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Abstract

In this study, a new algorithm is developed to extract device profiles in a fully unsupervised manner from
three-phases reactive and active aggregate power measurements. The extracted device profiles are then
applied to disaggregate the aggregate power measurements by means of particle swarm optimization. Then,
a new approach to very short-term power predictions is presented, which makes use of the disaggregation
data. For this purpose, a state change forecast is carried out for each device by an artificial neural network
and subsequently converted into a power prediction by reconstructing the power profile with respect to the
state changes and device profiles. The forecast horizon is 15 minutes. In order to demonstrate the developed
approaches, three-phase reactive and active aggregate power measurements of a multi-tenant commercial
building are employed as a case study. The granularity of the data used is 1 s. In total, 52 device profiles are
extracted from the aggregate power data. The disaggregation exhibited a highly accurate reconstruction of
the measured power with an energy percentage error of approximately 1 %. The indirect power prediction
method developed is then applied to the measured power data and outperforms the two persistence forecasts,
as well as an artificial neural network designed for 24h-ahead power predictions working in the power domain.

Keywords: Non-intrusive load monitoring, energy disaggregation, power prediction, unsupervised learning,
neural networks

1. Introduction

Due to a higher share of renewably generated
power and the increasing electrification of our so-
ciety, the electricity grid is facing a variety of new
challenges such as instabilities arising from sudden
increases in energy supply or demand. A possi-
ble solution to avoid overloading without massively
increasing grid capacity is energy management ap-
plied to both the supply and the demand sides of
the grid [1]. Energy management relies, among
other things, on high-quality forecasts of electric-
ity supply and demand for different time horizons,
spanning seconds to months [2, 3, 4]. Horizon pre-
dictions at the scale of seconds to minutes are re-
ferred to as very short-term predictions, and are
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especially important for decision-making in energy
management systems. Such predictions are car-
ried out for multiple levels of the electricity grid,
from high voltage grids to the device level [5, 6, 7].
Power predictions on the demand side must address
the randomness of human behavior and thus ex-
hibit erratic and highly volatile patterns. In partic-
ular, very short-term predictions are significantly
influenced by randomness, and are more difficult to
carry out than long-term ones [8]. The erratic be-
havior of power demand data is especially evident
in households and industrial or commercial build-
ings. However, commercial buildings have great po-
tential for carrying out high-quality power predic-
tions, as they feature more repetitive demand than
households due to the division of working time and
non-working time by which the operate, for instance
shift work and repetitive tasks. Additionally, com-
mercial buildings generally have higher electricity
demand than private households, as [9] shows to
be the case in Germany. Thus, a single commer-
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cial building could exert a significant impact on the
stability of the overall energy system .

In order to support energy management in build-
ings, non-intrusive load-monitoring (NILM) is em-
ployed to delineate the aggregate consumption data
into the contributions of individual devices in a par-
ticular building. This was first described by Hart
[10] and is also often referred to energy disaggrega-
tion. Most disaggregation methods, such as those
presented in other studies, e.g. [12, 13], function by
building a model based on prior knowledge and also
training algorithms using labelled data sets, as in
[14]. The data-sets used are mostly not available in
real world applications, as their collectionrequires
extensive metering infrastructures.

In general, households are mostly considered for
NILM analyses [15]. These energy systems are
very similar in terms of their components, which
increases the algorithms transferability from one
household to another. However, NILM remains
laregely unexplored in the context of commercial
buildings [15]. The results of NILM can be uti-
lized for multiple purposes, as they generally yield
additional insight into the respective building. In
[16], the authors incorporate appliance usage pat-
terns in order to improve of load-forecasting per-
formance, and in [17] NILM is employed, as well as
a subsequent clustering analysis of similarly func-
tioning appliances as a preprocessing step in the
development of a forecasting algorithm. Never-
theless, the knowledge and results generated by
energy disaggregation are only seldom applied to
power prediction tasks. In particular, to the best
of our knowledge, the device state data has not
been directly used for power predictions purposes.
In addition, highly transferable NILM techniques,
which are operative without any prior knowledge
of a building or a costly pre-training, or which do
not require a massive increase in metering infras-
tructure, remain largely absent. Therefore, it is
difficult to apply NILM to real-world energy sys-
tems, especially in the case of commercial build-
ings, which have highly individual energy systems
to which hardly any suitable NILM approaches are
applicable [15], as pre-trained models and methods
are do not work.

With respect to the power predictions, existing
methods also face problems because they are often
unable to predict sudden events that result in sharp
power increases [8, 18, 19]. Even state-of-the-art
artificial neural networks have difficulties in cop-
ing with these data structures [20, 18]. However,

this event-like behavior is the inherent core of con-
sumption data and highly important for obtaining
high-quality power predictions.

This study integrates the fields of NILM with
power forecasting. Herein, we rectify the lack of
fully unsupervised NILM methods by presenting a
new energy disaggregation approach based on sta-
tistical and unsupervised machine learning meth-
ods. The presented NILM approach calculates de-
vice profiles on the basis of aggregate power con-
sumption data. The aggregate power is disaggre-
gated by means of particle swarm optimization, as
developed by the authors of this paper, which is
extensively outlined in [21]. The main contribution
of this work concerns the problems inherent to very
short-term power predictions in buildings. For this
purpose, a new bypass prediction method is pre-
sented that utilizes the state data of single devices
based on the aforementioned NILM approach. We
present a means of device state prediction and carry
out a 15 min power prediction by reconstructing the
aggregate power on the basis the state data derived
from the corresponding device profiles. Hence, the
event-like behavior is inherent to the state data and
therefore highly suitable to very short-term power
predictions. Figure 1 visually depicts the procedure
we developed.

