

loge k = -loge k+ loge A , 

where A is a constant. This equation can be written as 

kk=A, 
or 

kdk = Adt. 

Hence 

k = (2At+B)1/2 , 

(41) 

(42) 

. (43) 

(44) 

(45) 
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and 

. A 
k = (2At+B)1/2 (46) 

The initial conditions to determine A and Bare 

t = l, 

Then, 

Then 

2 3 4 

/(f{it) 
Fig. 7. 

0 
0 

. = ( J5 )1/2 
k - t:J , 

POI' 
( 

J5 )1/2_ 
k = po(3 t. (47) 

A=(i(3)l, 

5 6 

2 3 

(48) 

k =,j! {l j(2tl-l2) 1/2} . (49) 
Po(3 

Equations (48) and (49) show that the wave 

front k-'too as t-'too while the wave velocity k 

and hence the stress tend to zero as t--+oo. 

These are the results that can be expected 

after unloading. 

If PI were not equal to zero an elastic 

wave will be present in the material. 

Figure 7 shows the position of the wave 

front as a function of time. Variation (-azjP) 

at the wave-front with tjt is illustrated in 
Fig. 8. 

Case of varying initial density. For the 

case of varying initial density a simple solution 

is not possible. Equation (36) has been inte­

grated using a digital computer. The equation 

is nondimensionalized by the use of the fol­

lowing variables 

4 5 6 7 8 9 10 

til 

Fig. 8. 
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(50) 

(51) 

Then, eq. (36) becomes 

(52) 

In eq. (52) 

f = a Po ="fJL. (53) 
Pn 

The results are shown in the form of Figs. 9 and 10. Figure 9 shows the position 

t 
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of the wave front as a function of time for two different cases* of varying initial 

density. The wave velocity increases as x increases because the wave is traveling into 

denser medium. Figure 10 shows the stress at the wave front as a function of time 

for the cases of constant density and varying density. 

The integration of the differential eq. (52) needs a knowledge of dZq/dTz at T=O. 

This has been obtained by differentiating the equation of conservation of momentum 

along the wave front and using the limiting process as k tends to zero. 

XIII. Two Stage Locking 

The constitutive relationship for a two stage locking material is shown in Fig. 1l. 

These relationships can be written in the form of equations 

For PSP1 

For PIS P5, P2 

For P";:?P2 

P3 ----------------

p P 

P2 ".:.tt"''"---l,D , , , , 
PI : 
O~~-~ __ J_ ____ ~' ________ __ 

Po P, P2 Ii, 
P 

Fig. 11. 

P = Pn. 

P = Pz2 • 

As before, the material is assumed to have no shear resistance, i. e., 

(}x-(}Y = o. 

(54) 

(55) 

(56) 

(57) 

Then P-P curve represents the (}x-p diagram. Because very little is known about 

unloading characteristics, only the case of loading will be considered. 

The problem of sudden application of pressure P>P2 at the surface x=a(t) will 

be discussed. The wave pattern will be different depending on whether P is greater 

than P3 or less than P3 (Fig. 9). If P>P3 , there is one shock wave and the density 

behind the shock wave is equal to PZ2. However, for pressures less than the value of 

P3 there is a two shock wave structure. The explanation for such behavior can be 

found in the paper of Duvall (1962 c) where a complete study of shock stability in solids 

has been presented. 

XIV. Case of P<P3 

In the one-dimensional system under uniaxial strain conditions the initial density 

distribution has been assumed to be given by eqs. (26) and (27). For a pressure P2 <P<P3 
two shock waves will be propagating in the material. Let the position be denoted by 

* In these cases P (t) = P (0). 
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x=kdt) and X=k23(t). The wave velocities are proportional to the square root of the 

slope of the secants OA and AB. Initially the slope of OA corresponds to that of the 

line joining (p=0, P=Po) to the point (P=Pz, P=Plj). The 

slope of the line is definitely greater than that of AB. 

Therefore the shock wave changing the pressure from 

zero to P2 will travel faster than the shock wave across 

which the pressure changes from P2 to P. Then the 

region in an x-t plane can be separated into the fol­

lowing regions (Fig. 12). 

