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The mean pressure and density in a strongly nonlinear plane
acoustic wave

Takeru Yano
Department of Engineering Science, Faculty of Engineering, Hokkaido University, Sapporo 060, Japan

(Received 17 November 1995; accepted for publication 2 April 1996

Exact expressions are presented for a time-averaged pressure and density at a fixed point in a
strongly nonlinear plane acoustic wave radiated into an inviscid ideal gas of semi-infinite extent by
a harmonic oscillation of an infinite plate. By making use of the exact solution of simple wave, the
time averages of pressure and density are obtained up to the time of shock formation, in complete
forms involving the hypergeometric functions. €996 Acoustical Society of America.

PACS numbers: 43.25.QMAB]

INTRODUCTION harmonic oscillation of amplituda and angular frequency

. ) ) ..o, and thus the plane acoustic wave is emitted into the gas of
Time averages of pressure and density at a fixed point i miinfinite extentsee Fig. 1

the nonlinear plane progressive waves were examined by the  \y/a shall introduce the nondimensional variables
leading pioneers of nonlinear acoustics.They expanded

the time averages in infinite series in wave amplitude, and = X' _u* _p” _p*
evaluated first several terms in the series. Such truncated (= @U. X= Co u—c—o, p‘%’ pP= YPo'
formulas can only be applied to the case that the nonlinearity 3

is sufficiently weak, i.e., the acoustic Mach numidérde- . . N .

fined as y wherex* is the distance from an initial position of the plate,

u* is thex* component of the fluid velocityp* is the den-
M=ug/cy, (1)  sity of the gas, ang* is the pressurép, and p, are the

. o ) . . initial undisturbed density and pressure, anid the ratio of
is sufficiently small compared with unity, wherg, is the  gpecific heats of ideal gas

maximum speed at the sound source apds the speed of Since the gas is uniform and at rest tsx0, the initial
sound in an undisturbed fluid. _ conditions att=0 are
Recently, the strongly nonlinear propagation process
characterized by the conditions u=0, p=1 p=1lly (x=0). (4)
M=0(1) and Re-1, (2  The boundary conditions on the plate is given by
has been analyzed in Ref. (e is the acoustic Reynolds u=—Msint at x=M(cost—1)  for t=0, (5)

numbef), and as a result, several strongly nonlinear Phe3hereM =aw/c, is the acoustic Mach number. The weakly

nomena have been found, which present striking contrasts {Qonjinear waves and the strongly nonlinear waves are char-

the results of the conventional weakly nonlinear theory.,ierized by the condition#1<1 and M=0(1), respec-
Among the strongly nonlinear phenomena, acoustic streanﬁvely_

ing (mean mass flojdue to the presence of shocks and |y tg the shock formation time, the wave is the simple
resulting decrease in the density of the gas near the sourgg,e8 and the exact solution of simple wave satisfying the
may be deserving special attention, because whether tha,sq and momentum conservation laws, the isentropic rela-

wave motion can reach a steady state or not may strongly &, initial condition(4), and boundary conditiof6) can be
affected by them; this will be discussed in detail in a forth- jptained by the method of characteristiés

coming paper.
Clearly, the truncated formulas of mean values obtained u=—M sin u,

by the pioneers are insufficient for the analysis of the (6)
strongly nonlinear problem. In the following, we shall evalu- t—x=p—M(cosp—1)+ v+l M (t— p)sin u
ate the mean pressure and mean density at a fixed point in 2

complete forms. where u is a parameter indicating the time when a charac-

teristic in the &,t) plane[the second of Eq(6)] is issued
from the plate. Once the function(x,t) has been found
I. EXACT SOLUTION OF SIMPLE WAVE from Eq. (6), we can readily have other quantities as func-

. ) } tions ofx andt:
We shall consider the propagation of nonlinear plane

acoustic waves in an inviscid ideal gas, up to the time of _ 1 14 y—1 \@omv 1+ y—1 |207Y
shock formation. The gas is supposed to be initially uniformP ™~ v 2 r P 2
and at rest. At the tim&* =0, the plate starts executing the @
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II. MEAN PRESSURE AND DENSITY

oscillating plate
g direction of wave propagation

1 » By making use of the exact solution of simple wave
N presented in Sec. |, we shall evaluate the time-averaged pres-
EN sure and density defined as
—aM 3. T 27 3 4z ka*
: : - T
:O \/ L o,
: p=-— p(x,7)dr
i 2 -2
-
kaz*=M(cost — 1) and (8)
FIG. 1. Schematic of the model: generation of nonlinear plane acoustic — 1t d
wave by an oscillating infinite plate. P=54 t—zwp(X’ 7)dr,

for O=x=<t—27 andt=<t,. To simplify the final results, we
Here, the first of Eq(7) is the isentropic relation for the ideal introduce a paramete,

gas and the second is derived from the fact that a Riemann

invariant u—2c/(y—1) is equal to—2/(y—1) everywhere _yt+l i _2N+1
(c=/yp/p is the nondimensional local speed of sound N= 2y—2' " YT oN—1 ©

