
 

Instructions for use

Title One-cocycles on smooth flows of weights and extended modular coactions

Author(s) YAMANOUCHI, TAKEHIKO

Citation Ergodic Theory and Dynamical Systems, 27(1), 285-318
https://doi.org/10.1017/S0143385706000551

Issue Date 2007-02

Doc URL http://hdl.handle.net/2115/20159

Rights Copyright © 2007 Cambridge University Press

Type article

File Information ETDS27-1.pdf

Hokkaido University Collection of Scholarly and Academic Papers : HUSCAP

https://eprints.lib.hokudai.ac.jp/dspace/about.en.jsp


Ergod. Th. & Dynam. Sys. (First published online 2006), 0, 1–34∗
doi:10.1017/S0143385706000551 c© 2006 Cambridge University Press
∗Provisional—final page numbers to be inserted when paper edition is published

One-cocycles on smooth flows of weights and
extended modular coactions

TAKEHIKO YAMANOUCHI

Department of Mathematics, Faculty of Science, Hokkaido University,
Sapporo 060–0810, Japan

(e-mail: yamanouc@math.sci.hokudai.ac.jp)

(Received 9 June 2005 and accepted in revised form 15 June 2006)

1. Introduction
This paper is concerned with Borel 1-cocycles on ergodic flows on standard Borel measure
spaces and a certain type of group coactions on (separable) factors.

In [3], Aoi and the present author clarified a close relation between Borel 1-cocycles
in ergodic theory and group coactions in the theory of operator algebras: it was
proven there that cocycles on a discrete measured equivalence relation R are, roughly
speaking, in bijective correspondence with coactions on the associated (Feldman–Moore)
von Neumann algebra W∗(R) (see [14]) which fix the Cartan subalgebra of W∗(R)
pointwise. This would provide a reasonable evidence that the study of 1-cocycles on
R is ‘equivalent’ to that of special group coactions on W∗(R), and thus enables us to
analyze such cocycles by operator-algebraic methods and investigate coactions of the type
described above from a viewpoint of ergodic theory.

Note that 1-cocycles on discrete equivalence relations are almost the same as those
on measure spaces with actions of countable groups (see [13]). Hence, if we pursue
the research along the line illustrated above, we are naturally led to consider cocycles
on measure spaces with continuous group actions, especially cocycles on flow spaces.
They are exactly what we treat in this paper.

Let {Ft }t∈R be a (conservative) ergodic flow on a standard probability space (X, µ).
We may think of the covariant system (X, R, {Ft }) as the smooth flow of weights
on an approximately finite-dimensional (AFD) factor N of type III. Consider a Borel
1-cocycle c : R ×X → K on this ergodic R-space X with values in a (second countable)
locally compact group K . If K happens to be the one-dimensional torus T, then, for each
dominant weight φ on N , the cocycle c induces a ∗-automorphism σ

φ
c of N , called the

extended modular automorphism of φ (see [9]). Thanks to [9], we further know which
automorphisms of N arise in this manner.

Given this fact, one might ask what happens if K is a general locally compact group.
To the best of the author’s knowledge, this problem was treated beautifully by Izumi [22]
in a different context whenK is compact. To be more precise, he considered a factor N of
type III that admits a family of special (i.e. modular) endomorphisms of N with a certain
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set of properties. Each member π of this family induces a Borel 1-cocycle on the smooth
flow of weights onN with values in the unitary groupU(n), where n depends on π . Due to
one of the results of Zimmer in [40], the family then determines a compact group K .
The properties which this family of endomorphisms enjoys now ensure that N admits a
Roberts action (equivalently, a coaction) of K .

Although we could not always hope that this kind of endomorphism exists on N when
K is no longer a compact group, we might still expect that each 1-cocycle on the smooth
flow of weights on N induces a coaction of K on N . The main purpose of this paper is to
show that this is indeed the case.

The organization of the paper is as follows. In §2, we collect all of the standard symbols
and the terms used throughout the paper. Section 3 deals with the problem discussed
above. Let N be a factor of type III whose smooth flow of weights is (XN , FN ). Fix any
dominant weight φ on N . We show that each Borel 1-cocycle c on the ergodic R-space
XN with values in a locally compact groupK yields a coaction βφc ofK on N which fixes
the centralizer Nφ . We also prove that a different choice of a dominant weight produces a
conjugate coaction, and that a cohomologous 1-cocycle gives rise to a cocycle conjugate
coaction. Therefore, the crossed product by the coaction βφc and its dual action depend
only on the cohomology class [c] up to conjugacy. The crossed product is called the
skew-product of N by c. If K equals T, then our construction of βφc amounts to the
Connes–Takesaki extended modular automorphism group construction explained before.
Hence, we call βφc the extended modular coaction associated with φ and c. In §4,
we characterize extended modular coactions as coactions that leave the centralizer of a
dominant weight pointwise invariant. In §5, we discuss the Connes spectra of extended
modular coactions. It is proven that the asymptotic range of c is always contained in
the Connes spectrum of βφc . Section 6 is concerned with crossed products by extended
modular coactions and their smooth flows of weights. Thanks to the result in §5, the
extended modular coaction βφc turns out to be strictly outer [36] if c is a cocycle having
dense range. For such a cocycle c, we will give a complete description of the smooth
flow of weights on the crossed product by βφc (Theorem 6.4). This generalizes the result
obtained by Izumi in [22]. In §7, we examine the (Murray–von Neumann) algebraic type of
crossed products by extended modular coactions in a certain situation. Section 8 contains a
study of the dual actions of extended modular coactions associated with 1-cocycles having
dense range. We characterize such an action as an integrable, minimal action whose
Connes–Takesaki module is faithful and integrable. In §9, we give some remark on Galois
correspondence for actions considered in §8. For an integrable, minimal action α of a
locally compact group K on a factor M of type III whose Connes–Takesaki module is
faithful and integrable, we show, with some additional assumption, that an intermediate
subfactor L of the inclusion Mα ⊆ M is of the form L = MαH for a closed subgroup
H of K if and only if there exist faithful normal semifinite operator-valued weights from
M to L and from L to Mα. In Appendices A–D, we include some results which are used
or referred to in the preceding sections. Usually, unitary 1-cocycles for group actions
on von Neumann algebras are assumed to be σ -strongly* continuous with respect to the
group parameters. It is, however, widely known (see [31, Notes 20.15]) that the σ -strong*
continuity requirement can be replaced, without modifying the notion, by the measurability



One-cocycles on smooth flows of weights 3

condition we adopt in this paper. This is folklore among specialists, but we could not locate
literature that exhibits a concrete proof. So we include one here that fully utilizes the
argument in [5]. Appendices A–D also contain another construction of the skew-product
algebra obtained in §6. This is used in §9 and seems to be of independent interest. Finally,
we prove that, for any properly ergodic flow space X and any amenable locally compact
groupK , there is a Borel 1-cocycle c : R ×X → K having dense range.

2. Notation and terminology
Throughout this paper, we assume that all von Neumann algebras have separable preduals.

For a faithful normal semifinite weight φ on a von Neumann algebra M , we set

nφ := {x ∈ M : φ(x∗x) < ∞}, mφ := n∗
φnφ, m+

φ := mφ ∩M+.

More generally, for an operator-valued weight T from a von Neumann algebra M to a
von Neumann subalgebraN , we set

nT := {x ∈ M : T (x∗x) ∈ N+}, mT := n∗
T nT , m+

T := mT ∩M+.

The Hilbert space obtained from φ by the Gelfand–Naimark–Segal (GNS)-construction
will be denoted by Hφ , and we let �φ : nφ → Hφ stand for the natural injection.
As usual, we use the symbols Jφ , �φ to denote the modular conjugation and modular
operator associated with φ.

For a Hilbert space H , B(H) stands for the algebra of all bounded operators on H .
In this paper, any locally compact group will be assumed to be second countable. LetK

be a locally compact group. Unless otherwise mentioned, we always consider a left Haar
measure on K , which we denote by mK . We denote by W∗(K) the von Neumann algebra
generated by the left regular representation λK on L2(K). Remark that W∗(K) is the
left von Neumann algebra of the left Hilbert algebra Cc(K) of all continuous functions
on K with compact support, where we consider on Cc(K) the usual convolution and
involution. The faithful semifinite normal weight onW∗(K) associated with the left Hilbert
algebra Cc(K) is denoted by ϕK , the Plancherel weight on W∗(K). It is known that there
exists a unital normal injective ∗-homomorphism�K fromW∗(K) intoW∗(K)⊗W∗(K)
characterized by the identity �K(λK(k)) = λK(k)⊗ λK(k) for any k ∈ K . In fact, �K is
defined concretely by

�K(x) := W∗
K(1 ⊗ x)WK (x ∈ W∗(K)),

whereWK is the unitary given by {WKξ}(k, h) = ξ(hk, h) (ξ ∈ L2(K ×K)).
We denote the predual of W∗(K) by A(K), the Fourier algebra of K (see [10]).

Every element ω in A(K) is regarded as a continuous function on K given by k ∈ K 	→
ω(λK(k)

∗),
A coaction of K on a von Neumann algebra M is, by definition, a unital normal

injective ∗-homomorphism α from M into W∗(K) ⊗ M satisfying (�K ⊗ idM) ◦ α =
(idW∗(K) ⊗ α) ◦ α.

Suppose that α is a coaction of K on a von Neumann algebraM .
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(1) The fixed-point algebra of α is a von Neumann subalgebra Mα of M defined by
Mα := {a ∈ M : α(a) = 1 ⊗ a}. We use the same notation for the fixed-point
algebra of a group action.

(2) The map Tα defined by Tα(a) := (ϕK ⊗ idM)(α(a)) is an operator-valued weight
from M to Mα. The coaction α is said to be integrable if Tα is semifinite. (For an
action β of K on M , the mapping a ∈ M+ 	→ ∫

K
βk(a) dk defines a faithful normal

operator-valued weight Tβ from M to the fixed-point algebra Mβ . We say that β is
integrable if Tβ is semifinite.)

(3) The crossed product of M by α is the von Neumann algebra K̂ α�M := (α(M) ∪
L∞(K)⊗ C)′′. (In this paper, we adopt the notation in [35] for crossed products by
(quantum) group actions. Hence, in the crossed product notation, the (quantum)
groups appear on the left, while algebras appear on the right, such as K̂ α�M ,
R σφ�M , and so on.)

(4) For each k ∈ K , α̂k := Ad(ρK(k)⊗1)|K̂ α�M
defines a ∗-automorphism of K̂ α�M ,

where ρK is the right regular representation of K . We call α̂ the dual action of α.
(For the definition of the dual action of an action of a locally compact abelian group,
see [31].)

(5) The map Tα̂ defined by Tα̂(x) := ∫
K α̂k(x) dk is an operator-valued weight from

K̂ α�M to α(M). For a normal weight ψ on M , ψ̃ := ψ ◦ α−1 ◦ Tα̂ is a normal
weight on K̂ α�M . It is called the dual weight of ψ .

(6) Define the coaction α̃ of K on B(L2(K))⊗M (the stabilization of α) by

α̃ := Ad(WK ⊗ 1) ◦ (σ ⊗ id) ◦ (id ⊗ α).

It is known that (B(L2(K))⊗M)α̃ = K̂ α�M .
(7) A unitary V ∈ W∗(K)⊗M is called an α-1-cocycle if it satisfies (�K ⊗ id)(V ) =

V23(id ⊗ α)(V ). If V is such a unitary, then AdV ◦ α is again a coaction of K
on M . Let β be another coaction of K on M . We say that α is cocycle conjugate
to β if there exist a ∗-automorphism π of M and an α-1-cocycle V such that
(id ⊗ π) ◦ β ◦ π−1 = AdV ◦ α.

For the spectral theory for coactions such as the (Arveson) spectrum, the Connes
spectrum and so on, we refer the reader to [27, 28].

Let G, K be locally compact groups, and X be a standard Borel G-space with quasi-
invariant probability measure µ. A Borel map c : G × X → K is called a Borel
1-cocycle if c(gh, x) = c(g, hx)c(h, x) for any g, h ∈ G and x ∈ X. Two Borel 1-cocycles
c, c′ : G ×X → K are said to be cohomologous if there is a Borel map q : X → K such
that, for each g ∈ G, c′(g, x) = q(gx)−1c(g, x)q(x) for almost every x ∈ X.

Let c : G × X → K be a Borel 1-cocycle as above. The essential range of c is
the smallest closed subset σ(c) of K such that c−1(σ (c)) has complement of measure
zero. The asymptotic range (or real image) r∗(c) of c (see [13, 30]) is, by definition,⋂{σ(cB) : B ⊆ X, µ(B) > 0}, where cB stands for the restriction of c to the subgroupoid
{(g, x) : gx, x ∈ B}. There is a natural G-action on the product standard Borel space
(K × X, mK × µ) defined by g · (k, x) := (c(g, x)k, gx). We call this action the skew-
product action associated with c, and often write K ×c X in short for (K × X, mK × µ)
with this special action. If both the originalG-action onX and the skew-product action are
ergodic, then we say that c has dense range.
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Let M be an infinite factor. Then one can associate in a functorial manner an ergodic
abelian covariant system (PM , R, FM ), called the smooth flow of weights on M (see [9]).
One way to concretely realize this system is the following. Take a faithful normal semifinite
weight φ onM . Then one obtains an abelian covariant system (Z(R σφ�M), R, σ̂ φ), where
Z(N) in general stands for the center of a von Neumann algebra N and σ̂ φ indicates the
dual action of the modular automorphism group σφ . It is well-known that this system is
conjugate to the smooth flow of weights on M . Another equivalent realization by using a
dominant weight [9] is given in the next section. In any case, there exist a (not necessarily
unique) standard Borel probability space (XM , µM ) and an ergodic flow {FMt }t∈R on
(XM , µM ) such that PM = L∞(XM,µM) and FM

t (f ) = f ◦ FM−t for f ∈ L∞(XM,µM)
and t ∈ R. We also call (XM , FM ) the smooth flow of weights on M . The set of all Borel
1-cocycles c : R ×XM → K on (XM , FM ) will be denoted by Z1(FM,K). The group of
all non-singular Borel automorphisms on XM commuting with all {FMt } will be denoted
by Aut(FM).