Figure 1: Graphical representation of power predictions
based on power disaggregation. The aggregate power sig-
nal (top) is disaggregated until t = 0. This yields the power
contributions of different devices (bottom). From t = 0, the
state of the device is predicted and thereafter the aggregate
power signal is reconstructed using the state data from sin-
gle devices

This paper is structured as follows: In Section 2,
we present the data set that is used. The method-
ology is then outlined in Section 3; we begin by
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describing the assumed disaggregation problem in
Section 3.1. Afterwards, the developed and used
methods are presented, including device profile ex-
traction, disaggregation with particle swarm op-
timization and very short-term power prediction
based on an artificial neural network. In order to
highlight the results in a real world context, in Sec-
tion 4 the developed methods are applied to the
power data of a commercial building. Following a
discussion and outlook in Section 5, we convey our
conclusions in Section 6.

2. Data Description

In this study, we employ the power data of a
single measuring point in a multi-tenant commer-
cial building as a data set for our developed meth-
ods. The temporal granularity is 1 s. The data
represents a production facility and workshop and
contains six features: Three phases of active and
three of reactive power, respectively. The six fea-
tures of the power measurements are referred to as
P0 . . . P5, with P0 . . . P2 representing the three ac-
tive power phases and P3 . . . P5 the three reactive
power phases, respectively. The data set encom-
passes power measurements from 1 December, 2018
to 29 March, 2019. On average 0.0023 % of data
points are missing - these gaps are filled by the last
known value. We utilize the UMG 604 PRO power
analyzer from Janitza Electronics (Germany). Ac-
cording to the manufacturer the measuring error of
this device is less than 0.4 % which we neglect herein
[22]. Figure 2 displays the distribution of the data,
that is used in this study.

Figure 2: Histogram of the summed active power for the
data used. The minimum is 2.26 kW, the mean 22.27 kW,
and the maximum 98.95 kW.

3. Methodology

In the first of the sections that follow, the as-
sumed formulation of the disaggregation problem is
stated. Then, the device profile extraction method
is presented with the particle swarm optimization
(PSO) disaggregation method employed is then
briefly described in the subsequent section. Finally
the disaggregation-based power prediction proce-
dure is outlined in the last of the following sections.
In order to provide an overview of the algorithm,
Figure 3 displays the major steps.

Figure 3: Graphical representation of the developed algo-
rithm.

3.1. Formulation of the Disaggregation Problem

We assume a very similar formulation of the dis-
aggregation problem to be described in [21]. The
aggregate power at time t ∈ {0, 1, . . . , T} termed
P (t) ∈ R6, is assumed to be a linear combination of
device profiles corresponding to their state changes,
as described in the following equation [21]:

P (t) =
∑
i,t̃

si(t̃)=1

si(t̃)li(t+ t̃)+

∑
i,t̃

si(t̃)=−1

si(t̃)1(t̃,T )(t)pi + ε(t) (1)

The device profile of device i ∈ {0, 1, . . . ,M} con-
tains a dynamic profile li and a power value of the
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stable operating state pi ∈ R6 with τi being the
(typical) time required until this state is reached.
S ∈ {0, 1,−1}T×M denotes the so-called state-

changes-matrix with si(t) being the tth row and the
ith column of S. If si(t) = 1, device i is switched
on at time t and for si(t) = −1 it is switched off.
When si(t) = 0, the state of device i remains the
same. ε(t) is referred to as an always-on compo-
nent or noise. In light of these assumptions for the
aggregate power signal, the following optimization
problem must be solved [21]:

min
S
E

(
P, PS

)
(2)

P denotes the measured aggregate power signal,
PS represents the reconstructed or approximated
power according to Equation 1 using the state
changes matrix S and the device profiles li, and
E(P, PS) represents an error function of P and PS.
The state changes matrix of S and the device pro-
files li must be identified in order to minimize the
error E.

3.2. Extraction Procedure of Single Device Profiles

For device profile extraction, we assume a device
with a binary state, i.e., the device can only be in
an ON or OFF state. The stand-by modes or dif-
ferent operational modes of an appliance would be
described as individual device profiles. This also ap-
plies to the complex programs of some appliances.
Figure 4 presents a graphical and generic represen-
tation of the division of a complex appliance signa-
ture into a simplified set of device profiles.

Figure 4: Graphical representation of the separation of com-
plex appliance signatures into simple device profiles. The left
profile contains repetitive patterns and is divided into three
characteristic simpler profiles that represent such character-
istic patterns.

The device profile extraction algorithm first de-
tects the times of events in the aggregate power
signal by identifying peaks in the derivative of the

aggregate power signal. Then, the events are clus-
tered using the k-means algorithm in order to deter-
mine the characteristics when switching the specific
device types on or off. Subsequently, the clusters
are cleaned and merged. In order to determine the
typical run-time of the device, i.e., the length of its
profile, the clusters are split using Gaussian mix-
ture models (GMMs) according to the characteris-
tic ON-duration. Finally, median blending is em-
ployed in order to extract the device profiles from
the aggregate power signal.

3.2.1. Peak Analysis

We start by identifying when device state changes
occur. For this purpose, we employ the derivative
of the measured aggregate power signal P which is
denoted by ∆P : {1, . . . , T − 1} → R6 and is calcu-
lated according to Equation 3 where t + 1 denotes
the subsequently measured point in time with re-
spect to t. Due to the constant measuring frequency
of 1 Hz, the relationship is simplified to:

∆P (t) =
P (t+ 1)− P (t)

(t+ 1)− t
=
P (t+ 1)− P (t)

1 s
(3)

We assume that a state change occur when a sharp
increase or decrease in the measured power is ob-
servable. These inflection points in the aggregate
power signal result in maxima or minima in the
derivative. In the following, maxima are referred
to as ON events and minima as OFF ones. In or-
der to identify events, we take the sum of active
phases, Ptot ∈ RT with Ptot = P1 + P2 + P3, into
account. We perform a peak analysis of the deriva-
tive of the sum of the three phases of active power
∆Ptot with ∆Ptot ∈ RT−1. For the peak analy-
sis, we take all of the values of ∆Ptot into account,
which are above a threshold value εthreshold, and so
|∆Ptot(t)| ≥ εthreshold. The threshold can be chosen
on the basis of the given power data. The process
of selecting a peak threshold could be automated in
the future. We assume that the process of switching
a device on or off is completed within 1 sec. When
∆Ptot(t) is an event, we denote the respective time
by tp and term tp the event-time. We introduce the
following peak criterion, which defines time t as an
ON-event time tp:

t = tp ⇔ ∆Ptot(t− 1) < ∆Ptot(t)∧
∆Ptot(t+ 1) < ∆Ptot(t)

∧∆Ptot(t) ≥ εthreshold (4)
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Equation 4 accordingly applies for OFF-events with
reversed signs. The set of N events is referred to as
D = {∆P (tp,1), . . . ,∆P (tp,N )}.

