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    Continuous 222Rn monitoring in soil gas since November 22, 2004 has revealed variability in 

activity concentration with time in the semi-natural woods on the campus of Hokkaido University in 

Sapporo, Japan.  Among various factors affecting soil radon levels and variability, temperature was 

found to be dominant during three seasons when activity concentrations of 222Rn showed a diurnal 

high and nocturnal low with a boundary around 10 o’clock in the morning.  This pattern was 

disturbed by low pressure fronts with occasional rain.  The activity gradually decreased as soil 

temperatures decreased from late November to mid-December.  After the ground surface was 

completely covered with snow, soil radon levels became low with a small fluctuation.  There were 

several peaks of 222Rn on the time-series chart in winter.  Those peaks appearing in early winter and 

early spring may be interpreted by considering meteorological parameters.  In a few cases, the radon 

activity suddenly increased with increasing pressure in the soil at a depth of 10cm, which may be 

associated with subsurface events such as seismic activity in the area. 
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Introduction 

   

There are many factors affecting radon activity concentration in soil gas, and meteorological 

parameters such as temperature, pressure and precipitation are known to be important contributions.  
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Seasonal variation of soil radon has been discussed with controversial observations.  Winkler et al 

(2001) compared the variability resulting from different methods, spatial heterogeneity and seasonal 

fluctuations at a test site located at Neuherberg in Germany.  Among several notable results, they 

observed a winter-high in radon levels due to frozen top soil.  An extreme case was reported by 

Sundal et al (2004) who measured soil radon together with geochemical analyses of bedrock, 

groundwater and sediment at an ice-marginal deposit in Western Norway.  They ascribed 

anomalously high seasonal changes in soil (and also indoor) radon concentration to subterranean 

airflows caused by temperature differences between soil air and atmospheric air.  Iskandar et al 

(2004) investigated the dependence of radon emanation power on soil temperature using radium rich 

soil samples collected in Japan.  They obtained a temperature-dependent equation to calculate 

emanation power at various temperatures from -20°C to 45°C.  Over more than one year, Kitto 

(2005) measured radon flux from soil, along with meteorological and indoor radon measurements, 

finding that radon flux from soil has a slight seasonal pattern with the greatest exhalation occurring 

during the late summer months due to the lower moisture content and cracks in the clay soil in 

summer.  The measured flux ranged from 0 to 140 mBq/m2s with a mean of 37 ± 22 mBq/m2s.  The 

low flux in winter was caused by a combination of frozen ground and periodic snow melt, whereas 

low flux in spring most likely resulted from increased precipitation.   

Changes in soil radon are thought to be a possible precursor of earthquakes.  Among many 

studies concerning radon and earthquakes, Zmazek et al (2005) reported a statistical technique to 

identify soil radon anomalies caused by earthquakes in Slovenia by monitoring soil radon 

 2



concentration, barometric pressure and soil temperature using a barasol probe (MC-450, ALGADE, 

France), along with other meteorological data like air temperature and precipitation, and also seismic 

data.  Changes in radon concentration that deviated significantly from the mean value were related to 

seismic activity.   

Walia et al (2003) also investigated relationship between radon anomalies and seismic parameters 

in the northwest Himalayas in India.  They compared their results of soil radon monitoring from 

1992 to 1999 with seismic data supplied by the Indian Meteorological Department and developed an 

empirical relationship between earthquake magnitude, epicentral distance and amplitude of radon 

anomaly.  The proposed relationship was a linear relationship between log of the magnitude and log 

of the product of radon anomaly amplitude and epicentral distance. They concluded that there is no 

universal empirical relationship that relates radon data with all earthquakes occurring around the 

world.  They further investigated spatial variations in radon and helium concentrations in soil gas 

across the Shan-Chiao fault in northern Taiwan (Walia et al., 2005).  They confirmed that evaluation 

of both radon and helium was a powerful tool for the detection and mapping of active fault zones. 

