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Kinetic Boundary Condition at a Vapor-Liquid Interface
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(Received 4 December 2004; published 19 August 2005)

By molecular dynamics simulations, the boundary condition for the Boltzmann equation at a vapor-
liquid interface is found to be the product of three one-dimensional Maxwellian distributions for the three
velocity components of vapor molecules and a factor including a well-defined condensation coefficient.
The Maxwellian distribution for the velocity component normal to the interface is characterized by the
liquid temperature, as in a conventional model boundary condition, while those for the tangential
components are prescribed by a different temperature, which is a linear function of energy flux across
the interface. The condensation coefficient is found to be constant and equal to the evaporation coefficient
determined by the liquid temperature only.

DOI: 10.1103/PhysRevLett.95.084504 PACS numbers: 51.10.+y, 47.45.2n

In fluid dynamics and kinetic theory of gases, the bound-
ary condition is of great importance because it has rele-
vance to the drag and lift exerted on the body and heat and
mass transfers across the boundary. While the governing
equations (the Navier-Stokes equations in fluid dynamics
and the Boltzmann equation in kinetic theory) can be
derived from macroscopic or microscopic conservation
laws, the derivation of boundary condition sometimes re-
quires further detailed information of molecular phe-
nomena at the boundary. Molecular dynamics (MD) can
serve this purpose. In fact, recent studies on the slip con-
ditions at fluid-solid boundaries have made significant
progress using MD simulations [1–4].

In this Letter, using MD simulations, we present a new
kinetic boundary condition (KBC) for the Boltzmann equa-
tion at the interface between argon vapor and its condensed
phase. Since the KBC at the interface is associated with the
mass flux across the interface (evaporation or condensa-
tion), it has crucial relevance to the behavior of the gas as
compared with the KBC at a gas-solid boundary, across
which there is no mass flux. The physically correct form of
the KBC at the interface has been unknown and the only
model available and believed reliable is (at an interface at
rest) [5,6]

fout � ���v � �1� ���w�f̂
��T‘� �	z > 0�; (1)

�w � �

���������
2

RT‘

s Z
	z<0

	zfcolld�; (2)

where fout is the velocity distribution function of mole-
cules leaving the interface, �vf̂

��T‘� � �v exp���	2x �
	2y � 	2z�=�2RT‘��=��2
RT‘�3=2� is the equilibrium distri-
bution (Maxwellian) with the saturated vapor density �v at
the temperature of the condensed phase T‘, fcoll is the
distribution of molecules incident on the interface, 	x
and 	y are the molecular velocity components tangential
to the interface, 	z is the normal component, R is the gas
constant per unit mass, and � is a parameter between zero
and unity. The simpleness of conventional model (1) with

(2) is suitable for analytical studies and a number of prob-
lems have been solved with this model (see Refs. [5,6] and
references therein).

However, Eq. (1) assumes, without verification, that fout

is in proportion to f̂��T‘�. On this assumption, the lack of
necessary information of phenomena at the interface is
augmented by the introduction of parameter �; the mass
flux across the interface is then given as ���v � �w�	���������������������
RT‘=�2
�

p
. Historically, � has been called the condensa-

tion coefficient and its value, e.g., for water, has excited
much controversy (see, for example, Ref. [7]). Unless the
validity of Eq. (1) is proven, however, such controversy
may be unfruitful. Although some authors recently ad-
dressed the KBC at the interface with MD methods [8–
11], they could not reach the physically correct KBC owing
to their ambiguous definitions of the evaporation and re-
flection of molecules, as criticized in Refs. [12,13].

In the kinetic theory, the velocity distribution fout should
be a function of the temperature at the interface T‘ and the
velocity distribution of molecules incident on it fcoll, in
addition to the molecular velocity �, i.e., fout �
fout��; T‘; fcoll�. We therefore investigate fout��; T‘; fcoll�
for various fcoll and a specified T‘ � 85 K (near the triple-
point of argon) in nonequilibrium steady MD simulations
for argon vapor-liquid two-phase system, thereby con-
structing the physically correct form of KBC at the inter-
face for argon. This may be regarded as an extension of our
previous studies of vacuum evaporation simulation
[12,13], where we have examined fout��; T‘; 0�, since
fcoll � 0 when the liquid phase is in contact with vacuum.

