Title	Effective Photocatalytic Reduction of Nitrate to Ammonia in an Aqueous Suspension of Metal-Loaded Titanium(IV) Oxide Particles in the Presence of Oxalic Acid
Author(s)	Kominami, Hiroshi; Furusho, Akitoshi; Murakami, Shin-ya; Inoue, Hiroyuki; Kera, Yoshiya; Ohtani, Bunsho
Citation	Catalysis Letters, 76(1/2), 31-34 https://doi.org/10.1023/A:1016771908609
Issue Date	2001
Doc URL	http://hdl.handle.net/2115/17129
Rights	The original publication is available at www.springerlink.com
Туре	article (author version)
File Information	CL76-1-2.pdf

Effective photocatalytic reduction of nitrate to ammonia

in an aqueous suspension of metal-loaded titanium(IV) oxide particles

in the presence of oxalic acid

Hiroshi Kominami^{a,*}, Akitoshi Furusho^a, Shin-ya Murakami^a, Hiroyuki Inoue^a, Yoshiya Kera^a

and Bunsho Ohtani^b

^aDepartment of Applied Chemistry, Faculty of Science and Engineering, Kinki University,

Kowakae, Higashiosaka, Osaka 577-8502, Japan. E-mail: hiro@apch.kindai.ac.jp

^bCatalysis Research Center, Hokkaido University, Sapporo 060-0811, Japan.

Received February , 2001

Photocatalytic reduction of nitrate ion (NO₃⁻) in an aqueous suspension of metal-loaded

titanium(IV) oxide (TiO2) was examined in the presence of oxalic acid (OA) as a hole

Conversion of NO₃ into ammonia (NH₃) competed with hydrogen liberation, scavenger.

and the NH₃ production selectivity increased with the order of loaded metal, (Pt, Pd, Co) <

(Ni, Au) < (Ag, Cu), which was attributable to the efficiency of reduction of protons by

photogenerated electrons at the loaded metal, i.e., hydrogen overvoltage of the loaded metal.

TiO₂ powder loaded with Cu showed higher NH₃ yield and selectivity as well as higher

efficiency of OA consumption. TiO₂ with in situ-deposited Cu gave results comparable to

those of a Cu pre-loaded photocatalyst.

Keywords: titanium oxide, photocatalyst, nitrate reduction, ammonia

1. Introduction

Nitrate (NO₃-) is a final product of nitrogen atom oxidation and is one of the most

However, NO₃ is toxic in humans, and the recent important components of fertilizer.

1/9

gradual increase in the concentration of NO₃⁻ in ground water mainly due to agricultural effluents has became a serious problem. The World Health Organization has recommended a maximum NO₃⁻ concentration of 45 mg-nitrogen dm⁻³ in drinking water [1].

Photocatalytic reduction (or decomposition) of NO₃ has been extensively studied by many researchers [2-7]. It has been found that titanium(IV) oxide (TiO₂) itself has no or almost no photocatalytic activity and that loading of metal is necessary for the photocatalytic reduction of NO₃. Recently, Li and Wasgestian [6] reported that oxalic acid (OA), added to a suspension of bare TiO₂ containing NO₃, acts as a hole (h⁺) scavenger and accelerates photocatalytic reduction of NO₃ into ammonia (NH₃) or ammonium ion (NH₄⁺). They have shown that the reaction proceeds according to the following equation [6]:

$$NO_3^- + 4C_2O_4^{2-} + 10H^+ = NH_4^+ + 8CO_2 + 3H_2O.$$
 (1)

Oxalate anion is oxidized by two holes (h^+) to produce a twice molar amount of carbon dioxide (CO_2), whereas NO_3^- is reduced by eight photogenerated electrons (e^-) to form NH_3 . Totally, an NO_3^- ion reacts with four oxalate anions to yield NH_3 and eight CO_2 molecules. Jentoft et al. [7] examined photocatalytic reduction of NO_3^- in the presence of humic acid as a hole scavenger. They reported that spontaneous reduction into nitrite (NO_2^-) of higher toxicity also occurs and that an effective catalytic system is required to reduce the NO_2^- production.