In our previous study, soil radon was measured temporally with a scintillation Lucas cell at a site 

on the campus of Hokkaido University, Sapporo, Japan.  Soil radon level was varied to a large extent 

every day even after the probe was permanently emplaced at the point and sampling time was set 

constant as far as possible.  The result together with those by a laboratory experiment suggested that 

the changing air-filled porosity due to changing soil humidity may be an important parameter 

controlling soil radon variability (Fujiyoshi et al., 2005).  The current study has further investigated 
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factors affecting soil radon levels by continuous monitoring with a Barasol probe since November 

2004 at the same location on the campus of Hokkaido University.  The obtained data extends these 

observations to evaluate the influence of meteorological parameters on soil radon levels and 

variability. 

 

Monitoring Site and Methods   

Details of the monitoring site and characteristics of the soil were described previously 

(Fujiyoshi et al., 2005).  A continuous monitoring probe for soil radon (Barasol, Algade, France) was 

buried in the soil at a depth of 10 or 30 cm.  This instrument has a battery powered solid state silicon 

detector and monitors temperature and barometric pressure with a data logger.  It detects 

alpha-particle emissions of radon in soil gas hourly.  The detector sensitivity is 0.02 pulses/h for 1 

Bq/m3 and the saturation volumetric activity is 3 MBq/m3.  Barometric pressure was also measured 

hourly just above the ground surface (KADEC-U21, Kona System, Japan) and the data set was 

collected at the end of each month.  Humidity of the soil at depths of 20 and 50 cm was monitored 

hourly with a probe which could store data obtained for about 6 months (Profile Probe, Delta-T 

Devices Ltd., UK).  Instruments were kept in the snow during the winter months from November 

2004 to late March 2005, and also from December 2005 to March 2006. 

 

 

Results and Discussion 
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 Soil radon has been measured temporally by an active technique utilizing a scintillation Lucas cell 

(Pylon, Canada) at a point in the woods on the Hokkaido University campus since June 2002.  In an 

earlier study, changing air-filled porosity caused by meteorological phenomena was found to affect 

soil radon levels (Fujiyoshi et al., 2005).  During the observation period, there was a sudden increase 

in soil radon, which coincided with a large local earthquake on September 26, 2003 with the epicenter 

located offshore near Tokachi in Hokkaido, Japan.  Because of the perceived link between 

earthquakes and changes in soil radon, the present study was undertaken to obtain detailed data on 

other factors that may contribute to changes in soil radon levels.  The current data was obtained from 

continuous monitoring with a Barasol probe at the same location as the previous study.   

Figure 1 shows time-series plots of soil radon levels together with hourly mean values of soil 

temperature measured at a depth of 10 cm from September 24-30, 2005.  This is representative of 

data obtained at other times.  Soil radon levels have a diurnal high and a nocturnal low.  Such 

variability is strongly associated with atmospheric (and thus soil) temperature as shown in the figure.  

Consequently, there is a good correlation between daily 222Rn concentration and temperature in soil at 

a depth of 10 cm (0.78<r<0.94; Fig. 2).  The data indicates that an increase in soil temperature by 1 

°C may result in an increase in soil radon level as 740 Bq/m3 under similar meteorological conditions 

to those in the observation period of Sep. 24-30 2005. 

However, this correlation is reduced by a low pressure front with occasional rain from October 1 to 

2, 2005 as shown in Fig. 3.  It should be noted that 222Rn activity decreased sharply at 8pm on 

October 2 and the level remained low during the following day.  This may correspond to the drop in 
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temperature monitored at 10cm depth from the ground surface.  The typical daily pattern in soil 

radon levels appeared again on October 4 as seen in Fig. 4, and similar variability in radon 

concentration was observed during most of the year except in winter. 