3. Coactions derived from 1-cocycles on the space of the smooth flow of weights:
extended modular coactions

The goal of this section is to construct, from a Borel 1-cocycle on the smooth flow of
weights on a type III factor N with a dominant weight φ, a coaction on N whose fixed-
point algebra contains the centralizer Nφ (Theorem 3.1).

Let N be a factor of type III, and fix a dominant weight φ on N . We regard N as
represented standardly on the GNS Hilbert space Hφ obtained from φ.

By the dominancy of φ, we have a continuous decomposition of N (cf. [9, 31, 33]) as
follows.
(1) The centralizer Nφ of φ is of type II∞.
(2) There exists a one-parameter unitary group {u(t)}t∈R in N satisfying N = (Nφ ∪

{u(t)}t∈R)′′ and u(t)Nφu(t) = Nφ for all t ∈ R.
(3) If we set θt := Adu(t)|Nφ ∈ Aut(Nφ) (t ∈ R), then there is a ∗-isomorphism �

from the crossed product R θ�Nφ onto N such that:
(i) �(πθ(x)) = x for all x ∈ Nφ ;
(ii) �(λR(t)⊗ 1) = u(t) for all t ∈ R;
(iii) the dual action θ̂ is conjugate to the modular automorphism group {σφ},

i.e. � ◦ θ̂t ◦�−1 = σ
φ
t for any t ∈ R.

(4) There exists a faithful normal semifinite trace τ on Nφ satisfying τ ◦ θt = e−t τ for
all t ∈ R.

The smooth flow of weights on N is then the system (Z(Nφ), R, θ ). So there exist a
standard Borel space XN , a probability measure µ on XN and an ergodic flow FN on XN
such that Z(Nφ) = L∞(XN,µ) and θt (f )(x) = f (FN−t x) for f ∈ L∞(XN,µ), t ∈ R and
x ∈ XN . We often simply write tx for FNt x.

We consider a central decomposition of Nφ

{Nφ,Hτ } =
∫ ⊕

XN

{Nφ(x),Hτ (x)} dµ(x)

over (XN,µ).
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Now assume that we are given a Borel 1-cocycle c ∈ Z1(FN,K) for a locally
compact group K . Since the map (t, x) ∈ R × XN 	−→ λK(c(t, x)) ∈ W∗(K) is
a bounded Borel function, it determines an element Uc in L∞(R × XN,W

∗(K)) =
W∗(K) ⊗ L∞(R) ⊗ Z(Nφ). Clearly, Uc is a unitary. It is also straightforward to check
that Uc satisfies

(�K ⊗ idL∞(R) ⊗ idZ(Nφ))(Uc) = (Uc)234(Uc)134. (3.1)

From this, it follows that the equation

β
φ

0 (X) := Uc(1 ⊗X)U∗
c (X ∈ B(L2(R))⊗ B(Hτ ))

defines a coaction βφ0 of K on B(L2(R))⊗ B(Hτ ).
In the meantime, L2(K)⊗ L2(R)⊗Hτ admits a direct integral decomposition

L2(K)⊗ L2(R)⊗Hτ =
∫ ⊕

XN

L2(K)⊗ L2(R)⊗Hτ(x) dµ(x).

Along this decomposition, Uc is decomposed into
∫ ⊕
XN
Uc(x) dµ(x), where, for any

x ∈ XN , Uc(x) may be assumed to act as follows: {Uc(x)η}(k, t) = η(c(t, x)−1k, t)

for η ∈ L2(K × R,Hτ (x)).

THEOREM 3.1. The restriction of βφ0 to the crossed product R θ�Nφ determines a
coaction of K on R θ�Nφ . In fact, we have

β
φ
0 (πθ (a)) = 1 ⊗ πθ(a) (a ∈ Nφ), (3.2)

β
φ
0 (λR(s)⊗ 1) = (idW∗(K) ⊗ πθ)(Qs)(1 ⊗ λR(s)⊗ 1) (s ∈ R), (3.3)

where Qs is a unitary in W∗(K) ⊗ Z(Nφ) = L∞(XN,W∗(K)) defined by the Borel
function: x ∈ XN 	→ λK(c(−s, x))∗ ∈ W∗(K). Moreover, a different choice of a
dominant weight on N gives rise to a conjugate coaction in this procedure.

Proof. Since πθ(Nφ) is contained in L∞(R) ⊗ Nφ , Uc commutes with 1 ⊗ πθ(a) for all
a ∈ Nφ . Thus, (3.2) follows.

To show (3.3), we first note that Uc(1 ⊗ λR(s)⊗ 1)U∗
c acts in the following manner:

{Uc(1 ⊗ λR(s)⊗ 1)U∗
c ξ}x(k, t) = ξx(c(−s, tx)k, t − s), (3.4)

where

ξ =
∫ ⊕

XN

ξx dµ(x) ∈ L2(K)⊗ L2(R)⊗Hτ =
∫ ⊕

XN

L2(K × R,Hτ (x)) dµ(x).

This may be verified by a direct calculation using the cocycle property of c. If Qs is the
unitary defined in the statement of this theorem, then, by (3.4), we get

{Uc(1 ⊗ λR(s)⊗ 1)U∗
c ξ}x = {(1 ⊗ λR(s)⊗ 1)ξ}x(c(−s, tx)k, t)

= {(idW∗(K) ⊗ πθ)(Qs)(1 ⊗ λR(s)⊗ 1)ξ}x(k, t).
Thus (3.3) is verified. From (3.2) and (3.3), we have βφ0 (R θ�Nφ) ⊆ W∗(K)⊗ R θ�Nφ .

It follows that the restriction of βφ0 to R θ�Nφ defines a coaction of K on it.
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Finally, let ω be another dominant weight on N . By [9, Ch. II, Theorem 1.1], there is a
unitary u ∈ N such that ω(a) = φ(uau∗) for a ∈ N+. Then it is easy to check with the
aid of (3.2) and (3.3) that one has βφ0 ◦ (id ⊗ Ad u) = (id ⊗ id ⊗ Adu) ◦ βω0 . Therefore,

βω0 is conjugate to βφ0 . �

Definition 3.2. Thanks to Theorem 3.1, the map (idW∗(K) ⊗ �) ◦ βφ0 |R θ�Nφ ◦ �−1 is

a coaction of K on N . We denote it by βφc , and call it the extended modular coaction
associated with φ and c. From Theorem 3.1, we have

βφc (a) = 1 ⊗ a (a ∈ Nφ), (3.5)

βφc (u(s)) = Qs(1 ⊗ u(s)) (s ∈ R). (3.6)

PROPOSITION 3.3. Let c, c′ : R×XN → K be Borel 1-cocycles. They are cohomologous
to each other if and only if there exists a βφc -1-cocycle R such that βφ

c′ = AdR ◦ βφc
(in particular, the coactions are cocycle conjugate).

Proof. Suppose that c and c′ are cohomologous. So there is a Borel map q : X → K

such that, for each t ∈ R, c′(t, x) = q(FNt x)
−1c(t, x)q(x) for almost every x ∈ XN .

Consider the Borel map Vq : x ∈ XN 	→ λK(q(x))
∗ ∈ W∗(K). Then Vq is a unitary in

L∞(XN,W∗(K)) = W∗(K) ⊗ Z(Nφ). Since �K(Vq(x)) = Vq(x) ⊗ Vq(x), we obtain

(�K ⊗ id)(Vq) = (Vq)23(Vq)13. By (3.5), we have (id ⊗ β
φ
c )(Vq) = (Vq)13. This means

that Vq is a βφc -1-cocycle. Set β := AdVq ◦ βφc . We have β(a) = 1 ⊗ a for any
a ∈ Nφ . Let {u(t)} and θt = Adu(t) be as in the beginning of this section. Fix any
s ∈ R. Then β(u(s)) = VqQ

c
s(1 ⊗u(s))V ∗

q = VqQ
c
s(id ⊗ θs)(V

∗
q )(1 ⊗ u(s)), whereQcs is

the unitary in Theorem 3.1 constructed from c. Note that the unitary VqQcs(id ⊗ θs)(V
∗
q )

is regarded as a W∗(K)-valued Borel function on XN given by

x ∈ XN 	−→ λK(q(x)
−1)λK(c(−s, x)−1)λK(q(F

N−sx)) = λK(c
′(−s, x)−1).

This shows VqQcs(id⊗θs)(V ∗
q ) = Qc

′
s , whereQc

′
s is, of course, the unitary in Theorem 3.1

constructed from c′. So we obtain β(u(s)) = Qc
′
s (1 ⊗ u(s)). Therefore, β = β

φ

c′ . Hence,
we may take Vq for the desired unitary R.

Suppose next that there exists a βφc -1-cocycle R such that βφ
c′ = AdR ◦ βφc . From (3.5)

and the relative commutant theorem, we find that R belongs to W∗(K) ⊗ Z(Nφ). Thus,
R can be viewed as a W∗(K)-valued Borel function on XN . Since (�K ⊗ id)(R) =
R23(id ⊗ β

φ
c )(R) = R23R13, it follows that �K(R(x)) = R(x) ⊗ R(x). Hence, we may

and do assume that there is a Borel function p : XN → K such that R(x) = λK(p(x))
∗.

By (3.6), we get Qc
′
s = RQcs(1 ⊗ u(s))R(1 ⊗ u(s)∗) = RQcs(id ⊗ θs)(R

∗) for any s ∈ R.
As in previous paragraph, this identity means that, for almost every x ∈ XN , we have

c(−s, x)−1 = p(x)−1c(−s, x)p(FN−sx).
Therefore, c′ is cohomologous to c. �

As cocycle conjugate covariant systems produce conjugate dual covariant systems,
the next corollary immediately follows from Proposition 3.3.
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COROLLARY 3.4. Let c ∈ Z1(FN,K). Then the covariant system {K̂
β
φ
c
�N, β̂

φ
c }

depends only on the cohomology class [c], up to conjugacy. As in [22], we often write
L∞(K) ⊗c N for the crossed product K̂

β
φ
c
�N , and call it the skew-product (algebra) of

N by c.

COROLLARY 3.5. Let c ∈ Z1(FN,K) and φ be a dominant weight on N as before.
Then c is cohomologous to the trivial cocycle if and only if βφc is inner in the sense
that there exists a unitary V ∈ W∗(K) ⊗ N satisfying (�K ⊗ id)(V ) = V23V13 and
β
φ
c (a) = V (1 ⊗ a)V ∗ for all a ∈ N .

Proof. This follows at once from Proposition 3.3. �

PROPOSITION 3.6. Let c : R × XN → K be a Borel 1-cocycle. Suppose that K is
abelian. It is well known that the coaction βφc of K corresponds to an automorphic action,
still denoted by βφc , of the dual group K̂ on N . For any γ ∈ K̂ and any t ∈ R, define a
Borel function ĉγ (t) in L∞(XN) by ĉγ (t)(x) := 〈c(−t, x), γ 〉, where 〈· , ·〉 : K × K̂ → T

is the natural pairing.
(1) For each γ ∈ K̂ , ĉγ belongs to Z1

FN (R,U(PN)), that is, ĉγ is a FN -1-cocycle in the

sense of [9]. (See Appendix A for the symbol Z1
FN (R,U(PN)).)

(2) Let σφ
ĉγ

be the extended modular automorphism ofN associated with FN -cocycle ĉγ

(cf. [9, §IV.2]). Then the action γ ∈ K̂ 	→ σ
φ

ĉγ
∈ Aut(N) of K̂ on N is exactly the

action βφc .

Proof. Part (1) follows from the results of Appendix A.
For Part (2), let F : L2(K) → L2(K̂) be the Fourier transform. Thus, it satisfies

{Fg}(γ ) =
∫
K

〈k, γ 〉g(k) dk
for any compactly supported continuous function g on K . Since FλK(k)F∗ is equal to
the multiplication by the function 〈k, ·〉 on K̂ , it follows from (3.2) and (3.3) that the
automorphic action βφc satisfies (βφc )γ (a) = a and (βφc )γ (u(s)) = ĉγ (s)u(s) for all

a ∈ Nφ , s ∈ R and γ ∈ K̂ . This shows that, for each γ ∈ K̂, (βφc )γ is the extended
modular automorphism associated with ĉγ . �

This proposition would justify our terminology ‘extended modular coaction’ for βφc .

LEMMA 3.7. We have (idW∗(K) ⊗ σ
φ
t ) ◦ βφc = β

φ
c ◦ σφt for all t ∈ R.

Proof. The claimed identity easily follows from (3.5), (3.6) and σφt (u(s)) = e−istu(s). �

PROPOSITION 3.8. The weight φ is 1-invariant with respect to βφc in the sense of [35],
that is, it satisfies

φ((ωξ ⊗ idN)(βφc (a))) = ‖ξ‖2φ(a)

for any ξ ∈ L2(K) and a ∈ m+
φ .

Proof. We know that the equation

Tφ(a) :=
∫
R

σ
φ
t (a) dt (a ∈ N+)
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defines a faithful normal semifinite operator-valued weight from N to Nφ that satisfies
φ = τ ◦ Tφ . From this and Lemma 3.7, we have, for any a ∈ N+,

(idW∗(K) ⊗ Tφ)(β
φ
c (a)) =

∫
R

(idW∗(K) ⊗ σ
φ
t )(β

φ
c (a)) dt

=
∫
R

βφc (σ
φ
t (a)) dt = 1 ⊗ Tφ(a).