We examined the effect of metal loading onto TiO₂ on the photocatalytic reduction of NO₃⁻ into NH₃ in the presence of OA, and we briefly show here that the loading of copper or silver remarkably increased the activity and the selectivity for the NO₃⁻ reduction into NH₃ and, at the same time, the efficiency of OA consumption for NO₃⁻ reduction.

2. Experiment

Degussa P-25 TiO₂ was used in most of the experiments because it is known to be one of

the most active photocatalysts. In the last part of the experiments, another TiO₂, HyCOM TiO₂, was also used to investigate the correlation between the physical properties and photocatalytic activity of TiO₂ in this reaction system. The HyCOM TiO₂ powder was synthesized by hydrothermal crystallization in organic media as reported previously [8, 9]. Loading of metals onto TiO₂ particles was performed by impregnation of adequate starting materials (mainly metal nitrates) onto TiO₂, drying, and hydrogen (H₂) reduction at 773 K. The bare or metal-loaded TiO₂ powder (50 mg) was suspended in a solution (5 cm³) containing nitric acid (50 µmol) and oxalic acid (200 µmol) in a test tube. The tube was sealed with a rubber septum and then photoirradiated at a wavelength of >300 nm by a high-pressure mercury arc (400 W) under argon with magnetic stirring at 298 K. Concentrations of NO₃, NO₂, NH₃ (in the form of NH₄⁺) and total organic carbon (TOC) in the liquid phase were determined with a TOA Electronics LASA-20 spectrophotometer using kits specified for measurement of each component. The amounts of CO₂ and H₂ in the gas phase were measured using a Shimadzu GC-8A gas chromatograph equipped with Porapak QS and MS-5A columns, respectively.

3. Results and Discussion

In the presence of OA, NO_3^- was reduced into NH_3 , together with H_2 liberation, as reported previously [6], while the NO_3^- reduction was negligible in the absence of OA. Table 1 summarizes the results. Since e^- can be used for the reduction of NO_3^- and proton (H^+) , selectivity of the reduction of NO_3^- into NH_3 was calculated as $100 \times 8NH_3/(8NH_3 + 2H_2)$ and is also listed in table 1. In the case of bare TiO_2 , formation of NO_2^- was negligible and the NH_3 yield $(2.1 \ \mu mol)$ was much smaller than that of reacted NO_3^- (4.9 μmol), suggesting that another intermediate species was produced. The yield of CO_2 (45 μmol) was ca. 3-times larger than that expected from the NH_3 yield $(16.8 \ \mu mol = 2.1 \times 8)$. As a result, OA efficiency, the proportion of OA consumed for the NH_3 production $(100 \times 8NH_3/CO_2)$, was low (37.3%). However, the high NH_3 selectivity (97.6%) indicated that

most of e^- was used for reduction of NO_3^- rather than H^+ on the bare TiO_2 surface in the presence of OA.

Loading of platinum or palladium on TiO₂ particles decreased the NH₃ yield a little but increased the H₂ yield, showing that photocatalytic decomposition (dehydrogenatin) of OA [14, 15] (equation 2) was accelerated.

$$H_2C_2O_4 = 2CO_2 + H_2.$$
 (2)

The promotive effect of loading of noble metals on H₂ liberation from aqueous alcohol solutions has been observed in previous studies and has been attributed to the efficient reduction of H⁺ by e⁻ on the metal surface [10-13]. The same mechanism accounts for the results observed in the present system. A high H₂ yield was also observed in the case of ruthenium(IV) oxide-TiO₂. When nickel or gold was loaded on TiO₂, a relatively high NH₃ yield was obtained, though a large amount of H₂ was also liberated and the NH₃ selectivity was still low. On the other hand, TiO₂ loaded with copper (Cu) or silver gave a higher NH₃ yield (23.2 and 20.3 µmol-NH₃ by 3-h irradiation) and suppressed H₂ formation (2.7 and 3.2 µmol), leading to higher NH₃ selectivity (97.2 and 96.2%). Cu-TiO₂ showed the highest OA efficiency (84.1%) among the metal-loaded photocatalysts, i.e., Cu-TiO₂ drives the photocatalytic reaction of eq. 1 selectively and efficiently. This was also the case for the reaction operated under neutral conditions (table 1).