Figure 5 shows the time-series plots of 222Rn activity concentration and soil temperature from 

November 22 2004 to March 17 2005 and from December 1 2005 to March 2 2006.  The data 

obtained in 2004-2005 winter can be roughly divided into three parts: i) from November 22 to 

December 31 when gradual decreases in soil radon levels were observed with decreasing soil 

temperature; ii) from January 1 to 19 when radon levels and soil temperature were low with little 

fluctuation; and iii) from January 20 to March 17 when 222Rn activity concentration in soil gas was 

low, but with occasional high values during nearly constant soil temperatures (0°C).  The low soil 

radon during winter can be related to the snow on the ground.  The date when Sapporo city was 

completely covered with snow (lingering snow) was December 5, 2004 as reported by the Sapporo 

District Meteorological Observatory (http://www.data.kisyou.go.jp).  From that time, snow depth 

increased to approximately 34cm by the end of the year.  In contrast, soil temperature did not 

correspond to atmospheric temperature which was occasionally lower than -10°C.  The discrepancy 

between temperatures in the soil and atmosphere may contribute to a soil layer of high humidity due 

to melting snow. 

The equilibrium state for a radon-air-water system with respect to the diffusion process is described 

by the temperature-dependent Ostwald coefficient.  The coefficient for radon is 0.5 at 0°C and is 

0.26 at 20°C.  Diffusion of 222Rn gas originating from deeper portions of the soil to the atmosphere is 
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hampered by thick snow cover and is dissolved in the aqueous phase present in the upper portion of 

the soil.  This may contribute to low 222Rn concentration in soil gas during the winter after lingering 

snow at our site.  The influence of water on soil radon concentration was evaluated by Oufni (2003).  

He determined the diffusion coefficient and exhalation rate of radon in Moroccan quaternary samples 

using the SSNTD technique, finding that increasing porosity makes water fill the empty pores and the 

diffusion of radon reduces.  

As shown in Fig. 5, a similar result was obtained during the next winter from December 1, 2005 to 

March 2, 2006 when the probe was set in the soil at a depth of 30cm.  It should be noted that an 

extremely high peak was observed on January 1, 2006.  Inspection of the data shows that relatively 

high values of 222Rn concentration appeared from December 28, which subsequently disappeared by 

January 5.  As shown in Table 1, an earthquake with intensity of 2 occurred in Sapporo on December 

13, 2005.  The epicenter was located offshore near Tokachi in Hokkaido (M = 5.5).   It is not clear 

at this moment if the radon anomalies observed from December 28 to January 5 would directly relate 

to this earthquake.   

Previous studies have shown increasing soil radon concentrations in winter due to the frozen top 

soil (Winkler et al., 2001, Kitto, 2005).  In contrast, the current study demonstrates low soil radon 

concentrations during winter, but the different soil temperatures are likely a major consideration since 

the top soil at our Sapporo site was never frozen, but always wet by melting snow after lingering 

snow.  This also contributes to relatively constant soil temperature (0°C) in the mixture of snow and 

melting water during winter months (Fig. 5). 
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With respect to the soil 222Rn peaks appearing in Fig. 5, some may be explained by considering 

changes in barometric pressure in soil (Ps) which accompanied changes in soil temperature (Ts).  

Figure 6 shows a typical sequence in which 222Rn concentrations increased gradually on January 29 

and decreased on the next day.  During that time, a low pressure front arrived on January 29-30 that 

resulted in a small increase in soil temperature and a corresponding increase in radon level from 500 

to 2500 Bq/m3.    

Similar events were observed in early spring from March 5 to 9, 2005.  As shown in Fig. 7, 

barometric pressure in soil (Ps) began to decrease sharply from midnight of March 7 for about 24hrs, 

and peaked at approximately 10am on March 8.  During this time, soil temperature (Ts) increased 

continuously from 0.1 to 0.6 °C even under a thick snow cover (∼1m), which would affect the radon 

levels as shown in Fig. 8.  It is interesting to note that the soil temperature increased gradually on a 

daily basis, until the typical diurnal and nocturnal changes in temperature appeared again on March 16, 

2005.   