By this result, if a ∈ m+
φ , we get

φ((ωξ ⊗ idN)(βφc (a))) = (ωξ ⊗ φ)(βφc (a)) = (ωξ ⊗ τ ◦ Tφ)(βφc (a))
= (ωξ ⊗ τ )((idW∗(K) ⊗ Tφ)(β

φ
c (a)))

= (ωξ ⊗ τ )(1 ⊗ Tφ(a)) = ‖ξ‖2φ(a).

This completes the proof. �

Remark. We close this section with a brief remark on the construction of the skew-
product L∞(K) ⊗c N . In this section, the algebra L∞(K) ⊗c N , or rather the covariant

system (L∞(K) ⊗c N , K , β̂φc ), was obtained by way of constructing the extended
modular coaction βφc . Although we believe that our approach (by using extended modular
coactions) is very important in its own right, we emphasize that there is another way of
defining the skew-product algebra without introducing the notion of an extended modular
coaction. This approach is fully illustrated in Appendix C. The idea is to directly construct
a ‘continuous decomposition’ of the skew-product algebra from N and c. We will make
use of this approach in §9.

4. Characterization of extended modular coactions
The main result of this section (Theorem 4.1) asserts that extended modular coactions are
exactly the coactions whose fixed-point algebras contain the centralizer of some dominant
weight (the dominant weight may vary depending on a coaction). This, together with the
results in the preceding section, would imply that the extended modular coaction is a right
generalization of Connes–Takesaki’s extended modular automorphism group.

As in the previous section, let N be a factor of type III and φ a dominant weight on N .
We retain the notation introduced in the preceding section.

THEOREM 4.1. If a coaction β of a locally compact group K on N satisfies Nφ ⊆ Nβ ,

then there exists a Borel 1-cocycle c : R ×XN → K such that β = β
φ
c .

Proof. For any s ∈ R, set w(s) := (1 ⊗ u(s)∗)β(u(s)) ∈ W∗(K) ⊗ N . For any x ∈ Nφ ,
we have

(1 ⊗ x)w(s) = (1 ⊗ u(s)∗)(1 ⊗ θs(x))β(u(s)) = (1 ⊗ u(s)∗)β(θs(x)u(s))
= (1 ⊗ u(s)∗)β(u(s)x) = w(s)(1 ⊗ x).

Hence, by the relative commutant theorem [9, Ch. II, Theorem 5.1], we get

w(s) ∈ W∗(K)⊗N ∩ (C ⊗Nφ)
′ = W∗(K)⊗N ∩ (Nφ)′ = W∗(K)⊗ Z(Nφ).
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Hence,w(·) belongs toW∗(K)⊗L∞(R)⊗Z(Nφ), and thus can be regarded as a bounded
Borel function from R ×XN into W∗(K).

In the meantime, we have

(�K ⊗ idN)(w(s)) = (1 ⊗ 1 ⊗ u(s)∗)(�K ⊗ idN)(β(u(s)))

= (1 ⊗ 1 ⊗ u(s)∗)(idW∗(K) ⊗ β)(β(u(s)))

= (1 ⊗ w(s))(1 ⊗ β(u(s)∗))(idW∗(K) ⊗ β)(β(u(s)))

= w(s)23(idW∗(K) ⊗ β)(w(s))

= w(s)23w(s)13.

From this, it follows that w(s, x) satisfies �K(w(s, x)) = w(s, x) ⊗ w(s, x) for any
s ∈ R and x ∈ XN . To sum up, there is a Borel map c′ : R × XN → K such that
w(s, x) = λK(c

′(s, x)) ∈ W∗(K).
For s, t ∈ R, we have

w(s + t) = (1 ⊗ u(s + t)∗)β(u(s + t)) = (1 ⊗ u(s + t)∗)β(u(s))(1 ⊗ u(t))w(t)

= (1 ⊗ u(t)∗)w(s)(1 ⊗ u(t))w(t) = (idW∗(K) ⊗ θ−t )(w(s))w(t).

This shows that, for all s, t ∈ R, the map c′ satisfies c′(s + t, x) = c′(s, tx)c′(t, x) for
almost every x ∈ XN . By [42, Theorem B.9], there exists a Borel 1-cocycle c : R×XN →
K such that, for all s ∈ R, c(s, x) = c′(s, x) for almost every x ∈ XN . So we may assume
from the outset that w is determined by this cocycle c.

By definition, we have β(u(s)) = (idW∗(K) ⊗ θs)(w(s))(1 ⊗ u(s)). Note that, for
each s ∈ R, the unitary (idW∗(K) ⊗ θs)(w(s)) is determined by the function x ∈ XN 	→
λ(c(s,−sx)) ∈ W∗(K). By the cocycle property of c, we have c(s,−sx) = c(−s, x)−1.
Hence, (idW∗(K) ⊗ θs)(w(s)) is nothing but the unitary Qs in Theorem 3.1. Thus, we get

β(u(s)) = Qs(1 ⊗ u(s)) for any s ∈ R. Therefore, we conclude that β = β
φ
c . �

Remark. The proof of the preceding theorem allows us to obtain the following claim:
if a locally compact quantum group G (in the sense of Kustermans and Vaes [25]) admits
a faithful action β on a type III factor N for which there exists a dominant weight φ on
N satisfying Nφ ⊆ Nβ (the fixed-point algebra of β), then G must be cocommutative.
To verify this claim, let β be such an action of the locally compact quantum group
G = (M,�, ϕ,ψ). We freely employ the notation used in [39] for locally compact
quantum groups and their actions. Note that the proof of Theorem 4.1 is valid up to
the second paragraph, except that we have �(w(s, x)) = w(s, x) ⊗ w(s, x) instead in
the end. This means that, almost everywhere, w(s, x) belongs to the so-called intrinsic
group IG(G) of G, where IG(G) := {u ∈ M : u is a unitary, �(u) = u ⊗ u}.
Hence, it follows that w(s) belongs to IG(G)′′ ⊗ Z(Nφ). In particular, β(u(s)) is in
IG(G)′′ ⊗ N for all s ∈ R, since N = (Nφ ∪ {u(s) : s ∈ R})′′. Owing to Nφ ⊆ Nβ ,
we have β(N) ⊆ IG(G)′′ ⊗ N . From this and the assumption that β is faithful,
i.e. {(id ⊗ ω)(β(a)) : a ∈ N,ω ∈ N∗}′′ = M , we find that M is equal to IG(G)′′.
Therefore, G is cocommutative. Namely, there exists a unique locally compact group K
such that M = W∗(K) and � = �K . In particular, β is a (faithful) coaction of this group
K on N as in Theorem 4.1.
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PROPOSITION 4.2. Let c1, c2 ∈ Z1(FN,K). If there exist a ∗-automorphism γ of N and
a βφc1-1-cocycle V such that φ ◦ γ = φ and (id ⊗ γ ) ◦ βφc2 ◦ γ−1 = AdV ◦ βφc1 , then there
exists a transformation T ∈ Aut(FN) such that c1 is cohomologous to c2 ◦ T −1, where
c2 ◦ T −1 is a Borel 1-cocycle in Z1(FN,K) given by c2 ◦ T −1(s, x) := c2(s, T

−1x).

Proof. Let γ ∈ Aut(N) and V be as above. Since γ (Nφ) = Nφ , the coaction β :=
(id ⊗ γ ) ◦ βφc2 ◦ γ−1 of K on N satisfies Nα ⊇ Nφ . By Theorem 4.1, β is of the

form β = β
φ
c for some c ∈ Z1(FN,K). Then, by Proposition 3.3, c is cohomologous

to c1. Let v(s) := γ (u(s))u(s)∗ ∈ Nφ . It is easy to check that v is a θ -1-cocycle.
By [9, Theorem 5.1], there exists a unitary v ∈ Nφ such that v(s) = v∗θs(v) for all
s ∈ R. From this and (3.6), we have

Qcs(1 ⊗ u(s)) = βφc (u(s)) = (id ⊗ γ ) ◦ βφc2
(γ−1(v)u(s)γ−1(v∗))

= (id ⊗ γ )((1 ⊗ γ−1(v))Qc2
s (1 ⊗ u(s))(1 ⊗ γ−1(v∗)))

= (1 ⊗ v)(id ⊗ γ )(Qc2
s )(1 ⊗ γ (u(s)))(1 ⊗ v∗)

= (1 ⊗ v)(id ⊗ γ )(Qc2
s )(1 ⊗ v∗)(1 ⊗ u(s))

= (id ⊗ γ )(Qc2
s )(1 ⊗ u(s)),

whereQc andQc2
s are respectively the unitaries in Theorem 3.1 constructed from cocycles

c and c2. From the above calculation, we obtain Qcs = (id ⊗ γ )(Q
c2
s ) for any s ∈ R.

Let T be the non-singular transformation onXN determined by the automorphism γ |Z(Nφ).
Then we have c(s, x) = c2(s, T

−1x). If z ∈ Z(Nφ), then

γ ◦ θs(z) = γ (u(s)zu(s)∗) = γ (u(s))γ (z)γ (u(s)∗)
= vu(s)v∗γ (z)v∗u(s)∗v = u(s)γ (z)u(s)∗

= θs ◦ γ (z).
This shows that T belongs to Aut(FN). �

5. The Connes spectrum of βφc
This section is concerned with a close link between the asymptotic range of c ∈
Z1(FN,K) and the Connes spectrum of the associated extended modular coaction.

LetN be a factor of type III and φ a dominant weight onN . We still employ the notation
used in §3. With a locally compact group K , we fix a Borel 1-cocycle c : R × XN → K

in this section. We simply write β for the coaction βφc .

THEOREM 5.1. The asymptotic range r∗(c) of c is contained in the Connes spectrum�(β)
of β.

Proof. We know that Nφ is contained in Nβ . From this and the relative commutant
theorem, it follows that Z(Nβ) ⊆ (Nφ)

′ ∩N = Z(Nφ) ⊆ Nβ . Hence, we get

�(β) =
⋂

{Sp(βe) : e is non-zero projection in Z(Nφ)},
where βe is the restriction of β to eNe.

Let m denote the Lebesgue measure on R.
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Suppose that k belongs to the essential range σ(c). Take any compact neighborhood V
of k. So (m × µ)(c−1(V )) > 0. For any t ∈ R, put Bt := {x ∈ XN : (t, x) ∈ c−1(V )}.
Then ∫

R

µ(Bt) dt = (m× µ)(c−1(V )) > 0.

Choose an s ∈ R such that µ(Bs) > 0. Set a := χBsu(−s) ∈ N \ {0}. Then, for any
ω ∈ A(K) that vanishes on some neighborhood of V , we have

(ω ⊗ idN)(β(a)) = (ω ⊗ idN)((1 ⊗ χBs )Q−s (1 ⊗ u(−s))) = χBsω(c(s, ·))u(−s) = 0,

because {s} × Bs ⊆ c−1(V ). From [28, Ch. IV, Lemma 1.2 (ii)], it follows that Spβ(a)
is contained in V . Hence, a belongs to Nβ(V ). By [28, Ch. IV, Lemma 1.2(iv)], k is in
Sp(β). Therefore, we conclude that σ(c) ⊆ Sp(β).

Take a non-zero projection e in Z(Nφ) = L∞(XN). So there is a Borel subset
B of XN such that e = χB . Consider the reduction GB of the measured groupoid
G := R × XN to B and the restriction cB := c|GB . We claim that the essential range
σ(cB) of the 1-cocycle cB is contained in Sp(βe). This can be verified as in the preceding
paragraph. Indeed, suppose that k is in σ(cB). For any compact neighborhood of k,
we can choose an s ∈ R so that the R-section Bs of (cB)−1(V ) at s has positive measure.
Put b := χBsu(−s)e ∈ eNe \ {0}. Then, for any ω ∈ A(K) that vanishes on some
neighborhood of V , we have (ω ⊗ ideNe)(β

e(b)) = 0. Hence, b belongs to (eNe)β
e
(V ).

This implies that k is in Sp(βe).
By the results of the previous paragraphs, we obtain

r∗(c) =
⋂

{σ(cB) : B ⊆ XN , µ(B) > 0}
⊆

⋂
{Sp(βe) : e is non-zero projection in Z(Nφ)} = �(β).

This completes the proof. �

It is interesting to study under what condition r∗(c) coincides with �(βφc ), except the
case of r∗(c) being equal to K .

6. The crossed product K̂
β
φ
c
�N and its smooth flow of weights

This section is concerned with crossed products (skew products) by extended modular
coactions associated with 1-cocycles having dense range. Such crossed products turn out
to be factors. It is shown that the smooth flow of weights on such a crossed product is given
by the skew-product action built from the original 1-cocycle.

We continue to use the notation from the preceding sections. For simplicity, we will
denote by β the coaction βφc ofK on N derived from a Borel 1-cocycle c : R ×XN → K .

First we begin with a general lemma.

LEMMA 6.1. Let α be a coaction of K on a von Neumann algebra P acting on a Hilbert
space H . If D is a von Neumann subalgebra of Pα , then the stabilization α̃ satisfies
(B(L2(K))⊗D)α̃ = L∞(K)⊗D.
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Proof. Since D is contained in Pα , we have that, for any T ∈ B(L2(K)) ⊗ D,
α̃(T ) = (WK)12T23(WK)

∗
12. This shows that α̃ restricts to B(L2(K)) ⊗ D. Moreover,

this also implies that T ∈ (B(L2(K)) ⊗ D)α̃ if and only if [T23, (WK)12] = 0, where
[a, b] := ab − ba. However, the latter condition is equivalent to T belonging to
(L∞(K)⊗ C)′ = L∞(K)⊗ B(H). Thus, we obtain the desired identity. �

THEOREM 6.2. Suppose that the asymptotic range r∗(c) of c is equal to K . Then the
relative commutant β(N)′∩K̂ β�N reduces to the scalar multiples of the identity. Namely,
the coaction β is strictly outer in the sense of [36].