1. X>k12(t), which is undisturbed. 

o (t) 

Fig. 12. 

2. k23 (t)<x<k12 (t). In this region the pressure changes from zero to P2. 

3. a(t)<x<k23 (t). In this region the pressure changes from P2 to P. 

In the region 1 

U1 =0, 

0"'1 = o. 
(58) 

(59) 

The subscript (1) in these equations denotes the region in which the solution~ are valid. 

In region 2 the material locks at the locking density PlI . The general solution in this 

region can be written following eqs. (17) and (18). 

U2 = !2(t), 

O"z = Pllx fZ(t)+g2(t) . 

Similarly, the stresses and velocities in region 3 are 

U3 =!3(t), 

0",3 = PI2 Xf3(t)+g3(t). 

(60) 

(61) 

(62) 

(63) 

The unknown functions Iz,t;, g2, g3, as well as the position of the wave fronts kdt), 

k23(t), and the position of the inner surface a(t) can be determined from boundary and 

initial conditions in the following way. 

Boundary and initial conditions. The stress jumps from P2 to a higher value across 

the wave front X=k23(t). This result can also be deduced from thermodynamic con­

siderations and shock stability. Then at 

x = k23 (t), 

From eqs. (61) and (64) 

and 
0"'2 = Plj (X-k23) f2(t)-P2 . 

The jump conditions at X=k12 are 

Then 

POk12 = Plj (k12-U2) , 

Plj (k12-U2)U2 = -0"2' 

(64) 

(65) 

(66) 

(67) 

(68) 

(69) 
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and 

For (71) 

where Po is a constant, eq. (70) then redu·ces to 

Pll{31 (1- 131) k~a + P 11 (k1a - kd ka{31 - Pa = 0 , (72) 

where 

(73) 

The pressure 1ft the left boundary is assumed to be prescribed. 

x=a(t) tlX3 = -1?(t). 

Then 

(74) 

and 

tlx3 = Pia (x-a) i3 (t)-P(t) . (75) 

The jump conditions at x=ka3 (t) are 

Pia (ka3 - U3) = Pll (ka3-Ua) , (76) 

and 

(77) 

Equation (76) can be simplified to the following form 

(78) 

Then 

. Pll fa (t) = (3aka3 + -P fa (t) , 
la 

(79) 

where 

(80) 

By substituting eqs. (66), (69), (75) and (79) in eq. (77), the following equation can be 

obtained. 

(81) 

a(t) in eq. (81) can be eliminated by considering the conservation of mass of the region 

X<k1a(t). 

Then 

(82) 

Equation (81) now becomes 
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pz2(k23 -rM?23 - ~;: (11k12) ((12k23+ ~;: (11k12) -P11 (k23 -(11k12) (11k12 

= -Pz2[Pok12-Pll(kl2-k23)] [(12k23+ ~:: (1lk l2] +P(t)-P2 . (83) 

Equations (72) and (83) are two equations for two unknowns kl2 (t) and k23(t). If 
these equations are integrated subject to appropriate initial conditions, the position of 

the wave front, stress and velocities can be obtained. The results are shown in Figs. 

4 4 

3 3 

P2 i --I 

Po~ 2 ~ ~2 
-'-=08 \>"Ia.N p. . 
t2 '--' 

OL----L--~~--~--~ 

o 2 3 4 

O~ ____ -L ____ ~ ______ J-____ -J 

o 2 3 4 

m,2 -- 1 
~f3 

Fig. 13. Fig. 14. 

13 and 14. Figure 13 shows the position of wave fronts. Figure 14 illustrates the 

stress distribution at the wave front k23 . 

The initial conditions are 

t=o, 
. Ip 
kl2 = '\j POel ' 

The integrations have been carried out for the case in which P(t) increases linearly 
with time. 

xv. Dynamic Constitutive Relations and Phase Changes 

So far the discussions are based on the assumption that the static stress-strain 

relationships are valid in dynamic problems. Also, the components of stress tensor 

other than the hydrostatic pressure has been neglected. 