3.2.2. Cluster Analysis of Events

The relationship between active and reactive
power is found to be distinctive for specific types
of devices [23]. Therefore, we assume the increase
or decrease in the three phases of active and re-
active power at the time of an event to be char-
acteristic of the particular device type. Based on
this assumption, we can cluster the extracted events
∆Ptot(tp) according to their characteristics in all
six power features in order to distinguish the de-
vice types. For the cluster analysis, we employ
the well-known k-means cluster algorithm. It is as-
sumed that the specific patterns of an ON-event
correspond to those of an OFF-event with reversed
signs. The clustering analysis is therefore only per-
formed for the ON-events, with the OFF-events as-
signed to the cluster centers reversed signs that fea-
ture the smallest subsequent deviation . The k-
means cluster algorithm divides a given data set
D = {∆P (tp,1), . . . ,∆P (tp,N )} into K clusters in
such a way that the Euclidean distance of each data
point to the nearest cluster center is minimized.
The number of clusters K must also be given. This
can be formalized as:

min
rnk,~ck

N∑
n=1

K∑
k=1

rnk|∆P (tp,n)− ~ck|2 (5)

rnk = 1 if the event ∆P (tp,n) belongs to cluster
k and rnk = 0 for all other clusters. The clus-
ter centers are denoted by ~ck ∈ R6 and the corre-
sponding cluster constitutes a set of assigned events
as denoted by ck. The k-means cluster algorithm
solves the minimization problem by means of the
expectation-maximization method [25]. In order to
determine the optimal number of clusters Kopt for
the given events, the Calinski-Harabasz (CH) score
is used, which is defined by [26]:

CH =
N −K
K − 1

∑
ck∈C |ck||~ck − ~D|2∑

~ck

∑
∆P (tp,i)∈ck |∆P (tp,i)− ~ck|2

(6)
where N denotes the number of events, the cen-
ter of the entire data set D is denoted by ~D and
C represents the set of clusters ck. The cardinal-
ity of cluster k is denoted by |ck|. CH reaches a
maximum for the optimal K and calculates a ra-
tio between the separation of the clusters and the

compactness within each of them. It is then mul-
tiplied by the pre-factor N−K

K−1 in order to prevent
overfitting, because a larger number of clusters K
must not always result in a higher value of CH than
a smaller number of clusters.

In order to obtain Kopt, we perform a k-means
clustering analysis for K ∈ {1 . . . 50} and calculate
CH each time. We selected 50 as the upper limit in
order to confine the computing time. An adaptive
method for increaseing K until the CH is decreasing
again would also be possible.

Following the first clustering analysis of the ex-
tracted events, we perform a cleaning step of the
clusters, analogous to that reported in [23]. For
this, we define outlier events ∆P̃ (tp) to be outside
of a 2σ area within the respective cluster, where σ
denotes its standard deviation. All of the outliers
are clustered again with a fixed K̃ = 10. A second
CH-analysis would also be possible for the outlier
events, but this step is simplified as this cleaning
step is optional in the procedure for extracting the
device profiles. Using the presented clustering pro-
cedure, the characteristic increase or decrease in all
six power features when switching a device on or off
is known.

3.2.3. Merging Clusters

In order to improve the clustering of the ex-
tracted events, we perform a merging step of clus-
ters based on a similarity measure. The similarity
of two clusters is evaluated by means of the Pearson
correlation coefficient ρ ∈ [−1, 1] and the absolute
percentage error (APE) calculated for each combi-
nation of two cluster centers. The Pearson correla-
tion coefficient of the two cluster centers ~ci and ~cj
is defined by the following equation [27]:

ρ(~ci,~cj) =
σ~ci,~cj
σ~ciσ~cj

(7)

where σ~ci,~cj denotes the co-variance of ~ci and ~cj .
The APE is defined by the following equation:

APE(~ci,~cj) =
|~ci − ~cj |
|~ci|

(8)

If ρ(~ci,~cj) and APE(~ci,~cj) are above/below a given
threshold, clusters i and j are merged. For this, a
new cluster is created and the members of clusters
i and j are assigned to i with cluster center ~ci,new =
1/2 · (~ci + ~cj). This calculation of the new cluster
center is also applied if the cardinalities of ci and
cj differ.
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The following thresholds are selected:

ρ(~ci,~cj) > 0.9 ∧ APE(~ci,~cj) < 0.1 (9)

It is possible that cluster ci satisfies the condition
in Equation 9 with multiple other clusters. If that
scenario applies, ci is only merged with the clus-
ter of highest similarity; the newly created cluster
ci,new is not merged again with the other clusters.

3.2.4. Determination of Run-Time with GMM

For the calculation of device the profiles, the typ-
ical run-time, i.e., time in the ON state, is required.
Therefore, we determine the time between an ON-
event in a specific cluster and the next OFF-event
in that cluster for each of its ON-event. We per-
form this calculation for every cluster of events.
The calculated time is referred to in the following
as the ON-duration. If there are more ON- than
OFF-events, we neglect these surplus ON-events
and vice-versa. For every cluster, we present all
of the determined ON-durations in a frequency dis-
tribution and observe multiple maxima at different
time points.

Figure 5: Graphical representation of the division of an ON
duration distribution based on GMM.

In reality, the ON-duration depends on the type
of use of the individual device,e.g., if a device is ca-
pable of running different programs or if the same
device type is used for different tasks. In this study,
GMMs are used to divide clusters according to their
characteristic ON-durations. Figure 5 shows an ex-
emplary distribution of the ON-duration distribu-
tion of a cluster with a fitted GMM that divides the
distribution into two sub-distributions.