Proof. Suppose that T is an element of the relative commutant β(N)′ ∩ K̂ β�N .
Since Nφ is included in Nβ , it follows from the relative commutant theorem that we have

T ∈ (C⊗Nφ)′ ∩ K̂ β�N ⊆ B(L2(K))⊗ (Nφ)′ ∩B(L2(K))⊗N = B(L2(K))⊗Z(Nφ).
In the meantime, T is in K̂ β�N = (B(L2(K))⊗N)β̃ . Hence, by Lemma 6.1, T belongs
to L∞(K)⊗Z(Nφ). So T can be regarded as a U(L∞(K))-valued Borel function on XN ,
where U(P ) in general stands for the unitary group of a von Neumann algebra P .

Next we consider the condition β(u(s))Tβ(u(s))∗ = T for all s ∈ R. Thus,
Qs(1 ⊗ u(s))T (1 ⊗ u(s)∗)Q∗

s = T for all s ∈ R. This means that, for each s ∈ R,
we have

λK(c(−s, x))∗T (−sx)λK(c(−s, x)) = T (x) (for almost every x ∈ XN). (6.1)

This can be written as an equation of functions onK ×XN as follows:

T (c(−s, x)k,−sx) = T (k, x) (for almost every (k, x) ∈ K ×XN). (6.2)

In order to understand this identity more transparently, we consider the ergodic measured
groupoid G := R × XN and its skew product Gc by the 1-cocycle c on G. Recall that the
groupoid structure on Gc := K×G is defined as follows. The set G(2)c of multiplicative pairs
consists of points of the form (k, (s, tx)), (c(s, tx)−1k, (t, x)), where k ∈ K and s, t ∈ R,
x ∈ XN . The product and the inverse are defined by

(k, (s, tx)), (c(s, tx)−1k, (t, x)) := (k, (s + t, x)),

(k, (t, x))−1 := (c(t, x)−1k, (−t, tx)).

So the range map r and the source map s of Gc are respectively defined by r(k, (t, x)) =
(k, tx) and s(k, (t, x)) = (c(t, x)−1k, x). Hence, the unit space of Gc is (identified with)
K ×XN . With this notation, (6.2) can be expressed as

T (s(k, (t,−tx))) = T (r(k, (t,−tx))).

Since the cocycle c satisfies r∗(c) = K , i.e. c has dense range, the skew product Gc is
ergodic (cf. [30, Corollaire II.3.5]). Therefore, T must be constant. �

In the rest of this section, assume that the asymptotic range r∗(c) of c is equal to K .
Since the skew-product K ×c XN is ergodic, it follows from [41, Theorem 3.1] that K is
necessarily amenable. Set M := K̂ β�N and α := β̂, the dual action of β on M . So α
is a minimal action of K on M , due to Theorem 6.2. Namely, α is faithful and satisfies
(Mα)′ ∩M = C.
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Our next aim is to completely describe the smooth flow of weights on M .
Let φ̃ be the dual weight of φ on M = K̂ β�N . Put M̃ := R

σ φ̃
�M . We denote by

�β the canonical extension of β in the sense of [39, Definition 5.5]. So �β is a coaction
of K on the crossed product Ñ := R σφ�N

∼= B(L2(R))⊗Nφ (by the Takesaki duality).
By Proposition 3.8 and [39, Theorem 4.1], the Radon–Nikodym derivative (dφ◦β : dφ)t in
the sense of [39] is equal to the identity. Hence, from [39, p. 542], the canonical extension
�β satisfies

�β(σ
φ(a)) = (idW∗(K) ⊗ σφ)(β(a)) (a ∈ N), (6.3)

�β(λR(s)⊗ 1) = 1 ⊗ λR(s)⊗ 1 (s ∈ R), (6.4)

where, by abusing the notation, we let σφ denote the embedding of N into Ñ . For a ∈ Nφ ,
we have σφ(a) = 1 ⊗ a. We also have σφ(u(s)) = fs ⊗u(s) for any s ∈ R. Here fs is the
function on R given by fs(t) := eist . From these identities and Theorem 3.1, we obtain

�β(1 ⊗ a) = 1 ⊗ 1 ⊗ a (a ∈ Nφ), (6.5)

�β(fs ⊗ u(s)) = (Qs)13(1 ⊗ fs ⊗ u(s)) (s ∈ R). (6.6)

In the meantime, thanks to [39, Proposition 5.7], M̃ is isomorphic to K̂ �β� Ñ . Hence,
from now on, we identify M̃ with this crossed product. According to [39, Proposition 5.7]
and (6.3)–(6.6), M̃ is generated by

(C ⊗ C ⊗Nφ) ∪ {(Qs)13(1 ⊗ fs ⊗ u(s)) : s ∈ R} ∪ (C ⊗W∗(R)⊗ C)︸ ︷︷ ︸
generate�β(Ñ)

∪ (L∞(K)⊗ C ⊗ C).

LEMMA 6.3. The fixed-point algebra Ñ�β containsW∗(R)⊗Nφ .

Proof. This follows from (6.4) and (6.5). �

THEOREM 6.4. Under the situation considered above, we have the following.
(1) The center Z(M̃) of M̃ is equal to �β(Ñ)′ ∩ M̃ , and M̃ is generated by �β(Ñ) and

Z(M̃).
(2) The smooth flow of weights onM consists of the flow spaceXM := K ×XN and the

flow FM onXM given by FMt (k, x) := (c(t, x)k, tx) for t ∈ R and (k, x) ∈ K×XN .
The factor map from XM onto XN corresponding to the inclusion Z(Ñ) ⊆ Z(M̃) is
exactly the projection (k, x) ∈ XM 	→ x ∈ XN .

(3) The Connes–Takesaki module mod(αk) of αk(k ∈ K) is given by

mod(αk)(g, x) = (gk−1, x) (k ∈ K, (g, x) ∈ K ×XN).

In particular, Ker(mod(α)) = {e}.
Proof. (1) Take any element T in the relative commutant �β(Ñ)′ ∩ M̃ . From the
observation made above, we find

T ∈ (C ⊗W∗(R)⊗Nφ)
′ ∩ B(L2(K))⊗ Ñ ⊆ B(L2(K))

⊗ {(W∗(R)⊗Nφ)
′ ∩ B(L2(R))⊗N}

= B(L2(K))⊗W∗(R)⊗ (Nφ)
′ ∩N = B(L2(K))⊗W∗(R)⊗ Z(Nφ).
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From this, together with Lemmas 6.1 and 6.3, it follows that T belongs to L∞(K) ⊗
W∗(R)⊗ Z(Nφ). This implies that T commutes with every element of L∞(K)⊗ C ⊗ C.
Hence, T is in Z(M̃). Thus, we have Z(M̃) = �β(Ñ)

′ ∩ M̃ . The assertion that M̃ is
generated by �β(Ñ) and Z(M̃) will be proven in part (2).

(2) For T in part (1), we also have

(Qs)13(1 ⊗ fs ⊗ u(s))T (1 ⊗ f ∗
s ⊗ u(s)∗)(Qs)∗13 = T (6.7)

for all s ∈ R. By performing the Fourier transform on R, we regard T as a function in
L∞(K × R ×XN). Then (6.7) is equivalent to the condition that, for every s ∈ R,

T (c(−s, x)k, u+ s,−sx) = T (k, u, x) (for almost every (k, u, x) ∈ K × R ×XN).

(6.8)
On the measure space K × R × XN , define a measure-class-preserving flow {St } by

St (k, u, x) := (c(−t, x)k, u+ t,−tx). We denote by γ : R → Aut(L∞(K×R×XN)) the
action of R induced by this flow {St }. By the result of the previous paragraph, we see
that Z(M̃) is isomorphic to the fixed-point algebra L∞(K × R × XN)

γ . To realize
the flow space of the smooth flow of weights on M , define a Borel surjective map
ψ : K × R ×XN → K ×XN by

ψ(k, u, x) := (c(u, x)k, ux) ((k, u, x) ∈ K × R ×XN).

Note that ‘the push-forward measure by ψ’ is equivalent to the measure on K × XN in
question.

CLAIM. The map ψ is an {St }-factor map (see [20, p. 11] for the term ‘factor map’).
In particular, L∞(K ×XN) is ∗-isomorphic to L∞(K × R ×XN)

γ .

Proof of Claim. Let f be a bounded Borel function on K ×XN . Then

f ◦ ψ(c(−s, x)k, u+ s,−sx) = f (c(u+ s,−sx)c(−s, x)k, (u+ s)(−s)x)
= f (c(u, x)k, ux) = f ◦ ψ(k, u, x).

This shows that f ◦ ψ is {St }-invariant.
Conversely, suppose that F is a bounded Borel {St }-invariant function onK ×R×XN .

Set f̃ (k, x) := F(k, 0, x). Since F is constant on the orbit {St (k, 0, x) : t ∈ R}((k, x) ∈
K ×XN), we easily find that f̃ ◦ ψ = F . �

By the claim, Z(M̃) can be identified with L∞(K × XN). The dual action ϑ := (̂σ φ̃)

of the dual weight φ̃ on M induces a flow {Tt} on K × R × XN given by Tt (k, u, x) =
(k, u+ t, x). Hence, the desired flow {FMt } of weights on M is given by FMt ψ(k, u, x) =
ψ(k, u+ t, x). Since

ψ(k, u, x) = (c(u, x)k, ux), ψ(k, u + t, x) = (c(t, ux)c(u, x)k, t (ux)),

{FM} is actually given by FMt (k, x) = (c(t, x)k, tx).
Now we show that M̃ is generated by �β(Ñ) and Z(M̃). For this, it is enough to

prove that the von Neumann algebra generated by �β(Ñ) and Z(M̃) contains L∞(K) ⊗
C ⊗ C. As we saw just before Lemma 6.3, �β(Ñ) contains C ⊗ W∗(R) ⊗ Z(Nφ).
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As in the previous paragraph, we assume that�β(Ñ) contains C ⊗L∞(R)⊗Z(Nφ) after
performing the Fourier transform on R. By the result of the preceding paragraph, we see
that Z(M̃) and C ⊗L∞(R)⊗Z(Nφ) together generate the von Neumann subalgebraA of
L∞(K)⊗ L∞(R)⊗ Z(Nφ). Suppose that η ∈ L1(K × R ×XN) satisfies∫∫∫

ξ(k, s, x)η(k, s, x) dk ds dµ(x) = 0

for any ξ ∈ A. In particular, we have

0 =
∫∫∫

f (c(s, x)k)g(s)h(x)η(k, s, x) dk ds dµ(x)

=
∫∫∫

f (k)g(s)h(x)η(c(s, x)−1k, s, x) dk ds dµ(x)

for any f ∈ L∞(K), g ∈ L∞(R) and h ∈ L∞(XN). Hence, we obtain
η(c(s, x)−1k, s, x) = 0 for almost every (k, s, x) ∈ K × R ×XN . So

0 =
∫∫∫

|η(c(s, x)−1k, s, x)| dk ds dµ(x) =
∫∫∫

|η(k, s, x)| dk ds dµ(x).

Thus, we conclude that η = 0. It follows that A coincides with L∞(K × R ×XN).
(3) Let α̃ denote the canonical extension [19] of the action α to M̃ . By [19], the Connes–

Takesaki module mod(αk) of αk is just the restriction of α̃k to Z(M̃).
By definition, α̃ acts on M̃, regarded as being equal to R

σ φ̃
�M for the moment, as

follows:

α̃k(σ
φ̃(m)) = σ φ̃(αk(m)) (m ∈ M),

α̃k(λR(s)⊗ 1) = δK(k)
−isσ φ̃((Dφ̃ ◦ αk−1 : Dφ̃)s)(λR(s)⊗ 1) (s ∈ R),

where, as before, σ φ̃ stands for the embedding of M into M̃, δK is the modular function
of K , and (Dω : Dν)t in general indicates the Connes Radon–Nikodym cocycle for
weights ω and ν. Since φ̃ is δ−1

K -invariant under the dual action α̃ (see [35]), we have
(Dφ̃ ◦ αk−1 : Dφ̃)s = δK(k)

is . Thus,

α̃k(λR(s)⊗ 1) = λR(s)⊗ 1 (s ∈ R).

Consequently, when M̃ is identified with K̂ �β� Ñ , α̃ fixes pointwise all elements in
(C ⊗ C ⊗ Nφ) ∪ {(Qs)13(1 ⊗ fs ⊗ u(s)) : s ∈ R} ∪ (C ⊗ W∗(R) ⊗ C) and acts on
L∞(K) ⊗ C ⊗ C in the following manner: α̃k(f ⊗ 1 ⊗ 1) = ρk(f ) ⊗ 1 ⊗ 1, where
ρk(f )(h) := f (hk). (In fact, α̃ is just the dual action �̂β of �β .) By the result of part (2),
it is now easy to see that the Connes–Takesaki module mod(αk) is given by the asserted
equation. �

COROLLARY 6.5. Keep the notation introduced so far. Then there exists a ∗-isomorphism
� from M̃ onto L∞(K)⊗ Ñ such that:
(1) � ◦ α̃k = (AdρK(k)⊗ id) ◦�;
(2) �(T ) = 1 ⊗ T for all T ∈ Ñ .
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Proof. By (the proof of) Theorem 6.4, we have a K-equivariant embedding π of L∞(K)
into Z(M̃) ⊆ M̃ . From [28, Ch. II, §2], there exist a coaction δ0 of K on Ñ = M̃α̃

and a ∗-isomorphism � from M̃ onto K̂ δ0� Ñ such that: (i) � ◦ α̃k = (δ̂0)k ◦ � for all
k ∈ K; (ii) �(T ) = δ0(T ) for all T ∈ Ñ ; (iii) �(π(f )) = f ⊗ 1 for all f ∈ L∞(K).
Since L∞(K)⊗ C = �(π(L∞(K))) is in the center of K̂ δ0� Ñ , the coaction δ0 is trivial,
i.e. δ0(T ) = 1 ⊗ T for any T ∈ Ñ . This means that K̂ δ0� Ñ = L∞(K) ⊗ Ñ . Thus,
we obtain the assertion of this corollary. �

7. Algebraic type of K̂
β
φ
c
�N

This section is devoted to a study of the algebraic type of skew-product algebras obtained
from extended modular coactions.