It is very well known that static conditions can be attained in a dynamic problem 

as time tends to infinity. The constitutive relations in a dynamic problem could be 

quite different from that observed in static experiments. The only conditions are that 

these relations should govern the static results at large times. Similarly, the dynamic 

phase changes could follow a process very different from the static process of phase 

changes. 
In this section dynamic effects on the constitutive relations and the effect of the 

complete stress tensor will be considered. The assumptions of uniaxial strain, however. 
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will be retained. Thermodynamic effects will not be considered. 

The stress tensor aij can be separated into hydrostatic pressure p and the extra 

stress tensor a~j 

under the assumption of uniaxial strain the x direction 

p = 1/3 (ax +2ay) , 

a~l = 2/3 (ax -ay) , 

ah = ah = 1/3 (ay-ax) , 

a~2 = ah = ah = 0 . 

(84) 

(85) 

(86) 

(87) 

(88) 

If the stress-strain relationships observed in static experiments were valid for the 

dynamic problem, the pressure p can be assumed to be a function of density and (ax-oy) 

can be assumed to vary according to the elastic-ideal plastic behavior. The yield con­

ditions can be of Tresca, Misses or Coloumb type. 

The dynamic constitutive relations will be illustrated by a simple variation from the 

static type of stress-strain relationship. 

If 

iax-ayi<y, 

ax-ay = 2G(ex) , 

where y is the static yield stress. If 

iax-ayi >y , 

a constitutive relationship of the following form can be assumed. 

8;j t = F(a) . 

(89) 

(90) 

(91) 

In this equation 8;j is the first stress rate, e j is the rate of strain tensor and P is the 

density. In the case of llniaxial strain the rate of strain tensor can be written as 

where 

eh = 2/3 (ey - ex) , 

e~2 = e~3 = 1/3 (ey-Ex) , 

Then a simple relationship of the form eq. (91) is 

(92) 

(93) 

(94) 

(95) 

(96) 

(97) 

This equation can be generalized to include higher stress rates and strain rates. A 

specific form of eq. (97) can be written as 

(98) 

t /'.. indicates the Jaumann or Gorotational stress rates (Noll and Truesdell, 1964). 
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and 

O=±1. (99) 

This equation indicates that stress deviator can exceed the value of the static yield 

stress y. However, these stresses relax towards the yield stress with time. The con­

stant f} takes care of the fact that yielding can take place when the stress deviator 

exceeds a positive or negative maximum. G in eq. (97) is the modulus of rigidity and 

T is a constant having the dimension of time. 

In order to study simple variations from the usual static stress-strain relationships 

the assumption of p as a function of density and the locking characteristics will be 

retained. Only single stage locking will be considered. Equations (14), (15) and the 

constitutive relations define the problem. The hyperbolicity of the equations can be 

shown by determining the real characteristics. 

u u± / ap + 4G . , V ap 3p 

Integration of these equations subject to the appropriate boundary and jump con­

ditions will not be discussed here. Some results are shown Fig. 15. 

0.S 

-~J( 0.6 
P 

0.2 

oL-~-..:b_~::::Bl~-'::=~--.J.--'---' 

o 10 20 30 40 50 60 70 so 90 100 

o.~ 

Fig. 15. 

It is assumed that a constant pressure .f? is applied at the left boundary x=a(t). 

The resulting variation of Ox with x at various intervals of time are shown in Fig. 15. 

In this' ~ase p-p relationship is according to single stage locking .behavior. The stress 

deviatqr strain rates are related according to eq. (98). It can be seen that the stress 

jump initially travels as a single shock wave as though the material were elastic. However 

as time increases the stress deviator or the shear stresses reiax towards the yield stress 

and the elastic precess or wave is formed which travels faster than the shock wave. 

The profile of stress versus x at large times would be the one that can be seen at 

t/T=33. This would be the stress-time profile that would be obtained by calculations 

using static' stress-strain 'relationship. 

These figures show the different dynamic behavior at early times after loading. 

These transient behavior, however, reduce to the usual steady state case after sometime. 

In order to obtain more quantitative results, more general constitutive relationships, 

thermodynamic effects and experimental work is necessary. This paper has discussed 

only certain aspects of foundation to the study of snow at high pressures. 
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