GMMs determine the properties of the sub-
distributions within an overall distribution, based
on only observations of the overall distribution B =
(~x1, . . . , ~xN ) [28]. The a-posteriori probability for
the GMM is calculated as follows:

p(θ|B) =

m∑
i=1

πiN (~x|~µi,Σi) (10)

where p(θ|B) describes the probability of the model
parameters θ given the data set B. The param-
eters θi = (πi, ~µi,Σi) denote the mixing coeffi-
cients, the mean value,s and the covariance matri-
ces of the ith of the m Gaussian distributions. The
mean values of the Gaussian distributions repre-
sent the mean ON-duration, which will be referred
to hereinafter as d. Therefore, the ON-duration
of device i is denoted by di. The number of sub-
distributions m must be given beforehand. The
maximum-likelihood method is used, together with
the expectation-maximization algorithm to obtain
an optimal estimation of θ [29]. In order to deter-
mine the optimal number of Gaussian distributions
mopt in the GMM of each cluster, the Bayesian in-
formation criterion (BIC) is used. The BIC is a
measure for comparing different models and is de-
fined by the following equation [30]:

BIC ≈ 1

2
M lnN − ln p(B|θ) (11)

where N denotes the number of data points in the
data set, and B and M are the number of parame-
ters in θ. According to this definition, the BIC is to
be minimized. As soon as ∆ BIC > 2 for two subse-
quent modelsMm andMm+1, the modelMm+1 is
selected and the corresponding m is termed mopt.
The limit for ∆ BIC to select mopt must be em-
pirically determined . In general, m should be in-
creased as long as ∆ BIC is negative for two subse-
quent models.

Given this procedure, every cluster k is divided
into m groups. The groups that emerge from one
cluster share its center (the characteristics of ON-
and OFF-events) but differ in their characteristic
ON-duration. An event is assigned to a group if the
associated Gaussian distribution is the maximum
for the ON-duration of this event. From the total
K clusters emerge M =

∑K
k=1mopt,k groups, which

will be denoted as Gi. The ON-duration of Gi is
referred to as di.

3.2.5. Median Blending

For the final calculation of the device profiles, me-
dian blending, a method of noise reduction, is used
for all groups [31]. We sought to extract the load
profile of a single device type from the aggregated
load profile by utilizing the previously determined
activation peaks and ON-duration. Thus, all other
devices that are not under consideration apply noise
to the time series, which is in turn eliminated by
median blending. For every element ∆P (tp) ∈ Gi,
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we store and normalize the aggregate power sig-
nal, which is denoted by Pnorm, from tp . . . tp + di.
Normalization is carried out by dividing the aggre-
gate power during activation of a device type by the
maximum power value within the stored segment
of the aggregate power signal. Then, the median
for every time point in the saved aggregate power
signal is calculated for all six power features. In or-
der to scale the normalized profile back to absolute
power values, we employ the cluster center of the
respective cluster, which represents the character-
istic increase in power per second when switching
on a specific device type. Therefore, we integrate
the cluster center by multiplying it by one second.
Finally, we scale back the median values by mul-
tiplying ~ck and the normalized li. We define the
power profile of device i, thus:

li : {1, . . . , di} → R6 , (12)

where di denotes the ON-duration, by:

li(t) = ~ck ·median{Pnorm(tp + t)|
tp is an ON-event of the device} (13)

for every t ∈ {1, . . . , di}. The prerequisite for this
procedure are enough events in Gi to significantly
reduce the noise of the aggregate power signal.

3.3. Disaggregation Procedure

The disaggregation is carried out by means of a
PSO as described in a previous study of the authors
of this paper [21], which is an improved version
of the original description by Kennedy and Eber-
hart in [11]. The PSO is a metaheuristic that is
used for multidimensional optimization problems,
such as the above presented disaggregation prob-
lem. In this study, we employ PSO to determine
the state changes of matrix S. For this purpose,
the extracted device profiles are used. The PSO is
intended to minimize the following error measure
[21]:

E[a,b)(P, PS) = α ·
b−1∑
t=a

(~PS(t)− ~P (t))2+

β ·
b−2∑
t=a

(∆~PS(t)−∆~P (t))2 (14)

with α+ β = 1 weighting the two summands. The
algorithm we employ in this study to carry out the
disaggregation is extensively outlined in [21]. In

that work, it is assumed that a device profile con-
sists of transient or dynamic behavior and a stable
state reach after a specific time τ . Thus, we as-
sume that the extracted load profiles represent the
dynamic behavior of the device. The power value of
the stable state is assumed to be the final non-zero
power value of the specific device profile.

3.4. Very Short-Term Power Prediction

This work presents a novel load disaggregation-
based power forecasting methodology for estimat-
ing the state changes of unknown devices. The
power forecast is carried out by reconstructing the
state changes forecast according to Equation 1. In
the dataset used, the weekends feature very reg-
ular power curves with highly repetitive patterns.
Thus, it is assumed that persistence forecasts will
be sufficient for weekend days. Therefore, we only
consider working days, since they exhibit more com-
plex power demands with many sharp increases and
decreases. For this purpose, we utilize an artifi-
cial neural network (ANN). ANNs have been widely
used in different fields pertaining to power grids as
a very powerful method for time series prediction
[32, 33, 34]. In particular for load and energy fore-
casts, ANNs are preferred due to the non-linearity
and randomness that characterize power data [8].
In this study, we design the ANN to learn the inter-
relationship between the last hour of state changes
and those to come within the next 15 minutes. We
employ a feed forward, fully connected ANN based
on the supported models and functions of Keras
[35], a deep learning framework for building ANNs.
In the following, the ANN input and output are de-
scribed, as well as the hyperparameter optimization
of the ANN. Finally, the training procedure for the
ANN is outlined.

3.4.1. ANN Input and Output

This section describes how the state changes, op-
tianed from the disaggreagtion precedure, are fed
into an ANN. Additionally, the ANN’s output is
described. All inputs and outputs must be normal-
ized to a range of −1 . . . 1, so that no feature is
weighted more than any other during training. We
utilize past data on the state changes of every device
type as inputs and future state changes information
as the target data.