In this section, we assume from the beginning that the Borel 1-cocycle c : R×XN → K

has dense range. As we proved in §6, βφc is strictly outer in this case. Hence, the crossed
productM := K̂

β
φ
c
�N is an infinite factor.

LEMMA 7.1. If K is compact, then M is factor of type III.

Proof. Since K is compact, there exists a (unique) faithful normal conditional expectation
from K̂

β
φ
c
�N onto βφc (N). As N is of type III, K̂

β
φ
c
�N must be also of type III. �

Suppose that N is of type III1. Since Z(Nφ) = C in this case, c is a Borel (hence,
continuous) homomorphism from R intoK with c(R) = K . SoK is so-called a solenoidal
group. From [4, Propositions 5.15 and 5.16] or [26, pp. 87–89], it follows that K is
topologically isomorphic to R or a connected compact abelian group whose dual group
is (isomorphic to) a subgroup of R with the discrete topology.

As we observed in Proposition 3.6, β := β
φ
c is regarded as an action of the dual group K̂

on N by extended modular automorphisms. Since N is of type III1, the extended modular
automorphisms are exactly the modular automorphisms. In this case, we have βγ = σ

φ

ĉ(γ )

for any γ ∈ K̂ , where ĉ : K̂ → R̂ = R is the dual map obtained from c.
SinceK is connected,K cannot be discrete, unlessK is the trivial group, in which case

M = N . Note that K is trivial exactly when Ker(c) = R.
If Ker(c) is a proper closed subgroup of R, then Ker(c) has the form (−logλ)Z for a

unique λ with 0 < λ < 1. In this case, since the quotient group R/Ker(c) is compact,
c(R) must be compact as well. In particular, we have c(R) = c(R) = K , and K
is thus topologically isomorphic to T. We may assume in this case that c is actually
given by c(t) := e2π it/ logλ. Then ĉ(n) = 2πn/ logλ, so we have βn = (σ

φ
T )
n, where

T = 2π/ logλ. It follows from this that M is of type IIIλ.
It remains to consider that case where Ker(c) = {0}. As noted before, K is either

isomorphic to R or a connected compact abelian group whose dual group is (isomorphic to)
a subgroup of R with the discrete topology. If K is (isomorphic to) R, then β is nothing
but the modular automorphism group σφ . So M is of type II∞. If K is compact, then, by
Lemma 7.1, M is of type IIIλ for some 0 ≤ λ < 1. From Theorem 6.4, the smooth flow
(FM,XM) of weights of M is (K , {ξt }), where ξt (k) := k + c(t). If M is of type IIIλ
(0 < λ < 1), then (K , {ξt }) is conjugate to that (T, ζt ) given by ζt (z) := exp(2π it/T )z
(z ∈ T), where T = −logλ. Then, by Lemma B.1,K and T are topologically isomorphic.
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It is clear in this case that Ker(c) is never trivial, which is a contradiction. So M must be
of type III0, andK is never isomorphic to T.

To sum up, we have obtained the following.

PROPOSITION 7.2. Suppose that N is of type III1 (so that c is a continuous
homomorphism from R into K). Then K must be either isomorphic to R or a connected
compact abelian group whose dual group is (isomorphic to) a subgroup of R with the
discrete topology. Moreover, only one of the following occurs.

(1) K is the trivial group, andM = N .
(2) Ker(c) is a proper closed subgroup of R and K is isomorphic to T. In this case,

M is a factor of type IIIλ (0 < λ < 1).
(3) The map c is a topological isomorphism, so that K is isomorphic to R. In this case,

M is of type II∞.
(4) Ker(c) is trivial, and K is compact, but not isomorphic to T. In this case, M is of

type III0.

PROPOSITION 7.3. Suppose that M is of type II∞. Then K is abelian and non-compact.
Moreover:

(1) if K is non-discrete as well, then N is of type III1;
(2) if K is a discrete infinite group, then N is of type IIIλ (0 < λ < 1).

Proof. By assumption, the smooth flow of weights on M is the ergodic flow (R, {ηt }),
where ηt (s) := s + t . From Theorem 6.4, we know that mod(α) is a faithful action of K
on R that commutes with {ηt }. Hence, there exists an injective continuous homomorphism
χ from K into R such that mod(αk) = ηχ(k) for any k ∈ K . By the injectivity of χ ,
K must be abelian. Moreover, since χ is a continuous homomorphism, K must be non-
compact. Note further that, since the smooth flow of weights on M is transitive, the factor
flow (FN,XN) is also transitive. This means that N is of type IIIλ (0 < λ ≤ 1).

If K is further non-discrete, then χ(K) = R. Since L∞(R)mod(α) is isomorphic to
L∞(XN) by Theorem 6.4, we have L∞(XN) = C. Therefore,N is of type III1.

Finally, if K is a discrete infinite group, N must be of type IIIλ (0 < λ < 1), because
N is never of type III1 due to Proposition 7.2. �

COROLLARY 7.4. Suppose that K is non-discrete and non-compact. Then the following
are equivalent:

(1) N is of type III1;
(2) M is of type II∞.

If one of the above conditions holds, then the cocycle c is actually a topological group
isomorphism from R ontoK , andM is (isomorphic to) the crossed product R σφ�N .

LEMMA 7.5. If N is of type III0, then so is M .

Proof. Since (FN,XN) is a factor flow of (FM,XM), (FM,XM) is properly ergodic if
(FN,XN) is. �
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8. Minimal integrable actions on type III factors
In §3, we saw that each cocycle c ∈ Z1(FN,K) determines, up to conjugacy, an action
of K on the skew-product algebra, i.e. the dual action of the extended modular coaction
associated with c. The goal of this section is to give an abstract characterization of actions
that arise in this way. This was done thoroughly by Izumi in [22] in the case of K being
compact. It turns out that the argument of Izumi can be largely extended to non-compact
case under appropriate assumptions.

THEOREM 8.1. Let α be an integrable action of a locally compact group K on a type III
factor M . Suppose that the Connes–Takesaki module mod(α) of α is faithful and
integrable. Then α is minimal, and the fixed-point algebra Mα is also a factor of type III.
The smooth flow of weights onMα is the factor flow of FM by mod(α). There exists a Borel
1-cocycle c in Z1(FM

α
,K) having dense range in K , unique up to equivalence, such that

M is the skew product L∞(K) ⊗c M
α, and α is the dual action of the extended modular

coaction associated with c. Moreover,K is necessarily amenable.

Proof. LetN := Mα. Take a faithful normal semifinite weight φ onN and putω := φ◦Tα .
Set M̃ := R σω�M ⊇ Ñ := R σφ�N . Denote by θ the dual action of σω. As before,
we write (XM , FM ) for the smooth flow of weights on M . We also denote by α̃ the
canonical extension of α to M̃ . Thus, we have

α̃k(σ
ω(a)) = σω(αk(a)) (a ∈ M),

α̃k(λR(s)⊗ 1) = δK(k)
−isσω((Dω ◦ αk−1 : Dω)s)(λR(s)⊗ 1) (s ∈ R),

where, as before, σω again stands for the embedding of M into M̃ . We know [19] that
mod(α) is just the restriction of α̃ to Z(M̃). We also have Ñ = M̃α̃ .

Let us choose a standard Borel probability measure space (Y , ν) and an ergodic flow
{Ft }t∈R such that Z(M̃)mod(α) = L∞(Y, ν) and θt (f ) = f ◦ F−t for f ∈ L∞(Y, ν)
and t ∈ R. Thus, we have a canonical R-equivariant Borel map from XM onto Y
such that p∗(µ) ∼ ν, that is, p : XM → Y is an ergodic extension of Y to XM .
From [11, Proposition 1], it follows that there exist a standard Borel space S, a probability
measurem on S, a Borel isomorphism� : S×Y → XM and a Borel cocycle a : R×Y →
Aut(L∞(S,m)), where Aut(L∞(S,m)) is equipped with the usual (Polish group) topology
when L∞(S,m) is viewed as a von Neumann algebra, such that:
(1) �∗(m× ν) ∼ µ;
(2) p ◦�(s, y) = y for almost every ∈ y ∈ Y ;
(3) for each t ∈ R, one has �(a(t, y)(s), Ft (y)) = FMt (�(s, y)) for almost every

(s, y) ∈ S × Y .
Hence, we may assume from the outset that (XM , µ) is (S × Y , m × ν) and FM is
given by FMt (s, y) = (a(t, y)(s), Ft (y)). By construction, the module action mod(α)
induces an ergodic action {Tk}k∈K of K on S satisfying Tk ◦ a(t, y) = a(t, y) ◦ Tk .
(More precisely, Tk is determined by the identity: �∗ ◦ mod(αk) ◦ (�∗)−1(f ⊗ 1) =
f ◦ Tk−1 ⊗ 1 for f ∈ L∞(S,m), where �∗ is a ∗-isomorphism from L∞(XM) onto
L∞(S×Y ) induced by�.) The integrability of mod(α) implies that of {Tk}. From this and
[33, Ch. X, Lemma 4.13], we may and do assume that there is a compact subgroup H
of K such that S = H\K and Tk is the right translation action of K on S = H\K .
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Since Ker(mod(α)) = {e}, we find that H must be trivial. So S = K and Tk is the right
translation action of K on K . Since a(t, y) commutes with the right translations {Tk},
it follows from [34, Theorem 1] that there is a Borel 1-cocycle c : R × Y → K such that
a(t, y)(k) = c(t, y)k for k ∈ K . Therefore, we conclude that XM is the skew product
K × Y of Y by the 1-cocycle c, and that FM is nothing but the skew-product action.
Note that c has dense range, because FM is ergodic.

By the previous paragraph, there is an embedding π of L∞(K) into Z(M̃) such that
π ◦ AdρK(k) = α̃k ◦ π for all k ∈ K . From [28, Ch. II, §2], we find that there
are a coaction γ of K on Ñ and a ∗-isomorphism �1 from M̃ onto K̂ γ� Ñ such that:
(i) �1 ◦ α̃ = γ̂ ◦�1; (ii) �1(T ) = γ (T ) for all T ∈ Ñ ; (iii) �1(π(f )) = f ⊗ 1 for any
f ∈ L∞(K). Since L∞(K) ⊗ C = �1(π(L

∞(K))) is contained the center of K̂ γ� Ñ ,
γ must be trivial, i.e. γ (T ) = 1 ⊗T for any T ∈ Ñ . Thus, we get�1(M̃) = L∞(K)⊗ Ñ .
From this, we see that Ñ ′ ∩ M̃ = Z(M̃) and M̃ = (M̃ ∩ Ñ ′) ∨ Ñ . By the first identity,
we get Z(Ñ) = (Ñ ′ ∩ M̃)α̃ = Z(M̃)mod(α) = L∞(Y, ν). Since θ acts on Z(M̃)mod(α)

ergodically, N must be a factor. In fact, we can do more. By the results obtained above,
we have

�1(M̃ ∩ σφ(N)′) = (L∞(K)⊗ Ñ) ∩ (C ⊗ σφ(N))′ = L∞(K)⊗ (Ñ ∩ σφ(N)′)
= L∞(K)⊗ Z(Ñ) = �1(Z(M̃)).

Hence, M̃ ∩ σφ(N)′ = Z(M̃). So, if a ∈ M ∩ N ′, then σφ(a) ∈ Z(M̃). Since θ
acts on Z(M̃)mod(α) ergodically, a must be a scalar. Therefore, we obtain M ∩ N ′ = C.
If N were semifinite, then we may assume that φ is a trace, in which case Z(Ñ) is equal
to W∗(R) ⊗ C. Thus, (Y , R, Ft ) is conjugate to the translation of R on R. This would
entail that c is cohomologous to the trivial cocycle. Since (XM , FM ) is ergodic, it would
then follow that K is trivial, which implies that M = N , a contradiction. Hence, N is a
type III factor. We now see that the smooth flow (XN, F

N) of weights on N is (Y , F )
defined above.

We now assume that the weight φ which we started with is a dominant weight on N .
Since c is a Borel 1-cocycle on the smooth flow of weights (XN, FN), we may

consider the extended modular coaction β := β
φ
c of K on N associated with c.

Let L := K̂ β�N = L∞(K) ⊗c N and η the dual weight of φ. The crossed product
L̃ := R ση�L is, as before, identified with K̂ �β� Ñ . Denote by ϑL the dual action

of ση. We write T1 for the operator-valued weight associated with the dual action (̂�β):

T1(a) = ∫
K
(̂�β)k(a) dk. Note that the restriction E1 of T1 to M̃ ∩ �β(Ñ)′ = Z(M̃) is

still semifinite.
In the meantime, we have found that α is an integrable, minimal action with type III

fixed-point algebra N . From [35, Proposition 6.4], it follows that α is dual. Hence,
there exists a strictly outer coaction τ of K on N such that (M , α) is conjugate to
(K̂ τ�N , τ̂ ). In the following, we identify (M , α) with (K̂ τ�N , τ̂ ). So the weight
ω on M introduced before is the dual weight of φ. The inclusion (M̃ ⊇ Ñ) should
be understood as (K̂ �τ� Ñ ⊇ �τ(Ñ)), where �τ is the canonical extension of τ .

The canonical extension α̃ of α is the dual action (̂�τ ). Denote by ϑM the dual action
of σω. We write T2 for the operator-valued weight associated with the dual action (̂�τ ):
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T2(a) = ∫
K (̂�τ )k(a) dk. Note that the restriction E2 of T2 to M̃ ∩ �τ(Ñ)′ = Z(M̃) is

semifinite, since mod(α) = (̃�τ )k|Z(M̃) is integrable by assumption.