These metals loaded on TiO₂ particles seem to act as reduction sites. Since equal numbers of e⁻ and h⁺ must be consumed in the photocatalytic systems, the acceleration of reduction with e⁻ at the metal surface enhances the overall reaction as observed by the CO₂ liberation. Except for cobalt, the loaded metal showed this enhancing effect in the same order of magnitude. On the other hand, the selectivity of the reaction product depended strongly on the kind of loaded metal. Comparison of the NH₃ selectivity with hydrogen overvoltage (HOV, table 1) of electrodes composed of each metal suggested that higher HOV

is, the more difficult it is to reduce H⁺ by e⁻, in other words, the more efficiently e⁻ reduces NO₃⁻ to give higher NH₃ selectivity and OA efficiency. Other metals having high HOV such as lead (0.67 V), tin (0.85 V) and zinc (0.72 V), however, exhibited no activity. These metals are unstable (or dissolved) in solution of nitric acid or NH₃ and might not act as reduction sites.

The process of meal loading onto TiO₂ particles includes impregnation of a starting salt, drying, and reduction by H₂, and the process is time-consuming and requires careful control of the preparation conditions. A physical mixture of fine metal particles and TiO₂ particles needs a much larger amount of metal compared with the above deposition-reduction process. To avoid a tedious loading process and to reduce the amount of loaded metals, copper(II) sulfate (3.9 µmol, corresponding to 0.5 wt% Cu metal) solution was injected into a suspension of bare TiO₂ containing NO₃⁻ (50 μmol) and OA (200 μmol), and then the suspension was photoirradiated under the same conditions to induce the photocatalytic deposition of Cu As figure 1 shows, NO₃ and NH₃ decreased and increased linearly, respectively, [16-18]. The amount of unreacted Cu²⁺ in the liquid phase decreased with with irradiation time. time, and most of the Cu²⁺ (99.0%) was removed after 6 h. This clearly shows that Cu²⁺ in the starting suspension was reduced by e to form copper metal on TiO₂ particles and acted as a reduction site for NO₃.

We have shown that TiO_2 of a large surface area and high crystallinity can be synthesized by hydrothermal crystallization in organic media (HyCOM) [8, 9] and exhibited activity ca. twice higher than that of P-25 for photocatalytic reactions under both deaerated and aerated conditions [19-22]. Physical properties of HyCOM TiO_2 can be controlled in a wide range by changing synthesis conditions and post-calcination temperature, and the post-calcination had various effects depending on the type of reaction [20]. HyCOM samples were synthesized, calcined at various temperatures, and used in this reaction. The preparation conditions, BET surface area (S_{BET}), and crystallite size of these HyCOM samples (not metal-loaded) are summarized in table 2. With elevation in calcination temperature, S_{BET}

of TiO₂ gradually decreased, while the crystallite size increased; i.e., crystallinity of TiO₂ was improved. Dependence of NH₃ yield on S_{BET} is shown in figure 2. HyCOM TiO₂'s except the rutile sample of small S_{BET} (HyCOM-D) showed much higher NH₃ yields than that by P-25. The superior activity of HyCOM TiO₂ could also be seen for H₂ formation [19], oxygen evolution [19, 20] or mineralization of acetic acid [22]. Among HyCOM TiO₂'s, the NH₃ yield increased with S_{BET} , but samples having $S_{BET} > 95$ m²g⁻¹ showed smaller yields. These results suggested that both crystallinity and surface area affect the activity; i.e., the former determines the probability of recombination of e⁻-h⁺ and the latter controls the amount of substrate(s) adsorbed on the TiO₂ particles. Since the adsorption of OA on TiO₂ was reported to be much stronger than that of NO₃⁻ [6], the adsorption of OA is predominant in the latter factor.