The phenomenon considered is the one-dimensional
steady evaporation or condensation flow in the macro-
scopic sense. The MD computations are executed in the
following way: a rectangular simulation cell with dimen-
sions Lx 	 Ly 	 Lz is used, the lateral dimensions of
which are Lx � Ly � 50 �A, and the initial Lz is 88.3 Å,
which is changed as explained later. The cell is initially
filled with N � 2000 argon molecules in a vapor-liquid
equilibrium state at 85 K. The liquid phase forms a planar
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liquid layer, parallel to the xy plane, with thickness 38.2 Å
at the center of the cell. The 12-6 Lennard-Jones potential
��rij� � 4����=rij�12 � ��=rij�6� is applied for the inter-
molecular potential of argon molecules, where � �

3:405 �A, �=k � 119:8 K (k is the Boltzmann constant),
and rij is the intermolecular separation. Newton’s equa-
tions of motion for N molecules are integrated numerically
using the leapfrog algorithm with a time step 1 fs. The
periodic boundary condition is imposed at the cell faces in
the 
x and 
y directions, while the boundary condition at
the cell faces in the 
z directions and the cell length Lz are
treated specially (see below).

For the boundary condition at the cell faces in the 
z
direction (hereafter referred to as top and bottom faces,
respectively), we utilize an algorithm widely used in the
direct simulation Monte_Carlo method [14]. That is, we
give the positions and velocities of molecules incoming to
the interface across the top or bottom face probabilistically
with the uniform random number Rn (0 � Rn � 1), and
eliminate the molecules outgoing across these boundaries.
The position of the ith molecule coming into the cell is
determined as �xi; yi� � �LxR1; LyR2� in the top or bottom
face. To avoid unphysical overlap of intermolecular poten-
tials, the position �xi; yi� is rejected if rij < � for some jth
molecule, and the random numbers are regenerated until
rij > � is satisfied for any other jth molecules. The veloc-
ities of molecules incoming to the interface are given
according to the direct method [14], on the basis of a
specified distribution function fcoll, for which we assume
the Maxwell type distribution function,

fcoll �
��v

�2
R�T‘�3=2
exp

�
�
	2x � 	2y � 	2z

2R�T‘

�
; (3)

for 	z < 0 on the top face and for 	z > 0 on the bottom
one. Here, � and � are parameters that represent the
deviation from the equilibrium state. The equilibrium state
corresponds to � � � � 1, and the vacuum evaporation
state [12] is realized when � � 0. We present the results of
numerical simulations for 16 different sets of � � 1; 2; 3; 4
and � � 1; 2; 3; 4. Except for the case of � � � � 1, the
net condensation occurs since the temperature and pressure
in the vapor phase become high compared with those in the
equilibrium state. Note that the compression factor
p=��RT� is confirmed to be nearly unity in all cases, and
hence the vapor can be regarded as an ideal gas. In a high
temperature case, e.g., T‘ � 100 K for argon, the ideal-gas
approximation becomes inaccurate, and the vapor may not
be considered as in the Grad-Boltzmann limit [5,6].

From now, we focus on the dynamics of molecules in the
upper half region in the cell because the vapor-liquid
system is symmetric with respect to the center of the liquid
layer in the macroscopic sense. When the net condensation
occurs, the thickness of the liquid layer increases with time
and the interface moves towards the vapor phase. We there-
fore introduce the moving coordinate system, as in the pre-
vious study [12], z� � �z� �Zm � vst��=%, vs � Js=�‘,

where Zm and % are, respectively, the center position and
the 10–90 thickness of the transition layer (6.3 Å), which
have already been obtained in the equilibrium simulation
[12], vs is the speed of the moving coordinate, t is the time
from the beginning of the simulation, �‘ is the density in
the liquid phase, and Js is the nonaveraged net mass flux
across the top face. To realize a steady condensation state,
the distance between the top face and Zm should be un-
changed during the simulation. The cell length Lz is there-
fore changed so as to keep the distance. The liquid layer is
thermostatted at T‘ with the velocity scaling method [15].
After a steady state is established, samples are accumulated
throughout the simulation time of several tens of nano-
seconds, and statistical averages are calculated on the z�

coordinate from tens of millions of samples.
Figure 1 shows the profiles of averaged density, velocity,

and temperature on the z� coordinate in the steady states. In
the case of � � � � 1, the vapor-liquid equilibrium is
realized, i.e., � � �v, v � 0, and T � T‘. For � � � �
2 and 4, the vapors have higher densities than �v and
negative velocities, which means net condensation states.
What is important in Fig. 1 is that the profiles of aver-
aged density, velocity, and temperature are almost flat
in the range 2< z� < 4 of width 2%, in spite the fact that
the vapor is not in a local equilibrium state. This suggests
that the molecular collisions rarely happen there. In fact,
the Knudsen numbers estimated by Kn � ‘=�2%� �
1=�

���
2

p

�2��=m�2%� are large (‘ is the mean free path of

the vapor molecules, m is the mass of argon molecule):
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FIG. 1. Density, velocity, and temperature distributions for
some cases of ��;��. The dashed line in (a) denotes the saturated
vapor density �v for T‘ � 85 K: �v � 4:59	 10�3 g=cm3.
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Kn � 20:9, 13.5, and 7.3 for � � � � 1, 2, and 4, respec-
tively. Since the thickness of transition layer % is regarded
as zero in the kinetic theory and the change in the vapor
condition in the range 2< z� < 4 is negligible, the kinetic
interface may be located at an arbitrary position in this
range. We therefore evaluate fout by sampling the molecu-
lar velocity in 2< z� < 4.

To determine fout as a function of �, it is useful to ex-
amine a normalized function f̂out � fout=�

R
	z>0 f

outd��.

After the functional form of f̂out is obtained, we elucidateR
	z>0 f

outd�, and thus the construction of fout is com-

pleted. In Fig. 2, we plot the marginal distributions, f̂z �R
	y

R
	x
f̂outd	xd	y and f̂x �

R
	z>0

R
	y
f̂outd	yd	z, where

f̂x � f̂y due to the symmetry. Note that the marginal dis-
tributions are obtained not by integrating f̂out, which is
unknown at this stage, but by sampling the molecular ve-
locity in MD simulations. As shown in Figs. 2(a)–2(d), the
distribution of velocity component normal to the interface
is uniquely determined as the half-Maxwellian distribution
with temperature T‘,

�����������
2RT‘

p
f̂z��2=

����



p
�exp��'2z �, for

various fcoll, where 'i � 	i=
�����������
2RT‘

p
�i � x; y; z�. On the

other hand, the distributions of tangential component
shown in Figs. 2(e)–2(h) vary with fcoll, retaining the
functional form of one-dimensional normalized
Maxwellian distribution with temperature Tt,

�����������
2RT‘

p
f̂x ��������������������

T‘=�Tt
�
p

exp��'2xT‘=Tt�. In the figures, Tt � �1=R�	R
	z>0 	

2
xf̂

outd� is calculated in the MD simulation.

Figures 2(e)–2(h) also show that Tt becomes higher and
higher as � and � increase.

Figure 3 shows that Tt is a linear function of hEcolli �
hEcollie, where hEcolli �

R
	z<0��	

2
x � 	2y � 	2z�=2�	zfcolld�

is the energy flux of vapor molecules incoming across

the interface and hEcollie �
R
	z<0��	

2
x � 	2y � 	2z�=2� 	

	z�vf̂
��T‘�d� � �v

�����������������������
2�RT‘�

3=

p

is its counterpart in the
equilibrium state. As can be seen, Tt is equal to T‘ in the
equilibrium state and increases with increase in hEcolli. The
result of vacuum simulation [12] is indicated by an open
circle near the equilibrium, and hence we predict that all
the evaporation states may be included in the present result
consistently. We have also examined the relations between
Tt and the mass and momentum fluxes of incoming vapor
molecules, and evidenced that there are no definite rela-
tions between them.

The joint distribution f̂out is the product of the marginal
distributions when 	x, 	y, and 	z are the independent
random variables. As a check of a necessary condition
for the statistical independence, we have confirmed that
the correlation matrix is nearly diagonal, and therefore f̂out

may be expressed as f̂out � f̂xf̂yf̂z. Since the functional
form of each marginal distribution is found to be the
Maxwellian distribution with Tt or the half-Maxwellian
distribution with T‘ as shown in Fig. 2, we have

fout �
�out

�2
R�3=2T‘
�����
T‘

p exp
�
�
	2x � 	2y
2RTt

�
	2z

2RT‘

�
; (4)

for 	z > 0, where �out � 2
R
	z>0 f

outd� (the factor 2

comes from f̂z).
The KBC should give the relation between fout and fcoll.