There are additional peaks that should be noted on December 7 and December 23 in 2004 and 

March 18, 2005 in which they were not influenced by soil temperature.  Time-series data on 222Rn 

activity concentrations in the above three cases was plotted together in Fig. 9 (December 7-9 2004, 

December 22-25 2004 and March 18-20 2005).  Soil radon increased considerably from 2000 to 

6000 Bq/m3 from midnight of March 18 until approximately 3 pm the next day, after which it 

decreased sharply to about 2500 Bq/m3 at the end of the day.  For the following whole day the 

concentration decreased slowly to a normal winter level of 500 Bq/m3.  As shown in the figure, a 
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similar pattern was observed from December 22 to 24, 2004 when the soil radon levels began to 

increase around 5am on December 22 and decreased again on the next day to near 1500 Bq/m3.  

These events seemed to correspond with changing barometric pressure as measured at a depth of 

10cm (Fig. 10).   

 With respect to barometric pressure, the difference between atmospheric pressure (Pa) and soil 

pressure (Ps) is plotted on time-series chart of Fig. 11.  It is clear from the figure that Pa-Ps values 

were kept constant (about 15 hPa) with time from March 18 to 20, 2005.  In contrast, they were 

varied to a large extent in two other cases (Dec. 7-9 and Dec. 22-25).  It may be due to a thick snow 

cover (1 m) on the soil surface in March, 2005 compared with that (20-40cm) in December, 2004.  

Figure 12 shows a relationship between 222Rn activity concentration and the difference in 

barometric pressure (Pa-Ps) on two radon anomalies observed on December 7-8 and December 23-24, 

in which only limited time span corresponding to each radon peak showed linearity from 10 am to 8 

pm and from 10 am to 4 pm on December 7 and December 8, respectively.  In any case, good 

correlation (0.80<R<0.97) exists between them.   

Collectively, the data indicate the existence of some internal activity which forced gaseous 

constituents, including radon, out to the upper portion of the soil still covered with snow in winter.  

Seismic activity is a likely candidate for such an out-gassing process.   

According to seismic data reported by Japan Meteorological Agency, there were several 

earthquakes with intensity higher than 1 measured in Sapporo during our observation period of 

2004-2006. Table 1 lists the earthquakes that occurred during our observation period.  Comparing 
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data shown in Table 1 with the radon anomalies observed in this study, the peak on March 18 2004 

may not be regarded as a direct precursor of any of the earthquakes listed in the table, since there was 

no earthquake reported for more than 6 months since January 31, 2005.  However, two other 

anomalies observed on December 7-8 and December 23 may be related either after-effects and/or 

precursory phenomena of the earthquakes that occurred on December 6 and 14, respectively.   

Zmazek et al (2005) compared three techniques to distinguish the anomalies caused by 

environmental parameters from those resulting solely from seismic activity.  They found a 

simulation model (regression tree) to be the most applicable and the model was used to analyze data 

on soil radon measured during the non-seismically active periods.  According to this technique, a 

discrepancy between measured values of radon concentration and values predicted by the model 

indicates a measure of earthquake prediction.     

Another approach for earthquake prediction was reported by Planinic et al (2004).  They measured 

radon concentration in soil gas continuously using the LR-115 nuclear track detectors for analysis 

with seismic activities, barometric pressure, precipitation and air temperature for four years at three 

sites in Croatia.  By investigating linear and exponential multiple regression, they developed an 

algorithm to predict radon concentration as functions of barometric pressure, precipitation and 

atmospheric temperature.    

The present authors could not find a quantitative relationship with which one could quantitatively 

evaluate the influence of meteorological parameters on temporal radon variations.  However, it was 

relatively simple to detect anomalies from time-series radon data in winter when the ground is 
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completely covered with snow, and soil temperature, the most important meteorological parameter 

influencing soil radon variability, is kept constant around 0°C.  Possible anomalies may then be 

found by plotting 222Rn activity concentration against the difference of barometric pressure in the 

atmosphere (Pa) and in soil (Ps).  Additional data is being collected in this study to further elucidate 

quantitative factors controlling soil radon level together with meteorological and seismological data.   