The state changes of the previous 3600 s are used
to predict the next 900 s, also considering the state
changes for the respective prediction time from one
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week ago. For example, in order to predict the
state changes from 11:00-11:15 am, the state change
data from 10:00-11:00 am is required as an input
from the respective day and, furthermore, the state
changes from 11:00-11:15 from one week before are
required. This arrangement has proven to be help-
ful given the regularities in industrial and commer-
cial data relating to weekdays [36].

During training, the difference between the out-
put and target data is quantified by calculating
an error measure. A large proportion of the state
change data consists of zeros. Thus, there is a lo-
cal optimum in the error measure of the ANN to
only predict zeros, resulting in no state changes at
all. Therefore, we perform an additional prepro-
cessing step for the state changes data by trans-
forming the state changes data into state data by
means of integration. Figure 6 displays a graph-
ical representation of the integration procedure of
the state changes. Essentially, the state changes
are added up for a respective device. This step
avoids a data structure that primarily contain ze-
ros, caused by state changes that rarely take place.
Following integration, the state data is normalized
to the range of [−1 . . . 1], because a device could be
activated several times, meaning that several de-
vices of the same type are running, resulting in the
state data containing values greater than 1. The
integration step applies to both the input and the
target data. This transformation exhibited an im-
proved learning process of the ANN during training
in comparison to the learning of the state changes
data.

Figure 6: Graphical representation of the integration of the
state changes to states for the data preparation for the train-
ing of the ANN.

Additionally, we introduce three time features as
inputs: The first two are the sine and cosine func-
tions, as presented in the left and middle panels of
Figure 7. The third time features represents the
day of the week: We assign a value to each day
from Monday (0) to Friday (1), as is shown in the
right pannel in Figure 7.

Figure 7: Graphical representation of the time features given
the ANN as the input.

For M given device types, the input data set con-
tains 2M + 3 columns. The target data only con-
tains the future state changes data of the M de-
vices. Thus, there are M columns in the target
data set. The number of rows is determined by the
size of the training data set, and so this corresponds
to the number of time steps in the training data set.

3.4.2. Hyperparameter Optimization

The hyperparameter optimization was carried
out with the help of Talos and the supported ran-
dom search [37]. Talos is a library tailored for the
hyperparameter optimization of Keras models. Hy-
perparameters comprise all of the parameters of an
ANN that are not adapted during training but must
be set beforehand. The following hyperparame-
ters are considered for the optimization: Number of
neurons, number of hidden layers, dropout, learning
rate, and batch size. The number of neurons in the
hidden layers sets the width of the ANN, whereas
the number of hidden layer determines the ANN’s
depth. The number of neurons in the hidden layers
are not the same for all layers, and therefore the
width of the ANN can vary. Dropout describes the
percentage of neurons that are randomly neglected
in every hidden layer during a training step in or-
der to increase the ANN’s robustness and decrease
over-fitting [38]. The learning rate is a measure
of the step size made during the training process
in each iteration. A larger learning rate decreases
the training time, but increases the risk of not fully
converging into an error minimum and vice-versa
for smaller learning rates. The batch size deter-
mines the number of samples of the training data
set that are simultaneously processed. Thus, the
parameters of the ANN are not adapted after every
single sample passes it, but only after the number
of samples corresponding to the batch size.

The chosen values of the optimized hyperparam-
eters are presented in Table 1. In light of these, the
chosen model has 137868 trainable parameters. As
an activation function, the relu function proved to
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have the best outcome for our objective.

Table 1: Hyperparameters and their chosen values for the
state forecast using an ANN.

Hyperparameter Name Selected Value
Neurons in hidden layer 214
Number of hidden layers 3
Dropout 5 %
Learning rate 0.01
Batch size 2048

We select the mean squared logarithmic error
(MSLE) as the error measure which is defined as
follows:

MSLE(ytarget, yOut) =

1

N

N∑
i=0

(
log(ytarget,i + 1)

log(yOut,i + 1)

)2

(15)

Due to its logarithmic character, the MSLE pe-
nalizes deviations at small values more heavily than
error measures such as root mean squared or mean
absolute formulas. This demonstrated an improved
training process given the structure of the data
herein. In order to evaluate and compare the results
of the prediction, we use the same error measures
as for the validation of the disaggregation results.

3.4.3. Training of the Neural Network

The training is performed using an Intel i7-6700k
processor with 16GB of RAM and a Geforce GTX
1050 graphic card with 768 CUDA cores. The data
set for the training includes 55 working days from
January-March 2019, and so it contains 4752000
rows and 2M + 3 columns. During training, 95%
of the data is used for training the network and 5%
get as a validation data set. Note that, due to the
data’s high measurement frequency, the test set still
consist of 172800 data points, which result in 188
very short-term predictions to be tested. As soon
as the error on the independent validation set in-
creases, the training is stopped. This is carried out
using the early stopping option of Keras [35]. As
a postprocessing step, we calculate the derivative,
and so the reverse procedure of the shown integra-
tion is applied. The output values of the ANN used
are floats rather than integers, as assumed in Equa-
tion 1. Thus, we interpret the outputs as probabil-
ities of the state changes of the devices. In order to
reconstruct the power, we allow the floats and cal-

culate a weighted sum rather than a discrete one.
Therefore, Equation 1 changes as follows:

P (t) =
∑
i,t̃

si(t̃)>0.1

si(t̃)li(t+ t̃)+

∑
i,t̃

si(t̃)<−0.1

si(t̃)1(t̃,T )(t)pi + ε(t) (16)

with si(t) ∈ R. We define a threshold of 0.1 to
take an element of the prediction into account for
the purpose of reconstruction. As the always-on-
component ε, we assign each short-term prediction
the last measured power value. Therefore, for a
prediction in the range from t = 0 to t = 900, we set
ε = P (−1). The forecast is limited to being greater
than zero for active power values, as negative active
power values are not possible assuming only that
consumers are connected.