We have already demonstrated in Fig. 3 that Tt in Eq. (4) is
the linear function of the incoming energy flux.
Accordingly, the final stage of the construction of the
KBC at the interface is to connect the factor �out in
Eq. (4) to fcoll. As shown in the following, �out is affected
by fcoll only through the incoming mass flux, hJcolli �
�
R
	z<0 	zf

colld�. To prove this, we split fout into two

FIG. 2. Marginal distributions of vapor molecules outgoing
from the interface, where 'i � 	i=

�����������
2RT‘

p
�i � x; z�. The thin

solid curves in (a)–(d) denote a one-dimensional normalized
half-Maxwellian distribution with T‘ �� 85 K�: �2=

����



p
�	

exp��'2z � �'z > 0�, and those in (e)–(h) a one-dimensional nor-
malized Maxwellian distribution with T‘: �1=

����



p
� exp��'2x �.

The bold solid curves in (e)–(h) are one-dimensional normalized
Maxwellian distributions with different temperatures Tt:�������������������
T‘=�Tt
�

p
exp��'2x T‘=Tt�.

FIG. 3. The reduced temperature T̂t � Tt=T‘ as a function of
the energy flux of incoming molecules across the interface. The
open circle denotes the result of vacuum simulation [12].
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parts, i.e., fout�T‘; f
coll� � fout�T‘; 0� � �fout�T‘; f

coll� �
fout�T‘; 0��. The first term is independent of fcoll and is
called the spontaneous evaporation [12]. All the effects of
fcoll are confined into the second term, and hence it may be
called the reflection. This is the only splitting that discrim-
inates the evaporation from the reflection without ambigu-
ity [12]. The previous authors [8–11] tried to classify
individual outgoing molecules as either evaporated or re-
flected one with artificial criterions. However, the complete
classification of individual molecules may be impossible,
because the reflected molecules in many cases condense
into the inside of the interface before being reemitted.

According to the above splitting, the outgoing mass flux
hJouti �

R
	z>0 	zf

outd� can also be split into hJouti �
hJevapi � hJrefi, where hJevapi �

R
	z>0 	zf

out�T‘; 0�d� and
hJrefi �

R
	z>0 	z�f

out�T‘; fcoll� � fout�T‘; 0��d�. From the
balance of the mass fluxes across the interface, the differ-
ence between the incoming mass flux hJcolli and the reflec-
tion mass flux hJrefi should condense onto the interface. We
can therefore define the condensation mass flux as
hJcndsi � hJcolli � hJrefi. These relations enable us to re-
write hJouti into hJouti � hJevapi � hJcolli�1� hJcndsi=

hJcolli�. Furthermore, since Eq. (4) yields hJouti �
�out

���������������������
RT‘=�2
�

p
, we can eliminate hJouti to give

�out �
hJevapi���������������������
RT‘=�2
�

p �

�
1�

hJcndsi
hJcolli

�
hJcolli���������������������
RT‘=�2
�

p : (5)

This naturally leads to the introduction of the evaporation
coefficient �e and the condensation coefficient �c defined
as [12],

�e �
hJevapi

�v
���������������������
RT‘=�2
�

p ; �c �
hJcndsi
hJcolli

; (6)

and by using Eq. (2), we obtain �out � �e�v � �1�
�c��w. In Ref. [12], we have studied hJevapi and �e by
the vacuum evaporation simulation for argon, and demon-
strated that �e is a function of the temperature in the
condensed phase alone.

The condensation coefficient �c evaluated with the use
of hJcndsi � hJcolli � �hJouti � hJevapi� is plotted in Fig. 4,

which clearly shows that �c is almost equal to �e � 0:868
at T‘ � 85 K [12]. We emphasize that if �c is a constant, it
must be equal to �e. Consequently, from Eqs. (4)–(6), the
physically correct KBC at the interface is determined as

fout �
���v � �1� ���w�

�2
R�3=2Tt
�����
T‘

p exp
�
�
	2x � 	2y
2RTt

�
	2z

2RT‘

�
;

(7)

for 	z > 0, where we have used the result in Fig. 4, i.e.,
� � �e � �c. It is obvious that conventional model (1)
with (2) is recovered in the limit of the equilibrium state,
i.e., Tt � T‘.

In summary, using steady nonequilibrium MD simula-
tions of vapor-liquid two-phase system of argon, we con-
struct the physically correct KBC at the vapor-liquid
interface in the form of Eq. (7). The new KBC is similar
to the conventional model in the sense that fout is the
product of one-dimensional Maxwellian distributions.
However, it does not contain any arbitrary parameters: �
should be the evaporation coefficient defined in Eq. (6),
and Tt is the linear function of hEcolli as verified in Fig. 3. In
particular, Fig. 4 will bring the long lasting controversy
over � to an end.
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