By Theorem 6.4 and the results obtained above, there exists a ∗-isomorphism �0

from Z(M̃) onto Z(L̃) such that �0(a) = a for any a ∈ Z(Ñ) (more precisely,
�0(�τ (a)) = �β(a) for all a ∈ Z(Ñ)), �0 ◦ ϑMt |Z(M̃) = ϑLt |Z(L̃) ◦ �0 for all t ∈ R

and �0 ◦ mod(αk) = (̂�β)k ◦ �0 for any k ∈ K . From the last identity, we have
E1(�0(a)) = �0(E2(a)) (= E2(a) ) for a ∈ Z(M̃)+.

Take a faithful normal state χ on Ñ and put χ1 := χ ◦ T1, χ2 := χ ◦ T2. Let n1 be the
linear span of the elements of the form ab, where a ∈ Ñ and b ∈ nE1 . Set m1 := n∗

1n1.
Then m1 is a ∗-subalgebra of nχ1 ∩ n∗

χ1
which is σ -strongly* dense in L̃ and globally

invariant under the modular automorphism group σχ1 . By [23, Lemma 2.1], �χ1(m1) is
dense in Hχ1 .

As in the previous paragraph, let n2 be the linear span of elements ab (a ∈ Ñ , b ∈ nE2 )
and m2 be n∗

2n2. Then �χ2(m2) is dense in Hχ2 .

Now define a linear operator V0 from�χ2(n2) into �χ1(n1) by

V0�χ2

( n∑
i=1

aibi

)
:= �χ1

( n∑
i=1

ai�0(bi)

)
(ai ∈ Ñ, bi ∈ nE2).

Since �0(nE2) = nE1 , the left-hand side of the equality above makes sense. We have∥∥∥∥�χ1

( n∑
i=1

ai�0(bi)

)∥∥∥∥2

=
n∑

i,j=1

χ ◦ T1(a
∗
i �0(b

∗
i bj )aj ) =

n∑
i,j=1

χ(a∗
i E1(�0(b

∗
i bj ))aj )

=
n∑

i,j=1

χ(a∗
i E2(b

∗
i bj )aj ) =

n∑
i,j=1

χ ◦ T2(a
∗
i b

∗
i bj aj )

=
∥∥∥∥�χ2

( n∑
i=1

aibi

)∥∥∥∥2

.

This shows that V0 is an isometry. It is clearly surjective. Hence, it can be extended to a
unitary V from Hχ2 onto Hχ1 . It is easy to check that one has V abV ∗ = a�0(b) for any
a ∈ Ñ and b ∈ Z(M̃). From this and the fact that M̃ = Ñ ∨ Z(M̃), L̃ = Ñ ∨ Z(L̃),
it follows that the equation

�(a) := V aV ∗ (a ∈ M̃)
defines a ∗-isomorphism from M̃ onto L̃ satisfying �(a) = a for all a ∈ Ñ and
�(b) = �0(b) for all b ∈ Z(M̃). It is now obvious that we have � ◦ ϑMt = ϑLt ◦ �
for any t ∈ R. As M = M̃ϑM and L = L̃ϑ

L
, M is ∗-isomorphic to L through �. So we

identifyM with L.

We now have two integrable, minimal actions α and β̂ of K on M , both of which have

the same fixed-point algebra N . From [38, Theorem 3.6], we find that Aut(M/Mβ̂), the
group of automorphisms of M leaving Mα pointwise invariant, is exactly {β̂k : k ∈ K} =
{αk : k ∈ K}. Hence, there exists a (topological) group automorphism � of K such that
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β̂k = α�(k) for any k ∈ K . If k ∈ K , then

mod(αk−1�(k))

= mod(αk−1 ◦ α�(k)) = mod(αk−1) ◦ mod(β̂k)

= (the right multiplication on K by k) ◦ (the right multiplication on K by k−1)

= id.

Since mod(α) is faithful, we obtain k−1�(k) = e, i.e. �(k) = k. Therefore, α = β̂.
Finally, since the skew product XM = K ×c XN is ergodic, we find from

[41, Theorem 3.1] that K is amenable. �

COROLLARY 8.2. Let M be an AFD factor of type III. For every (necessarily amenable)
locally compact subgroupK of Aut(FM) which acts integrably, there exists an integrable,
minimal action α of K on M such that mod(αk) = k for any k ∈ K . Such an α is unique
up to conjugacy in the sense that, if α1 is another integrable, minimal action of K on M
with mod(α1

k ) = k for any k ∈ K , then there exists a ∗-automorphism ν of M such that
α1
k = ν ◦ αk ◦ ν−1 for all k ∈ K .

Proof. Let K be a non-trivial locally compact group as above. Choose a standard Borel
probability space (Y , µ) such thatL∞(XM,µM)K = L∞(Y, µ). Thus, we have an ergodic
extension XM → Y of R-spaces. Then, as in the second paragraph of the proof of
Theorem 8.1, there exists a Borel 1-cocycle c : R × Y → K with dense range such
that XM = K ×c Y and

FMt (k, y) = (c(t, y)k, ty), mod(αl)(k, y) = (kl−1, y).

Note that the R-space Y is never conjugate to the translation of R on R. Take the AFD
factor N of type III whose smooth flow of weights is the R-space Y . Hence, c belongs to
Z1(FN,K).

Fix a dominant weight φ on N and consider the extended modular coaction β := β
φ
c

associated with c. Set P := L∞(K)⊗c N and α := β̂. Denote by ω the dual weight of φ.
Since N is AFD, Ñ = R σφ�N is also AFD. By Corollary 6.5, P̃ := R σω�P is again
AFD. In particular, P is AFD. In the meantime, by Theorem 6.4, both M and P have the
same smooth flow of weights. Therefore, they are isomorphic [6–8, 18, 24]. So we may
assume that M = L∞(K) ⊗c N . Now, by Theorem 6.4, we may take α for the desired
action.

Let α1 be another integrable, minimal action of K on M with mod(α1
k ) = k for any

k ∈ K . From Theorem 8.1, it follows that there exists a cocycle c1 ∈ Z1(FN,K) such

that M = L∞(K)⊗c1 N and α1 = ̂
(β
φ
c1). Then K ×c XN and K ×c1 XN are isomorphic

R-spaces over XN . From this, it follows that c is cohomologous to c1. By Proposition 3.3,
β is cocycle conjugate to βφc1 . Hence, the dual actions α and α1 are conjugate. �

9. Remark on Galois correspondence
This section is concerned with Galois correspondence for such actions as treated in the
previous section. Namely, for such an action α of a locally compact groupK on a type III
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factor M , we consider the problem of deciding which intermediate subfactor L of the
inclusion Mα ⊆ M has the form L = MαH for a closed subgroup H of K . It is shown
with some conditions that L is of the form L = MαH exactly when there exist faithful
normal semifinite operator-valued weights fromM to L and from L to Mα.

Throughout this section, we fix an integrable, minimal action α of an amenable locally
compact groupK on a factor M of type III satisfying a condition that the module mod(α)
of α is faithful and integrable. Set N := Mα . Thanks to Theorem 8.1, N is a factor of
type III and we may assume that there exists a Borel 1-cocycle c ∈ Z1(FN,K) such that
M = L∞(K)⊗c N and α is the dual action β̂ of the extended modular coaction β := β

φ
c

associated with c and a dominant weight φ on N . Remark that, due to (the proof of)
[35, Proposition 6.4], α is a dominant action, i.e. α is conjugate to the stabilized action
AdρK(·)⊗ α on B(L2(K))⊗M .

As in §3, let {u(s)} be a one- parameter unitary group of N satisfying σφt (u(s)) =
e−istu(s) for all s, t ∈ R, and put θs := Adu(s)|Nφ . Denote by τ the faithful normal
semifinite trace on Nφ with τ ◦ θs = e−sτ for any s ∈ R.

LEMMA 9.1. Let L be an intermediate subfactor of N ⊆ M . Then there exists a closed
subgroupH of K such that L ∩ (L∞(K)⊗Nφ) = L∞(K/H)⊗Nφ .

Proof. Thanks to Proposition C.3, we know that the covariant system

(L∞(K)⊗Nφ,R,Ad βφc (u(s))|L∞(K)⊗Nφ , τK ⊗ τ )

gives a continuous decomposition ofM . For each t ∈ T, set κt := Adβφc (u(s))|L∞(K)⊗Nφ .
Note (see Proposition C.3) that the restriction of κ to L∞(K)⊗ Z(Nφ) = L∞(K × XN)

is the skew-product action induced from the cocycle c.
Since βφc (u(t)) belongs to L for all t ∈ R, Q := L ∩ (L∞(K) ⊗ Nφ) is left globally

invariant under the action κ . Put A := L ∩ (L∞(K) ⊗ Z(Nφ)). Take a standard
Borel probability space (Y , ν) such that A = L∞(Y, ν). By considering κt |A for any
t ∈ R, (Y, ν) can be regarded as an intermediate ergodic R-space of the (normal) ergodic
extension K ×c XN → XN . From [12, Theorem 1.4], it follows that there exists a
closed subgroup H of K such that Y is isomorphic to K/H ×c XN over XN . Hence,
we assume from the outset that Y is K/H ×c XN . Thus, A = L∞(K/H) ⊗ Z(Nφ).
In particular, Q contains L∞(K/H)⊗ Nφ . From this, it is easy to see that the restriction
of the trace τ0 ⊗ τ to Q is still semifinite, where τ0 is a normal state on L∞(K) induced
from a Borel probability measure on K . Hence, there exists a unique faithful normal
conditional expectation EQ from L∞(K)⊗Nφ ontoQ such that (τ0 ⊗ τ ) ◦EQ = τ0 ⊗ τ .

Let f ∈ L∞(K) and a ∈ Nφ . Since C ⊗ Nφ = β
φ
c (Nφ) is contained in L, we have that

1 ⊗ a ∈ Q. So

(1 ⊗ a)EQ(f ⊗ 1) = EQ(f ⊗ a) = EQ(f ⊗ 1)(1 ⊗ a).

From this, we get

EQ(f ⊗ 1) ∈ Q ∩ (C ⊗Nφ)
′ = L ∩ (L∞(K)⊗ Z(Nφ)) = L∞(K/H)⊗ Z(Nφ).

Thanks to this, we see that Q = EQ(L
∞(K) ⊗ Nφ) is included in L∞(K/H) ⊗ Nφ .

Thus, we are done. �
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Definition 9.2. Let β be a coaction of a locally compact group G on a von Neumann
algebra P . According to [27], the equation

βd(X) := Ad(WK)12(1 ⊗X) (X ∈ Ĝ β�P)

defines a coaction βd of G on Ĝ β�P .

THEOREM 9.3. For an intermediate subfactor L of Mα ⊆ M , the following are
equivalent.
(1) L is globally invariant under the coaction βd , i.e. βd(L) ⊆ W∗(K)⊗ L.
(2) L is generated by L∞(K/H)⊗ C and β(Mα) for some closed subgroupH of K .
(3) L = MαH for some closed subgroup H of K .
(4) L is globally invariant under the modular automorphism group of the dual weight

of φ.
If one (hence, all) of the above conditions holds, then the closed subgroupH is determined
uniquely by (2) or (3) or by Lemma 9.1.

Moreover, if the homogeneous space K/H admits a K-invariant Borel measure for the
subgroup H of K which L determines by Lemma 9.1, then the above conditions (1)–(4)
are also equivalent to:
(5) there exist faithful normal operator-valued weights E : M → L and F : L → Mα.

In this case, L is of type III and the smooth flow of weights on L is given by the skew-
product action on K/H ×c XN .

Proof. The equivalence of (1) and (2) is due to [28, Ch. VII, Theorem 2.2].
The equivalence of (2) and (3) is due to [28, Ch. VII, Theorem 1.2].

(3) ⇒ (4) Let ω be the dual weight of φ. By Proposition 3.8 and [39, Lemma 2.1],
we have σωt (f ⊗ 1) = f ⊗ 1 for all f ∈ L∞(K) and all t ∈ R. Moreover,
by [35, Proposition 3.7], we have σωt (β(M

α)) = β(Mα) for any t ∈ R. Meanwhile,
by (2), L is generated by L∞(K/H) ⊗ C and β(Mα). It is now clear that L is globally
invariant under σω.

(4) ⇒ (3) Consider the closed subgroup H of K obtained by Lemma 9.1. For any
t ∈ R, put γt := σωt |L, where ω is the dual weight of φ. Since Mω = L∞(K) ⊗ Nφ

by Corollary C.4, it follows that Lγ = Mω ∩ L = L∞(K/H) ⊗ Nφ . Moreover,
by [35, Proposition 3.7], we have

γs(β(u(t))) = σωs (β(u(t))) = β(σφs (u(t))) = e−istβ(u(t))

for any s, t ∈ R. From [28, Ch. II, §2], γ is a dual action. In particular, we get

L = Lγ ∨ {β(u(t)) : t ∈ R}′′ = L∞(K/H)⊗Nφ ∨ {β(u(t)) : t ∈ R}′′
= L∞(K/H)⊗ C ∨ β(N).

By [28, Ch. VII, Theorem 1.2], the last term in the above identities is equal to MαH .
Therefore, the conditions (1)–(4) are all equivalent.
Let H be the subgroup of K determined by L through Lemma 9.1, and suppose from

now on that the homogeneous space K/H admits a K-invariant Borel measure µ.
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(3) ⇒ (5): Suppose that L = MαH . Since α is dominant, the equation

E(a) :=
∫
H

αk(a) dk (a ∈ M+)

defines a faithful normal semifinite operator-valued weight E fromM to L.
Define a unitary operator S on L2(K)⊗ L2(K) by

{Sξ}(k, l) := δ(k)1/2ξ(k, lk) (ξ ∈ L2(K ×K)).