All operations and associated data are depicted
in step-by-step fashion in Figure 8.

4. Results

In this section, we present the results of the ap-
plication of the developed methods to the above de-
scribed data set. For the device profile extraction,
we employ the data from January and February of
2019. Thereafter, we disaggregate the entire data
set. In order to train the forecast algorithm, we use
the data from January to March 2019. The testing
of the forecast algorithm is carried out using the
last two days in the data set, namely 28th and 29th

of March, 2019. As the forecast horizon is 15 min,
we are able to perform and evaluate 188 power pre-
dictions of the test data set. In order to validate the
results of the short-term prediction, we use the root
mean squared error (RMSE), mean absolute error
(MAE), mean absolute percentage error (MAPE)
and percentage energy difference (EnergyE) error
measures. Moreover, the RMSE and MAE are used
to compare the short-term prediction with a day-
ahead prediction.

In Figure 9, an exemplary cluster analysis of one
day of data (December 4th, 2018) is shown for the
elements: ∆P2(tp) and ∆P5(tp). The ON-events
are depicted in the right-hand panel of Figure 9,
with the OFF-events in the left-hand one. The
symmetry to the central point zero is clearly visible
by comparing the the left- and right-hand sides of
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Figure 8: Graphical representation of the developed algo-
rithm. On the left, the operations are depicted, whereas the
data of every step of the algorithm is displayed on the right.

Figure 9. It is apparent that the relation of the in-
crease in active and reactive power is not randomly
distributed, but forms clusters, with ON- and OFF-
events being individually clustered . The cluster-
forming behavior becomes clearer when taking all

six features of the power derivative into account.
Therefore, all six features of the six exemplary clus-
ter centers are presented in Figure 10, where it can
be seen that the clusters have very distinct char-
acteristics with respect to the relationship between
the six features. Whereas Examples 1, 3 and 5 only
show an increase in one phase of power, whereas
the other three examples appear to represent three-
phase connected devices. They have approximately
the same power derivative during an ON-event in
all three phases with respect to active and reactive
power. The relationship between active and reac-
tive power is very distinct. Whereas examples 1,
3, and 5 exhibit almost no increase in the reactive
power when switched on, examples 4 and 6 feature
significant reactive power increases. In Example 4,
the increase in reactive power is even higher than
the increase in active power.

Figure 9: Individually clustering of OFF-events (left-hand
side) and ON-events (right-hand side) for December 4th,
2018. Two of the six power derivative features are presented.

Figure 10: Six examples of cluster centers and their charac-
teristics in all features of the power derivative.
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In order to show the separation of clusters ac-
cording to their ON-duration, Figure 11 displays
two exemplary ON-duration distributions with the
respective fitted GMMs. Cluster 15 from Figure 11
is divided into two groups with approximate ON-
durations of 200 s and 1000 s. On the other hand,
Cluster 14 is divided into three groups with approx-
imate ON-durations of 250 s, 900 s and 1900 s.

Figure 11: Two examples of GMMs for ON-duration distri-
butions

Given the examples for different steps of the de-
veloped algorithm, Figure 12 shows four device pro-
files. In total, we extracted 52 device profile from
the aggregate power data using the developed al-
gorithm. The depicted profiles are representative
for all extracted device profiles, as they show the
main patterns and behaviors of the extracted de-
vice profiles . Both upper illustrations in Figure 12
display the most common type of device profile: A
three-phase connected device with transient behav-
ior in the beginning and afterwards a stable oper-
ating state in which the relationship between ac-
tive and reactive power remains approximately the
same. Additionally, device profiles 4 and 42 in-
dicate that the relationship of active and reactive
power is characteristic to the specific device. The
length of profiles 4 and 42 also differ. Profile 6 ex-
hibits no dynamic behavior at the beginning of the
profile, but consists of a constant component and an
oscillating or random one. Clearly, Device Profile
6 represents a single-phase connected device, as all
power values other than P1 are close to zero. More-
over, Profile 6 has a high ON-duration compared to
profiles 4 and 42, with d6 ≈ 20000 s. An exception
to the frequent device profile pattern is represented
by Device 37, which shows a decreasing behavior
with many small but sharp increases and decreases
in all power features. These kinds of device profiles
are less common.

Figure 12: Four examples of device profiles extracted in an
unsupervised manner from the aggregate power signal. The
solid lines represent active power and the dashed lines reac-
tive power.

4.1. Disaggregation

In total, we disaggregated the power data of 119
days from December 2018 to March 2019. Figure 13
shows a typical day of data with the sum of active
phases on the left and the sum of reactive phases
on the right. Beneath these, the respective absolute
error is displayed. It can be seen that the PSO is
able to reconstruct the shape of the aggregate power
signal over the duration of a entire day, including
repetitive patterns during the night and across most
of the peaks. Nevertheless, there are error peaks of
up to almost 20 kW, which correspond to approx-
imately 25 % of the measured power at the corre-
sponding time points. However, these high error
values occur infrequently and are of very short du-
ration. During working periods, the absolute error
is higher than at night, but there is no constant off-
set between the measured and reconstructed power.
The error of reconstructing the reactive power is
larger than that of reconstructing the active power.
At the end of the presented day, noise is present in
the reconstructed power.

For the working days in March 2019, the RMSE is
1565 ± 150 W and the energy error is 0.897 ± 0.156
% between the reconstructed time series after dis-
aggregation and the original, measured time series
[21]. Note that the days are individually evaluated
. Therefore, the standard error describes the varia-
tion between the different days. The reproducibil-
ity of the results is demonstrated by the standard
deviations of the mean error values which are ap-
proximately 10% of the respective mean values.
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Figure 13: Disaggregation results for 4th December, 2018.
On the left is shown the sum of the active power shown and
on the right side that of the reactive power . At the bottom
is illustrated, the respective absolute difference between the
measured and reconstructed power.