 

Conclusion 

    

 Soil temperature was found to be the most important factor influencing soil radon level and 

variability. The activity concentration was low in winter when the ground surface was covered with 

snow.  Long-term and continuous monitoring of radon in soil gas, together with meteorological and 

seismological data, is important for evaluating relationships with seismic activity.   
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Table 1. Earthquakes with intensity greater than 1 from November 2004 to March 2006*  

 

Date Time Altitude 

(° ‘ N) 

Longitude

(° ‘ E) 

Magnitude Depth 

(km) 

Intensity 

in Sapporo 

Nov. 27 2004 07 42 42 19.5 143 04.8 5.6 51 1 

Nov. 29 2004 03 32 42 56.7 145 16.5 7.1 48 3 

Dec. 06 2004 23 15 42 50.8 145 20.5 6.9 46 2 

Dec. 14 2004 14 56 44 04.6 141 41.9 6.1 9 2 

Jan. 18 2005 23 09 42 52.5 145 00.4 6.4 50 1 

Jan. 31 2005 18 39 41 45.8 143 49.0 5.4 48 1 

Aug. 06 2005 11 46 38 08.9 142 16.6 7.2 42 1 

Nov. 15 2005 06 38 38 01.8 144 53.3 7.1 83 1 

Dec. 13 2005 06 01 43 12.5 139 24.8 5.5 29 2 

* Earthquake data were reported the Japan Meteorological Agency (http://www.data.kisyou.go.jp). 
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Figure Legends 

 

Figure 1  Hourly change in 222Rn activity concentration in soil gas and mean soil temperature 

measured at a depth of 10cm from September 24 to 30, 2005. 

Figure 2  Relationship between 222Rn activity concentration and soil temperature from September 24 

to 30, 2005. 

Figure 3  Time-series plots of 222Rn activity concentration, soil temperature and barometric pressure 

in soil at a depth of 10cm from September 30 to October 3, 2005.  Values of soil 

temperature in the figure were 100 times larger than the original data. 

Figure 4  Hourly change in 222Rn activity concentration in soil gas from October 4 to 7, 2005. 

Figure 5  Monitoring 222Rn activity concentration and soil temperature during winter months from 

November 22, 2004 to March 17, 2005 and from December 1, 2005 to March 2, 2006. 

Figure 6  Time-series plots of 222Rn activity concentration, soil temperature and barometric pressure 

in soil gas at a depth of 10 cm from January 28 to 30, 2005.  Data on soil temperature in 

the figure were 1000 times higher than the original ones.  

Figure 7  Time-series plots of barometric pressure and soil temperature at a depth of 10 cm from 

March 5 to 8, 2005. 

Figure 8  Plots of 222Rn activity concentration in soil gas versus temperature in soil measured at a 

depth of 10 cm from March 5 to 9, 2005. 

Figure 9  Time-series plots of 222Rn activity concentration from December 7-9 2004, December 

22-25, 2004 and from March 18-20, 2005. 

Figure 10  Relationship between 222Rn activity concentration in soil gas and barometric pressure in 

soil measured at a depth of 10 cm on December 7, 8, 23 and 24 in 2004 and March 18 and 

19 in 2005.  Data on December 7 and 8 are plotted only for a limited time span 

corresponding to each radon anomaly for 10am-8pm and for 10am-4pm, respectively.  

Correlation coefficient (R) of each line is shown in the figure.  

Figure 11  Time-series plots of the difference in barometric pressure in the atmosphere (Pa) and in 

soil at a depth of 10cm (Ps) from December 7 to 9, December 22 to 25, 2004 and from 

March 18 to 20, 2005. 
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Figure 12  Relationship between 222Rn activity concentration and pressure difference in the 

atmosphere (Pa) and in soil at a depth of 10 cm (Ps) on December 7 (10am-8pm), December 

8 (10am-4pm), December 23 and 24, 2004.  Correlation coefficient (R) of each line is 

shown in the figure.  
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Time series plots of Rn222 
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