Note that, for any f ∈ L∞(K), S(1 ⊗ f )S∗ is a function in L∞(K) ⊗ L∞(K) given
by (k, l) ∈ K × K 	→ f (lk). So, if f ∈ L∞(K/H), then S(1 ⊗ f )S∗ belongs to
L∞(K/H) ⊗ L∞(K). Meanwhile, because S belongs to L∞(K) ⊗ W∗(K)′, we have
S12(1 ⊗ β(a))S∗

12 = 1 ⊗ β(a) for all a ∈ N . Since L = L∞(K/H)⊗ C ∨ β(N) by the
implication (3) ⇒ (2), it follows from the above observation that the equation

η(X) := (S ⊗ 1)(1 ⊗X)(S∗ ⊗ 1) (X ∈ L)
defines an injective normal unital ∗-homomorphism fromL intoL∞(K/H)⊗M . Take any
X ∈ L+ and put F(X) := (µ⊗ idM)(η(X)). We claim that F(X) belongs to the extended
positive part of Mα = β(N). For this, it suffices to show that F(X) is fixed by the dual
action α. First we observe that S satisfies (λK(k) ⊗ ρK(k))S = S(λK(k) ⊗ 1) for any
k ∈ K . Since µ ◦ AdλK(k) = µ by the K-invariance of µ, we have

αk(F (X)) = (µ⊗ idM)((AdλK(k)⊗ αk)(η(X)))

= (µ⊗ idM)(Ad((λK(k)⊗ ρK(k))S ⊗ 1)(1 ⊗X))

= (µ⊗ idM)(Ad(S(λK(k)⊗ 1)⊗ 1)(1 ⊗X))

= (µ⊗ idM)(Ad S12(1 ⊗X))

= (µ⊗ idM)(η(X)) = F(X).

Thus our claim has been proven. Because η(β(a)) = 1 ⊗ β(a) for all a ∈ N , we have

F(β(a)∗Xβ(a)) = β(a)∗F(X)β(a).

Hence we find that F is a faithful normal operator-valued weight from L onto Mα. If f is
a positive function in L∞(K/H) ∩ L1(K/H), then, by the K- invariance of µ, we have

F(f ⊗ 1) =
(∫

K/H

f dµ

)
· 1.

This shows that F is semifinite.
(5) ⇒ (3): Put N := Mα. By assumption, we have two faithful normal semifinite

operator-valued weights Tα and F ◦ E from M onto N . Note that the Radon–Nikodym
cocycle [DTα : D(F ◦E)]t belongs to N ′ ∩M = C. So Tα is a positive scalar multiple of
F ◦ E. Hence, we may assume that Tα = F ◦ E.

Set ω := φ ◦ Tα and ψ := φ ◦ F .
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Let
M̃ := R σω�M, L̃ := R σψ�L, Ñ := R σφ�N.

Then both L̃ and Ñ are regarded as von Neumann subalgebras of M̃ satisfying Ñ ⊆
L̃ ⊆ M̃ . As we saw in the proof of Theorem 6.4, we have M̃ = Ñ ∨ Z(M̃) and
Ñ ′ ∩ M̃ = Z(M̃). Moreover, we know that the smooth flow (XM , FM ) of weights
on M is the R-ergodic extension (K ×c XN , mK × µN ), the skew product by c, over
the smooth flow (XN , FN ) of weights on N . Since Z(M̃) ⊇ Z(L̃) ⊇ Z(Ñ), the
smooth flow (XL, FL) of weights on L is an intermediate factor space of the extension
K ×c XN → XN . From [12, Theorem 1.4], there exists a closed subgroup H of K
such that XL is (isomorphic to) the (so-called isometric) extensionK/H ×c XN over XN :
FLt (q(k), x) = (q(c(t, x)k), FNt x) for (q(k), x) ∈ K/H × XN , where q : K → K/H

is the quotient map. This particularly means that Z(L̃) is exactly the fixed-point algebra
Z(M̃)mod(αH ) = L∞(K/H) ⊗ L∞(XN), and that the smooth flow of weights on L is
given by the skew-product action on K/H ×c XN . Note that the skew-product action on
K/H ×c XN is never conjugate to (R, Translation), since M is of type III. In particular,
L must be of type III.

CLAIM. L̃ is generated by Ñ and Z(L̃). Moreover, we have L̃ = M̃α̃H , where α̃ is the
canonical extension of α to M̃ . (As noted before, α̃ can be identified with the dual action
�̂β of the canonical extension �β of the coaction β to Ñ .)

Proof of Claim. Let ϑM be the dual action (̂σω), and put ϑL := ϑM |L̃, ϑN := ϑM |Ñ .
Denote by τω the faithful normal semifinite trace on M̃ satisfying τω ◦ ϑMt = e−t τω
for any t ∈ R. Define τψ and τφ similarly. Take a unique faithful normal semifinite
operator-valued weight Ẽ from M̃ to L̃ such that τω = τψ ◦ Ẽ. Choose also a unique
operator-valued weight F̃ from L̃ to Ñ with τψ = τφ ◦ F̃ . So F̃ ◦ Ẽ is a faithful normal
semifinite operator-valued weight from M̃ to Ñ . Meanwhile, we have an operator-valued
weight Tα̃ from M̃ to Ñ associated with the cannonical extension α̃, which is semifinite
due to the integrability of α. Moreover, the restriction of Tα̃ to M̃ ∩ Ñ ′ = Z(M̃) is
still semifinite, because of the integrability of the module action mod(α). By [17], the
restriction of F̃ ◦ Ẽ to Z(M̃) is semifinite. In particular, S := Ẽ|Z(M̃)+ is a faithful normal

semifinite operator-valued weight from Z(M̃) to Z(L̃). By [17], the σ -weak closure of
S(mS) coincides with Z(L̃). Let n0 be the linear span of elements of the form ab, where
a ∈ Ñ and b ∈ nS . Since M̃ = Ñ ∨ Z(M̃), it follows that n0 is a σ -strongly* dense
left ideal of M̃. Put m0 = n∗

0n0. Then m0 is also σ -weakly dense in M̃ . From this,
it is easily checked that the σ -weak closure of Ẽ(m0) coincides with L̃. Note that, by
definition, Ẽ(m0) is the subspace generated by ÑS(mS). Therefore, L̃ is generated by Ñ
and Z(L̃).

Let � be the ∗-isomorphism from M̃ onto L∞(K) ⊗ Ñ . By the result of the previous
paragraph, we see that�(L̃) is generated by�(Ñ) = C⊗Ñ and�(Z(L̃)). Since Z(L̃) =
Z(M̃)mod(αH ) = Z(M̃)α̃H , it follows that

�(Z(L̃)) = �(Z(M̃)){Ad(ρK(k)⊗1):k∈H } = (L∞(K)⊗ Z(Ñ)){Ad(ρK(k)⊗1):k∈H }

= L∞(K/H)⊗ Z(Ñ).
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Hence,

�(L̃) = L∞(K/H)⊗ Ñ = (L∞(K)⊗ Ñ){Ad(ρK(k)⊗1):k∈H }

= �(M̃){Ad(ρK(k)⊗1):k∈H } = �(M̃α̃H ).

Therefore, we obtain L̃ = M̃α̃H . Thus, the claim has been proven. �

By the claim, we have

L = L̃ϑ
L = (M̃α̃H )ϑ

M = (M̃ϑM )α̃H = MαH .

Thus we are done. �

Remark. We conclude this section with a remark on Theorem 9.3. IfK is compact, then, by
[23, Theorem 3.15], there always exists a (unique) faithful normal conditional expectation
from M onto an arbitrary intermediate subfactor containing N := Mα. So one gets a
complete Galois correspondence in this case. Hence, there might always be a faithful
normal semifinite operator-valued weight fromM to any intermediate subfactor, even if K
is no longer compact. However, we do not know whether this is the case or not. It would
be very interesting to give a complete answer to this problem. If we set about finding a
solution to this problem, we see that it suffices to examine the case in which both M and
Mα are of type III0. Indeed, sinceK may be assumed to be non-trivial, i.e. not equal to {e},
it follows from Theorem 6.4 that it is enough to treat the case where M is of type IIIλ
(λ �= 1). In that case, due to Proposition 7.2, N being of type III1 entails that K must
be compact. Hence, [23] takes care of the complete Galois correspondence when N is a
type III1 subfactor. So we may suppose that N is also of type IIIλ′ (0 ≤ λ′ < 1).

Assume for the moment that M is a type IIIλ (0 < λ < 1) factor. Then, by [9, Ch. IV,
Proposition 1.3], Aut(FM) is a compact (abelian) group, isomorphic to T. So the closure
mod(αK) of mod(αK) in Aut(FM) is either a finite group or Aut(FM) itself. In the former
case, K is a finite group, as mod(α) is faithful. Hence, [23] takes care of the Galois
correspondence in this case again. In the latter case, we have

PN = P
mod(αK)
M = P

Aut(FM)
M = C.

This means that N is of type III1, a contradiction.
It thus remains to investigate the case where M is of type III0. Assume for a while that

N is of type IIIλ′ (0 < λ′ < 1). Then XN = [0,−logλ′) and FNt s = s + t mod(−logλ′).
Note that, since PN ⊆ PM and FNt = FMt |PN for any t ∈ R, the T -set T (M) (see [5])
contains the T -set

T (N) = 2π

logλ′ Z.

Let ξ0(x) := exp(−2πix/ logλ′) (0 ≤ x < −logλ′), which is an eigenfunction for the
flow FN corresponding to

− 2π

logλ′ ∈ T (N).
Let π : XM = K × XN → XN be the projection and set η0 := ξ0 ◦ π . It is clear that η0

is, in turn, an eigenfunction for the flow FM . Put

� := {(k, x) ∈ XM : η0(k, x) = 1}.
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It follows at once that � = K × {0}, so we may identify � with K . We have

FM−log λ′(k, 0) = (c(−logλ′, 0)k, FN−logλ′0) = (c(−logλ′, 0)k, 0).

So we define a transformation T on � = K by Tk := c(−logλ′, 0)k for any k ∈ K .
Then the flow (XM , FM ) is realized as the flow built under the constant function −logλ′
with the base transformation T on � = K . Since � = K must be non-atomic and T is
ergodic, we find that K is non-discrete, and that the closure of {c(−logλ′, 0)n : n ∈ Z}
is dense in K . Hence, K is a so-called monothetic group. By [29, Theorem 2.3.2]
(or [4, Theorem 19, p. 11, 25]), K is a compact abelian group. So, once again, [23] takes
care of the complete Galois correspondence.

Therefore, it suffices to examine the case in which both M and Mα are of type III0, as
claimed.

A. Appendix. Borel unitary cocycles
The unitary 1-cocycles for group actions on von Neumann algebras are assumed to be
σ -strongly* continuous with respect to the group parameters. Here we show that the
σ -strong* continuity requirement can be replaced, without modifying the notion, by the
measurability condition as follows. Our proof relies upon the argument in [5].

LEMMA A.1. Let α be an action of a locally compact groupG on a von Neumann algebra
M . Suppose that u : G → U(M) is a Borel map satisfying ugh = ugαg(uh) for any g, h ∈
G, where U(M) is the unitary group of M equipped with the strong operator topology.
Then there is a unitary U in M ⊗ L∞(G) such that ug ⊗ 1 = U(αg ⊗ AdλG(g))(U∗) for
all g ∈ G.

Proof. Take a Hilbert space H for which {M, H } is a standard representation. Define a
unitary U on H ⊗ L2(G) = L2(G,H) by {Uξ}(g) := ugξ(g). Since U can be regarded
as an M-valued bounded Borel function on G given by g ∈ G 	→ ug ∈ M , U belongs to
M ⊗ L∞(G) ⊆ M ⊗ B(L2(G)). Let v(g) be the canonical implementation of αg on H .
Then, for any ξ ∈ L2(G,H), we have

{(αg ⊗ AdλG(g))(U)ξ}(h) = {(vg ⊗ λG(g))U(v(g)
∗ ⊗ λG(g)

∗)ξ}(h)
= v(g){U(v(g)∗ ⊗ λG(g)

∗)ξ}(g−1h)

= v(g)ug−1h{(v(g)∗ ⊗ λG(g)
∗)ξ}(g−1h)

= v(g)ug−1hv(g)
∗ξ(h) = αg(ug−1h)ξ(h)

= αg(ug−1αg−1(uh))ξ(h)

= αg(ug−1)uhξ(h) = u∗
guhξ(h)

= {(u∗
g ⊗ 1)Uξ}(h).

Thus, we get (αg ⊗ Ad λG(g))(U) = (u∗
g ⊗ 1)U . This completes the proof. �

Thanks to Lemma A.1, we immediately obtain the announced assertion below.

COROLLARY A.2. Let α be an action of a locally compact group G on a von Neumann
algebra M . The set of all unitary α-1-cocycles coincides with that of all Borel maps
u : G → U(M) satisfying ugh = ugαg(uh) for any g, h ∈ G.
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Let M be an infinite factor. We denote by (PM , R, FM ) be the smooth flow of weights
on M . Then there exist a standard Borel probability space (XM , µM ) and a flow {FMt }t∈R
on XM such that PM = L∞(XM, µM) and FM

t (h) = h ◦ FM−t for any h ∈ L∞(XM,µM)
and any t ∈ R. Following convention, let Z1

FM (R,U(PM)) stand for the set of all unitary

FM -1-cocycles on PM .
Let c ∈ Z1(FM,T). For any t ∈ R, define a bounded Borel function uct on XM by

uct (x) := c(−t, x). Then we have

ucs+t (x) = c(−s − t, x) = c(−t, FM−sx)c(−s, x)
= ucs(x)u

c
t (F

M−sx) = ucs(x)FM
s (u

c
t )(x).

Hence, ucs+t = ucsFM
s (u

c
t ).

LEMMA A.3. The map t ∈ R 	→ uct ∈ U(PM) is σ -strongly* continuous. Therefore, uc is
a unitary FM -1-cocycle on PM = L∞(XM).

Proof. The idea of our proof is more or less the same as that of Lemma A.1. Define a
unitary U on the Hilbert space L2(R × XM) by {Uξ}(s, x) := c(−s, x)ξ(s, x). It is easy
to see that U belongs to L∞(R)⊗ L∞(XM). Let t ∈ R. Then we have

{U(AdλR(t)⊗ FM
t )(U

∗)ξ}(s, x) = c(−s, x)c(−s + t, FM−t x)ξ(s, x)

= c(−s, x)c(−s, x)c(t, FM−t x)ξ(s, x)
= c(−t, x)ξ(s, x) = {(1 ⊗ uct )ξ}(s, x).