The velocity profile described by E) is distorted as
the wave propagates, and this waveform distortion eventudN is not necessarily an integefSince we take the ideal gas,
ally leads to the formation of shock wave at the smallest timel<<y=<5/3, and hencéN=2. The airy=1.4 corresponds to
tg satisfying du/dx=—c. The timetg and distancex; of  the case oN=3. Substituting Eq(9) into the second of Eq.
shock formation have been analyzed in Ref. 6, by using Eq(6) and differentiating it with respect t@ with x being fixed,
(6). we have

dt +[2N/(2N 1)]M(M+x)cosu+M sin uw—[2N/(2N— 1)]|\/|2

de ! (1 [2N/(2N—D)]M sin )2 (10
|
Substituting Eq(7) into the definitions ofp and p, we can M2 ” I'(n+i-N)T(n—N) Mo \20
rewrite Eq.(8) into +— 2 ( )
2 321 T(3-N)T(=N)n!(n+1)! |2N—-1
1 fzw 2N-1 (1 M )ZN“dt
=2 Jo aNv1\1ToNCTSNH] g W 2n—2N,1,2n+1; ZN) (13
11
1 M?2
and P=F|s-N1-N1; 5
P=r 27 T N oNT )2
F” o 1 3 M2
sm ,u) — du, (12 I m2El 2NN o
de 5 M?F| 5-N.1 |\|,2,(2N_1)2
where the range of integration is shifted[y2s], since the 2N—1\2 2NM |? 1 [ 2NM |2
integrands are composed of ginand cosu [cf. Eq. (10)]. + 2N 1- OIN—1] + 212N—=1
Substituting Eq(10) into Egs.(11) and(12), expanding
the integrands into the power series\df and integrating the M2 Z T(n+3-N)I'(n+1—N) M )2”
resultant equations term by term, we obtain 2 & TG-N)T(1-N)nl(n+1)! | 2N—1
__2N—1F 1 N N M?2
“oN+1 | T2 NN ’(2NT)2 XF|2n+2— 2N12n+1,2N (14
1 M2E E—N N2 M2 wherel is the gamma function arfé(a,b,c;z) is the hyper-
2 2 "= (2N—1)? geometric function. In calculating Eg&l3) and (14), Wall-

2N+1 5 ) is’s formula has been used. Note that the term by term inte-
L[N [{_[2NM )7 L[ 2NM gration is allowed within the convergence radius of power
2N 2N—-1 212N-1 series, i.e.,M<(2N—1)/2N, (M<5/6 for y=1.4). On the
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other hand, the use of the simple-wave solution requires thathich has already been derived by Blackstfck.

ts>2; this imposes the severer restriction fgr than the (i) The mean energy flux and the mean momentum
convergence radiu$v should therefore be less than 0.25 for flux .7 can also be obtained, in a similar wayl%s

y=1.4, see Ref. 6 Accordingly, the results, Eq$13) and

8

(14), are valid for Gsx<t—2w and t<ts in the case of (5:i t (E,+p)u dt
ts>27. We shall remark thgd andp are independent of not 27 Ji-2m
only t but alsox. 1 1 M2
For the case of airN=3, Egs.(13) and (14) can be =3 MZF(E_N’_N’Z;(ZNT)Z)’ (20)
rewritten into
5 1 73 1 where E,= (1/2)pu®+ p/(y—1) is the nondimensional total
P= " M2+ 259200|\/|4qL 360000M6 energy of the ideal gas per unit volume, and
t
5\8 6M | 1/(6M P pu’+p— l)dt
SHINEETEE T ’

]
2N-1
M2 I'(n—3)I'(n-3) (M)Z” T 2N+l
5

2% T(=9r(-3)n!(n+1)!

3N
Fl =5~ N= NI o) 1) (21)

These are exactly reduced to polynomials in the case of air,
N=3, as follows:

XF(2n—6,1,1+1;3), (15)
6 ;f’—1M2+3 M4+ > M8+ ! M8 22
— -3 vt e 2 T2 40 2000 4x10° 22
P 10 18000 6
W= 3 M2+ 3 |\/|4+—1 M6 23
x{ 1_(6_“”)2_ +1(6_Mﬂ = 16M " 200M  10000M " @3
5 215 In the weakly nonlinear limit, we hav&=(1/2)M?, which is

M2

+— (iii) p is less than its initial undisturbed value 1. This
2 4=3 T(-HI(-2)n!(n+1)!

does not mean that the gas is rarefied, because, up to the time
of shock formation, the mean mass flgw is exactly zerd.
XF(2n—4,1,0+1;3). (16)  The resultp<1, is merely the reflection of the fact that the
plate recedes from=0 to —2M during a period 2.

w T(n—3T(n-2) (M)Z” equal to the formula for the acoustic intensity.
2

5

In the case that the nonlinearity is weak, iM.<1, we
can truncate the infinite series and obtain
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