4.2. Short-Term Power Predictions

Drawing on the data produced by the disaggre-
gation, an ANN is trained according to the descrip-
tion in Section 3 of the data’s pre- and postprocess-
ing procedures. The data set used for testing the
ANN’s performance consists of the 28th and 29th of
March, 2019. Therefore, using this test dataset, we
can calculate 188 power predictions of 15 minutes
each. The ANN is given the first hour of the test
set as input data. To put the results into perspec-
tive, we compare the error measures on the test set
with those for different persistence forecasts.

All of the error measures are calculated for the
sum of the active power phases. Table 2 shows
the means and standard deviation of multiple error
measures for the predictions using two persistence
methods for comparison. The first persistence fore-
cast utilizes the power values from seven days prior,
whereas the second uses the power values of the pre-
ceding 15 min. The ANN outperforms both of these
with respect to mean error values of all of the cal-
culated error measures. In particular, the MAPE
and error in daily consumed energy are significantly
smaller.

We compare the developed short-term prediction
based on state change data with the prediction re-
sults of an ANN based mainly on past power data
with a granularity of 5 min, adapted from [36]. In
that study, the authors employed the same data
as in this work and optimized a long-short-term-
memory neural network for a 24 h day-ahead pre-
diction. Although the prediction horizon and gran-
ularity differ, the power prediction from [36] repre-
sents the standard prediction procedure and there-

fore serves as a benchmark . The model from [36]
is used to predict the power for the test set herein.
Figure 14 shows the measured power and both ANN
predictions.

Figure 14: Comparison of the 24 h day-ahead power forecast
and very short-term power prediction based on the state fore-
casts

The 24 h day-ahead prediction is similar to a
rolling averaged power value, whereas the short-
term prediction based on state change data ex-
hibits the erratic behavior during working time,
with sharp increases and decreases in the power
level. With the model of the 24 h day-ahead predic-
tion, we can calculate the RMSE and MAE. Table
3 shows the results of this. The RMSE and MAE
are significantly higher in the 24 h day-ahead pre-
dictions than in the short-term prediction using the
disaggregation-based ANN.

5. Discussion and Outlook

For the extraction of the device profiles, the
main distinguishing factor is the behavior at an
ON-event. The peak criterion used to determine
the ON-behavior is very simple and neglects peaks
across multiple time-steps. This problem could be
resolved in future work using a more sophisticated
peak criterion.

The k-means clustering algorithm is used to the
determine clusters in the six-dimensional space of
reactive and active power phases. Furthermore,
other studies have used clustering to differentiate
between device types, e.g. [23, 24], but these use
a maximum of two features and not six, as in this
work. In general, clustering is more precise, when
more characteristic features are present [25]. Thus,
we can assume that we can reach a higher degree
of precision in dividing the events into clusters of
device types. Other properties measured by power
analyzers could also be utilized in future work to
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Table 2: Multiple error measures between the measured and predicted power for two different persistence forecasts and the
proposed algorithm, which makes use of states fed into an ANN. Presented are the means and standard deviations of the errors.
These are calculated for 188 individual predictions of 15 minutes each for the test data set 28th - 29th March, 2019.

Persistence Persistence Power prediction

7 days before 15 min before with ANN

RMSE [W] 6148 ± 5755 4327 ± 4045 3478 ± 3444

MAE [W] 5370 ± 5762 3379 ± 3722 2693 ± 3271

MAPE [%] 78.06 ± 117.84 20.17 ± 21.45 16.56 ± 20.19

EnergyE[%] 35.25 ± 119.10 3.40 ± 24.19 3.40± 24.19

Table 3: Multiple error measures between measured and pre-
dicted power for a 24 h day-ahead prediction and the pro-
posed short-term prediction using states and an ANN.

24 h day ahead Power prediction

prediction with ANN

RMSE [W] 5124 3478

MAE [W] 4507 2693

distinguish between different device types. Never-
theless, the number of necessary features should be
limited with respect to realistic applications in real-
world energy management systems and the avail-
ability of high-resolution power analyzers.

During clustering, we assume that the cluster
centers of OFF-events are the reversed cluster cen-
ters of ON-ones. When clustering is performed for
ON- and OFF-events individually, the OFF-event
cluster centers, where reversed signs lie within a
0.25-σ area of the ON-event cluster center with σ
denotes the standard deviation of the corresponding
cluster. Therefore, the assumption can be justified.
Additionally, Figure 10 displays the symmetry of
the central points of the ON- and OFF-events.

In order to determine the ON-event behavior, we
perform a peak analysis based on the assumption,
that the switching procedure of a device finished
within one second. In reality, most devices display
a transient behavior in the shape of exponentially
decreasing oscillation [39]. Some researchers have
distinguished between different transient behaviors
and so different device types [40, 41]. However, with
respect to the measuring frequency, these processes
occur on shorter timescales (within milliseconds)
and can be neglected here. Only with a measuring
frequency in the range of kHz would the characteris-
tic transient behavior be observable [39]. However,
the installation of an infrastructure that is able to

perform measurements in kHz is unlikely. Thus, the
presented approach, using a measuring frequency of
1 Hz, is more realistic for application to local en-
ergy and power management systems. With the
measuring frequency of 1 Hz utilized in this study
an ON-event approximates a step function in the
aggregate power signal. Nevertheless, in most of
the device profiles shown in Figure 12, transient
behavior can be observed in the first few seconds
of the corresponding profiles. Thereafter, most de-
vices reach a stable state where they remain for the
duration of the profile. for as long as the profile per-
sists. Thus, the division of the device profiles into
stable state and dynamic behaviors for the stated
formulation of the disaggregation problem can be
applied here.