Thus, we obtain U(AdλR(t) ⊗ FM
t )(U

∗) = 1 ⊗ uct . From this, the σ -strong* continuity
of uc follows. �

PROPOSITION A.4. The map

c ∈ Z1(FM, T) 	−→ uc ∈ Z1
FM (R, U(PM))

introduced above establishes a bijective correspondence between Z1(FM,T) and
Z1
FM (R,U(PM)).

Proof. It is clear that the map c 	→ uc is injective.
Let u ∈ Z1

FM (R,U(PM)). Define a unitary U on the Hilbert space L2(R × XM)

by {Uξ}(s, x) := us(x)ξ(s, x). By the proof of Lemma A.1, we have 1 ⊗ ut =
U(AdλR(t) ⊗ FM

t )(U
∗) for all t ∈ R. Since U belongs to L∞(R) ⊗ L∞(XM), it

follows that there exists a bounded Borel function f on R × XM with |f | = 1 such that
U is the multiplication operator induced by f . Define a function c′ : R × XM → T

by c′(s, x) := f (−s, x). By the definition of U , we find that, for each t ∈ R,
ut (x) = c′(−t, x) for almost every x ∈ XM . Meanwhile, by the cocycle property of u,
we have us+t = us · (ut ◦ FM−s ) for any s, t ∈ R. From this, it follows that, for each
s, t ∈ R, one has c′(−s− t, x) = c′(−s, x)c′(−t, FM−sx) for almost every x ∈ XM . Hence,
from [42, Theorem B.9], there exists a cocycle c ∈ Z1(FM,T) such that c = c′ almost
everywhere. Now it is easy to check that uc = u. �
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B. Appendix. Isomorphism
LEMMA B.1. Let H , K be locally compact abelian groups with left Haar measures mH
and mK , respectively. Suppose that there are continuous homomorphisms p : R → H

and q : R → K with dense ranges such that the ergodic flows ξt (g) := g + p(t)

and ηt (k) := k + q(t) are conjugate. Then there is a topological group isomorphism
π : H → K such that π ◦ p = q .

Proof. Let � be a Borel isomorphism from H onto K such that mK ◦ � ∼ mH and, for
each t ∈ R,�◦ ξt (h) = ηt ◦�(h) for almost every h ∈ H , and�−1 ◦ηt (k) = ξt ◦�−1(k)

for almost every k ∈ K .
Define a unitaryW : L2(H) → L2(K) by

{Wζ }(k) :=
√

dmH ◦�−1

dmK
(k)ζ(�−1(k)) (ζ ∈ L2(H)).

Then we have WλH (p(t))W∗ = λK(q(t)) for all t ∈ R. From this and the fact that
p(R) = H and q(R) = K , it follows that WλH (H)W∗ = λK(K). Hence, the equation

WλH (h)W
∗ = λK(π(h)) (h ∈ H)

defines a topological group isomorphism π from H onto K . It is clear that we have
π(p(t)) = q(t) for all t ∈ R. �

C. Appendix. Another construction of L∞(K)⊗c N

Let N be a factor of type III and φ a dominant weight on N . Also, let {u(s)}s∈R ⊆ N ,
θs := Ad u(s)|Nφ ∈ Aut(Nφ) and τ be as in §3.

With (XN , FN ) the smooth flow of weights onN , fix a Borel 1-cocycle c ∈ Z1(FN,K)

having dense range, whereK is a locally compact group.
Thanks to [33, Ch. XII, Lemma 3.4], we know that there exists an action θ̃ of R on

L∞(K)⊗Nφ such that: (i) θ̃ extends the action θ onNφ ∼= C⊗Nφ ⊆ L∞(K)⊗Nφ ; (ii) the
restriction of θ̃ to the center L∞(K) ⊗ Z(Nφ) = L∞(K × XN) is induced by the skew-
product action of R derived from c. For our purpose, let us recall the construction of the
covariant system (L∞(K)⊗Nφ , R, θ̃ ). First, we consider the R-equivariant disintegration
of (Nφ , R, θ ) over (XN , µN ):

Nφ =
∫ ⊕

XN

Nφ(x) dµN(x), θs ∼ {θs,x}, θs,x : Nφ(x) → Nφ(F
N
s x).

We then have

L∞(K)⊗Nφ =
∫ ⊕

K×XN
P(k, x) d(mK × µN)(k, x),

where P(k, x) = C ⊗Nφ(x) for any k ∈ K . We put, for any s ∈ R,

θ̃s,(k,x) := idC ⊗ θs,x : P(k, x) → P(c(s, x)k, FNs x).

The ∗-automorphism θ̃s is then defined, for any

a =
∫ ⊕

K×XN
a(k, x) d(mK × µN)(k, x) ∈ L∞(K)⊗Nφ,
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by

θ̃s(a)(c(s, x)k, F
N
s x) := θ̃s,(k,x)(a(k, x)) = (idC ⊗ θs,x)(a(k, x)).

We also look at the decomposition of the trace τ :

τ =
∫ ⊕

XN

τx dµN(x).

With τK the faithful normal trace on L∞(K) given by integration with respect to mK ,
consider the trace τK ⊗ τ on L∞(K) ⊗ Nφ . The identity τ ◦ θs = e−sτ yields τFNs x ◦
θs,x(a(x)) = e−sτFNs x(a(F

N
s x)) for any a = ∫ ⊕

XN
a(x) dµN(x) ∈ Nφ . By using this, one

can check that (τK ⊗τ )◦ θ̃s = e−s(τK ⊗τ ) for all s ∈ R. Thus, the system (L∞(K)⊗Nφ ,
R, θ̃ , τK ⊗ τ ) is a ‘continuous decomposition’. Since θ̃ acts on the center of L∞(K)⊗Nφ

ergodically because c has dense range, the crossed product M := R θ̃� (L
∞(K)⊗ Nφ) is

an infinite factor. By construction, the smooth flow (XM , FM ) of weights onM is the skew
product K ×c XN . It is easy to see that M , regarded as acting on L2(R) ⊗ L2(K)⊗ Hφ ,
contains the algebraW∗(R)⊗C⊗C∨πθ̃(C⊗Nφ)(= πθ(Nφ)13) ∼= R θ�Nφ ∼= N , where
πθ̃ is the natural injective ∗-homomorphism fromL∞(K)⊗Nφ into the crossed productM .
Let us denote by ν the above embedding N ↪→ M . Note that, for any f ∈ L∞(K), we
have

Ad(1 ⊗ ρK(k)⊗ 1)(πθ̃ (f ⊗ 1)) = πθ̃ (AdρK(k)(f )⊗ 1). (C.1)

From this, it follows that αk := Ad(1 ⊗ ρK(k) ⊗ 1)|M defines an action α of K on M .
By (C.1), it is clear that the mapping f ∈ L∞(K) 	→ πθ̃ (f ⊗ 1) ∈ M is a K-equivariant
embedding of the covariant system (L∞(K), K , AdρK(·)) into (M , K , α). Hence,
by [28, Ch. II, §2], there exist a coaction β0 of K on Mα and a ∗-isomorphism� from M

onto K̂ β0�M
α such that �(a) = β0(a) for all a ∈ Mα, �(πθ̃ (f ⊗ 1)) = f ⊗ 1 for all

f ∈ L∞(K) and � ◦ αk = (̂β0)k ◦� for all k ∈ K .

LEMMA C.1. The fixed-point algebraMα coincides with ν(N) = (R θ�Nφ)13.

Proof. It is easy to see that ν(N) is contained in Mα. By the definition of α, we have

Mα = M ∩ {1 ⊗ ρK(k)⊗ 1 : k ∈ K}′ = M ∩ (B(L2(R))⊗W∗(K)⊗ B(Hφ))

⊆ (B(L2(R))⊗ L∞(K)⊗Nφ) ∩ (B(L2(R))⊗W∗(K)⊗ B(Hφ))

= B(L2(R))⊗ C ⊗Nφ.

So let us suppose thatX is in B(L2(R))⊗Nφ such thatX13 ∈ Mα . Since θ̃t |C⊗Nφ = id⊗θt
for all t ∈ R, we have

X13 = (Ad λR(−t)⊗ θ̃t )(X13) = (AdλR(−t)⊗ id ⊗ θt )(X13).

This shows that X belongs to (B(L2(R))⊗Nφ)
Ad λR(−·)⊗θ = R θ�Nφ . Therefore,X13 is

in ν(N). �

LEMMA C.2. The fixed-point algebra (Mα)β0 of β0 contains the algebra ν(Nφ) =
πθ(Nφ)13.
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Proof. Clearly, πθ(a)13 = πθ̃ (1 ⊗ a) commutes with πθ̃ (f ⊗ 1) for any a ∈ Nφ and
any f ∈ L∞(K). Through the isomorphism � , this is equivalent to saying that β0(a)

commutes with f⊗1. From this, we find that β0(πθ (a)13) = 1⊗πθ(a)13 for any a ∈ Nφ . �

Thanks to Lemma C.1, the equation β1 := (id ⊗ ν−1) ◦ β0 ◦ ν defines a coaction β1 of
K on N . The map id ⊗ ν gives a ∗-isomorphism from K̂ β1�N onto K̂ β0�M

α satisfying
(id ⊗ ν)(β1(a)) = β0(ν(a)) for all a ∈ N and (̂β0)k ◦ (id ⊗ ν) = (id ⊗ ν) ◦ (̂β1)k for all
k ∈ K .

By Lemma C.2, the fixed-point algebra Nβ1 contains Nφ . By Theorem 4.1, there is a

cocycle c1 ∈ Z1(FN,K) such that β1 is the extended modular coaction βφc1 associated

with c1. Since (M , K , α) is conjugate to (L∞(K) ⊗c1 N , K , ̂
(β
φ
c1)), it follows that c1 is

cohomologous to c, and hence we may identify the covariant system (M , K , α) obtained

above with the skew product (L∞(K)⊗c N , K , (̂βφc )).

By looking carefully at the isomorphisms � and id ⊗ ν obtained above, we deduce the
following.

PROPOSITION C.3. The covariant system (L∞(K) ⊗ Nφ , R, Adβφc (u(s))|L∞(K)⊗Nφ ,
τK ⊗ τ ) gives a continuous decomposition of the skew-product algebra L∞(K) ⊗c N .
Therefore, the smooth flow of weights on L∞(K)⊗c N is the covariant system (L∞(K)⊗
Z(Nφ), R, Ad βφc (u(·))), as proven in §6.

COROLLARY C.4. Let (L∞(K) ⊗ Nφ , R, Adβφc (u(s))|L∞(K)⊗Nφ , τK ⊗ τ ) be as in
Proposition C.3. Also, let ψ denote the dominant weight on L∞(K) ⊗c N obtained
as the dual weight of τK ⊗ τ . Then ψ is proportional to the dual weight φ̃ (of φ) on
L∞(K)⊗c N = K̂

β
φ
c
�N . In particular, φ̃ is always dominant.

Proof. Before we proceed to a proof, let us note that, if L∞(K)⊗c N is of type III, then it
is easy to see that φ̃ is dominant, because c φ̃ is clearly equivalent to φ̃ for any c > 0 due
to the fact that φ itself is by assumption dominant and φ̃ = φ ◦ Tα, where α is the dual
action of βφc .

Let ω := φ̃ andM := L∞(K)⊗c N . By Proposition 3.8 and [39, Lemma 1.2], we have
σωt (f ⊗1) = f ⊗1 for all f ∈ L∞(K) and all t ∈ R. From this, we see that the centralizer
Mω of ω contains L∞(K) ⊗ C ∨ β

φ
c (Nφ) = L∞(K) ⊗ Nφ . Let ut := (Dω : Dψ)t ,

the Connes cocycle derivative of ω with respect to ψ . Since both Mω and Mψ contains
L∞(K) ⊗ Nφ , it follows from the relative commutant theorem that each ut belongs to
M ′
ψ ∩M = Z(Mψ) = L∞(K ×XN). In particular, ut is a one-parameter unitary group.

For any s, t ∈ R, we have, by [35, Proposition 3.7],

σωt (β
φ
c (u(s))) = βφc (σ

φ
t (u(s))) = βφc (e

−istu(s)) = e−istβφc (u(s)).

In the meantime, by Proposition C.3, we also have σψt (β
φ
c (u(s))) = e−istβ

φ
c (u(s)). Hence,

each ut is contained in (L∞(K)⊗L∞(XN))Adβφc (u(·)), which is the scalar multiples of the
identity by Proposition C.3. Hence, there is a constant c > 0 such that ut = cit . This means
that ω = c ψ . �
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D. Appendix. Existence of Borel 1-cocycles on properly ergodic flows having dense range
The following is an easy generalization of [22, Proposition A.5] to the noncompact case.
We need to assume below that the locally compact group K is amenable, because of
[41, Theorems 2.1 and 3.1].

PROPOSITION D.1. Let (X, µ) be a properly ergodic R-space. Then, for any amenable
locally compact group K , there exists a Borel 1-cocycle c : R × X → K having dense
range.

Proof. By representing the given flow as a flow built under a ceiling function with an
ergodic single transformation (cf. [33, Ch. XII, §3, Theorem 3.2]), it suffices to prove
the proposition for a Z-action. Let S be a given non-singular and properly ergodic
transformation on (X, µ). We show that there exists a Borel 1-cocycle c : Z × X → K

having dense range. We take a type II1 ergodic transformation T on a standard Borel
probability space (Y , ν). Thanks to [15], [21] or [1], there exists a Borel 1-cocycle c′ :
Z × Y → K which has dense range in K . From this point on, we have only to follow the
argument in the proof of [22, Proposition A.5] in order to obtain the result. �
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