Acknowledgment

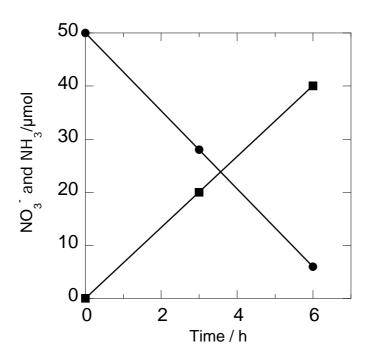
This work was partly supported by grants-in-aid from the Ministry of Education, Science, Sports, and Culture of Japan (09750861, 09218202 and 09044114). The author (H.K.) is grateful to Kinki Invention Center for financial support.

References

- World Health Organization, International Standards for Drinking Water, 3rd ed., Geneva, 1971, p. 36.
- A. Kudo, K. Domen, K. Maruya and T. Ohnishi, Chem. Lett. (1987) 1019.
- 3 B. Ohtani, M. Kakimoto, H. Miyadzu, S.-i. Nishimoto and T. Kagiya, J. Phys Chem. 92 (1988) 5773.
- 4 A. Kudo, K. Domen, K. Maruya and T. Ohnishi, J. Catal. 135 (1992) 300.
- 5 K. T. Ranjit, T. K. Varadarajan and B. Viswanathan, J. Photochem. Photobio. A 89 (1995) 67.
- 6 Y. Li and F. Wasgestian, J. Photochem. Photobio. A 112 (1998) 255.
- 7 B. Bems, F. C. Jentoft and R. Schlogl, Appl. Catal. B 20 (1999) 155.
- 8 H. Kominami, Y. Takada, H. Yamagiwa, Y. Kera, M. Inoue and T. Inui J. Mater. Sci. Lett. 15 (1996) 197.
- 9 H. Kominami, M. Kohno, Y. Takada, M. Inoue, T. Inui and Y. Kera, Ind. Eng. Chem. Res. 38 (1999) 3925.
- S.-i. Nishimoto, B. Ohtani and T. Kagiya, J. Chem. Soc., Faraday Trans. 1, 81 (1985) 2467.
- 11 K. Domen, S. Naito, T. Ohnishi and K. Tamaru, Chem. Lett. (1982) 555.
- S. Teranishi, J. Nakamichi, K. Kaya and K. Tanaka, Bull. Chem. Soc. Jpn., 55 (1982) 1688.
- S. Tabata, H. Nishida, Y. Masaki and K. Tabata, Catal. Lett. 34 (1995) 245.
- J.-M. Herrmann, M.-N. Mozzanega and P. Pichat, J. Photochem., 22 (1983) 333.
- 15 A. Malinka and G. L. Kamalov, React. Kinet. Catal. Lett., 52 (1994) 13.
- 16 S. Wrighton, P. T. Wolczanski and A. B. Ellis, J. Solid. State Chem., 22 (1977) 17.
- 17 Reiche, W. W. Dunn and A. J. Bard, J. Phys. Chem., 83 (1979) 2248.
- 18 S. Foster, R. D. Noble, C. A. Koval, Environ. Sci. Technol., 27 (1993) 350.
- 19 H. Kominami, T. Matsuura, K. Iwai, B. Ohiani, S.-i. Nishimoto and Y. Kera Chem.

Lett. (1995) 693.

- H. Kominami, S.-y. Murakami, Y. Kera and B. Ohtani, Catal. Lett. 56 (1998) 125.
- 21 B. Ohtani, K. Iwai, H. Kominami, T. Matsuura, Y. Kera and S.-i., Nishimoto, Chem. Phys. Lett. 242 (1995) 315.
- H. Kominami, J.-i. Kato, M. Kohno, Y. Kera and B. Ohtani, Chem. Lett. (1996) 1051.
- 23 R. Ruetschi and P. Delahey, J. Chem. Phys. 23 (1955) 195.
- 24 B. E. Conway and J. O'M. Bockris, J. Chem. Phys. 26 (1957) 532.
- 25 H. Kita, J. Electrochem. Soc. 113 (1966) 1095.