The final step in the device profile extraction pro-
cedure is median blending. In general, more sam-
ples for performing median blending will yield more
precise results. Therefore, it is very important to
perform the extraction procedure using a sufficient
amount of data. In particular, devices that are
only rarely switched on provide less accurate pro-
files. The selected normalization is carried out by
means of a division by the maximum power value
in every sample of Pnorm. With a high base load,
this procedure could average out the characteris-
tic fluctuations of the device profile. Therefore,
another normalization method could be appropri-
ate if the individual profiles are of great impor-
tance and an allocation to real measured profiles
is of interest. However, in this study we focused
on high-quality very short-term power predictions
with an emphasis on the aggregate power signal.
Thus, small fluctuations in individual device pro-
files were of minimal importance. The improvement
in the median blending procedure or the application
of other noise-reduction methods for device profile
extraction could be examined in future studies.
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In total, 52 device profiles are extracted for our
dataset of a commercial consumer. As no additional
information about the used data is available, we can
not validate the number of device profiles. However,
we can estimate this relatively high number of de-
vice profiles through the division by ON-behavior,
as well as the division of clusters into groups with
similar run-times. Even a simple ohmic consumer
type could therefore result in multiple device pro-
files.

A direct validation of the device profiles was not
possible in this study due to a lack of data on the
correct device profiles. Moreover, the application
of the extracted device profiles to the measurement
of complex appliance signatures would be difficult,
as the extracted profiles only represent the oper-
ational modes of appliances. However, the good
results in the disaggregation and forecast indicate
that the extracted device profiles are a satisfactory
representation of the real devices.

The extraction procedure has similarities to
non-negative blind sources separation in acoustics,
where the individual components and mixing pro-
cedure are unknown [42]. As all of the methods
used for extracting the device profile are from statis-
tics and unsupervised machine learning, no hyper-
parameters have to be optimized to apply the al-
gorithm to different data sets. The required hy-
perparameters, such as the number of K clusters or
the number of Gaussian distributions in the GMMs,
are determined using statistical scores or criteria.
Therefore, the device profile extraction algorithm
can be applied without changes. The suitability for
transferability must be systematically examined in
the future.

Figure 13 shows that the disaggregation dis-
cussed in this work can achieve a highly accurate
reconstruction of the measured power. The re-
sults are consistently good across all six phases.
Thus, we can assume that the device profiles con-
stitute a good representation of the real devices,
and also that the separation according to the ON-
event behavior appears to be valid. As the PSO
is a metaheuristic, incorrect assignments of devices
to events are possible. Nevertheless, the disaggre-
gation procedure produces additional knowledge of
the building or the respective data set without re-
quiring a costly model and its adaptation to the
data. The aim of this work is the use of this addi-
tional knowledge for the purpose of very short-term
power prediction and to determine if this additional
knowledge provides benefits for such applications.

The disaggregation procedure can be justified if a
disaggregation-based prediction method is able to
outperform standard prediction methods utilized in
the power domain.

The very short-term forecast conducted using
state changes data exhibits significantly better re-
sults than multiple persistence forecasts and a fore-
cast using a LSTM network that is optimized for
24 h prediction with a resolution of 5 min. Thus,
the LSTM predicts 288 values for an entire day com-
pared to the 900 of our short term forecast for 15
minutes. It should be noted that the maximum
accuracy of the predictions is in reconstruction of
the disaggregation. Thus, error values smaller than
the reconstruction error values can only be under-
cut by chance, but not systematically. The devel-
oped prediction model is a very simple ANN for a
high number of input and target features. There-
fore, further optimization in terms of the model of
the neural network and perhaps the use of LSTM
layers or convolutional layers could enable better
forecasts. The ANN is optimized for the used data.
Therefore, the results could be worse, when applied
to another data set of state changes. The devel-
oped forecast does not rely on an exhaustive rollout
of measuring frequency devices as in [19] and so is
easily transferable also with limited measuring in-
frastructure. Nevertheless, the transferability must
be systematically examined in the future.

It is to be assumed that a certain proportion
of state changes of devices during working time is
purely coincidental. However, no model can ac-
curately predict randomness. deleted cannot be
predicted by any model. In order to assess the
chances of success of applying the presented ap-
proach to other power data, the randomness of the
data must be determined in advance using appro-
priate methods. For example, the approximated en-
tropy method described in [43] could be used, which
has already been applied to contexts such as stock
prices, as in [44]. Additionally, instead of a deter-
ministic prediction, one could perform a probabilis-
tic prediction and/or work with confidence intervals
for the predicted of power values. This procedure
could be helpful in management decision-making.

In this study, we demonstrated the advantages
of state changes data for making power predic-
tions. However, the additional informationknowl-
edge from the extraction of device profiles and dis-
aggregation could also be applied to other tasks,
such as behavioral analysis, state analyses of build-
ings, checking the health status of residents or em-
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ployees, or devising recommendations for intelligent
power consumption with respect to the availability
of renewable energy. With more variable, market-
based electricity tariffs, new business models could
even be possible when applying the presented ap-
proach to energy management systems. Moreover,
the approach could be applied to other data sets
other domains, such as households. However, it
is currently difficult to obtain three-phase power
consumption data that describe active and reactive
power, with sufficient temporal granularity to de-
tect events in sn aggregated time series over longer
measurement period for the purpose of training the
machine learning algorithm used.

6. Conclusions

In this study, we developed an algorithm for ex-
tracting device profiles from aggregate power data
across six dimensions in a fully unsupervised man-
ner. As the method relies on statistical and un-
supervised machine learning methods, it identifies
repetitive patterns in aggregate power data. There-
fore, the extracted profiles are not necessarily full
appliance signatures, but a single operational mode
of one device. A direct validation of the device pro-
files was not possible due to a lack of measured or
correct profiles. The transferability of the proposed
device profile extraction method is high in theory,
as no hyperparameters have to be optimized before-
hand, but this must be empirically proven in future
studies. The disaggregation uses the extracted de-
vice profiles and displays a highly accurate recon-
struction. Therefore, the device profiles seemingly
represent real appliance signatures sufficiently well.
As the final application of the conducted NILM ap-
proach, the very-short term power prediction out-
performed all of compared predictions. Although
many publications developed or carried out various
NILM algorithms, the broad application of these
methods to other purposes is still missing. In this
work, we demonstrated the advantages of the ad-
ditional information of NILM for very short-term
power predictions. Our results and approaches to
predictions could be combined with short-term or
long-term predictions directly in the power domain.
Especially for energy management systems, such
combined and high-quality predictions would be of
great value for decision-making processes.
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