Footnote

*To whom correspondence should be addressed.

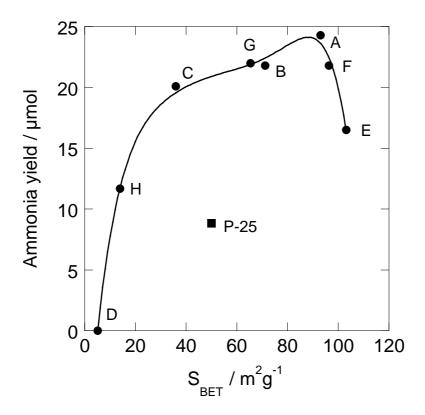

Figure captions

Figure 1. Time courses of changes in concentrations of NO_3^- (circles) and NH_3 (squares) in a photoirradiated (> 300 nm) aqueous suspension (5 cm³) of P-25 TiO₂ (50 mg) in the presence of oxalic acid (200 μ mol) and copper sulfate (3.9 μ mol).

Figure 2. Dependence of NH_3 yield on S_{BET} of HyCOM TiO_2 . The reaction conditions were the same as those described in the legend to figure 1. Irradiation was performed for 1.5 h.

Kominami et al., Fig. 1

Kominami et al., Fig. 2

Table 1 Photocatalytic reduction of nitrate in an aqueous suspension of metal-loaded P-25 TiO_2 in the presence of oxalic acid (200 μ mol; corresponding to 400 μ mol of TOC).

metal loaded	wt%	time /h	NO_3^{-a} / μ mol	NO_2^- / μ mol	NH ₃ /μmol	TOC /μmol	CO_2 / μ mol	H_2 / μ mol	NH ₃ se- lectivity ^b /%	OA efficiency ^c /%	Hydrogen overvoltage ^d /V
		3	4.9	0.03	2.1	374	45	0.2	98	37	
Pt	0.5	3	3.2	0.04	<1	75	281	205	pprox 0	pprox 0	0.01-0.09
Pd	0.5	3	1.3	0.04	<1	67	315	209	pprox 0	pprox 0	0.04
Ni	1.0	6	10	0.03	10	ND^f	260	169	21	34	0.29
Au	0.5	6	22	0.03	11	ND	260	151	22	35	0.18
Ag	0.5	3	43	ND	23	88	297	2.7	97	63	0.30
Cu	0.5	3	22	0.04	20	220	193	3.2	96	84	0.43
Cu ^e	0.5	3	21	0.03	18	233	168	0.6	99	86	0.43
Co	0.5	3	2.2	< 0.02	<1	352	52	1.8	pprox 0	pprox 0	
(RuO_2)	2.0	6	8.6	0.03	2.9	ND	255	212	5.2	9.1	

^aNitrate reacted (initial amount: 50 μmol).

^bCalculated from the equation, $100 \times 8NH_3 / (8NH_3 + 2H_2)$.

 $[^]cOxalic$ acid efficiency calculated from the equation, $100\times8NH_3$ / $CO_2.$

^dRef. [23-25]

^eSodium nitrate (50 µmol) was used in place of nitric acid.

^fNot determined.

Table 2 Bare HyCOM TiO₂ samples

HyCOM TiO ₂	water ^a / cm ³		TiO ₂ phase ^c	d ₁₀₁ ^d / nm	S_{BET}^{e} / m^2g^{-1}
A	10		A	13	93
В	10	823	A	16	71
C	10	973	A	23	36
D	10	1173	A,R	55	5
E	25		A	12	103
F	25	823	A	14	96
G	25	973	A	21	65
Н	25	1173	A	38	18

^aThe amount of water used for synthesis of HyCOM TiO₂ at 573 K.

^bAs-synthesized TiO₂ was calcined at T_{cal} for 1 h.

^cA: anatase, R: rutile

^dCrystallite size calculated from the 101 diffraction peak of anatase.

^ePET surface error

^eBET surface area.