
 

Instructions for use

Title The mean pressure and density in a strongly nonlinear plane acoustic wave

Author(s) Yano, Takeru

Citation The Journal of the Acoustical Society of America, 100(1), 666-668
https://doi.org/10.1121/1.415964

Issue Date 1996-07

Doc URL http://hdl.handle.net/2115/14907

Rights Copyright 1996, Acoustical Society of America. This article may be downloaded for personal use only. Any other use
requires prior permission of the author and the Acoustical Society of America.

Type article

File Information JASA100-1.pdf

Hokkaido University Collection of Scholarly and Academic Papers : HUSCAP

https://eprints.lib.hokudai.ac.jp/dspace/about.en.jsp


The mean pressure and density in a strongly nonlinear plane
acoustic wave

Takeru Yano
Department of Engineering Science, Faculty of Engineering, Hokkaido University, Sapporo 060, Japan

~Received 17 November 1995; accepted for publication 2 April 1996!

Exact expressions are presented for a time-averaged pressure and density at a fixed point in a
strongly nonlinear plane acoustic wave radiated into an inviscid ideal gas of semi-infinite extent by
a harmonic oscillation of an infinite plate. By making use of the exact solution of simple wave, the
time averages of pressure and density are obtained up to the time of shock formation, in complete
forms involving the hypergeometric functions. ©1996 Acoustical Society of America.

PACS numbers: 43.25.Qp@MAB #

INTRODUCTION

Time averages of pressure and density at a fixed point in
the nonlinear plane progressive waves were examined by the
leading pioneers of nonlinear acoustics.1–5 They expanded
the time averages in infinite series in wave amplitude, and
evaluated first several terms in the series. Such truncated
formulas can only be applied to the case that the nonlinearity
is sufficiently weak, i.e., the acoustic Mach numberM de-
fined as

M5u0 /c0 , ~1!

is sufficiently small compared with unity, whereu0 is the
maximum speed at the sound source andc0 is the speed of
sound in an undisturbed fluid.

Recently, the strongly nonlinear propagation process
characterized by the conditions

M5O~1! and Re@1, ~2!

has been analyzed in Ref. 6~Re is the acoustic Reynolds
number7!, and as a result, several strongly nonlinear phe-
nomena have been found, which present striking contrasts to
the results of the conventional weakly nonlinear theory.
Among the strongly nonlinear phenomena, acoustic stream-
ing ~mean mass flow! due to the presence of shocks and
resulting decrease in the density of the gas near the source
may be deserving special attention, because whether the
wave motion can reach a steady state or not may strongly be
affected by them; this will be discussed in detail in a forth-
coming paper.

Clearly, the truncated formulas of mean values obtained
by the pioneers are insufficient for the analysis of the
strongly nonlinear problem. In the following, we shall evalu-
ate the mean pressure and mean density at a fixed point in
complete forms.

I. EXACT SOLUTION OF SIMPLE WAVE

We shall consider the propagation of nonlinear plane
acoustic waves in an inviscid ideal gas, up to the time of
shock formation. The gas is supposed to be initially uniform
and at rest. At the timet*50, the plate starts executing the

harmonic oscillation of amplitudea and angular frequency
v, and thus the plane acoustic wave is emitted into the gas of
semi-infinite extent~see Fig. 1!.

We shall introduce the nondimensional variables

t5vt* , x5
x*v

c0
, u5

u*

c0
, r5

r*

r0
, p5

p*

gp0
,

~3!

wherex* is the distance from an initial position of the plate,
u* is thex* component of the fluid velocity,r* is the den-
sity of the gas, andp* is the pressure~r0 and p0 are the
initial undisturbed density and pressure, andg is the ratio of
specific heats of ideal gas!.

Since the gas is uniform and at rest fort<0, the initial
conditions att50 are

u50, r51, p51/g ~x>0!. ~4!

The boundary conditions on the plate is given by

u52M sin t at x5M ~cos t21! for t>0, ~5!

whereM5av/c0 is the acoustic Mach number. The weakly
nonlinear waves and the strongly nonlinear waves are char-
acterized by the conditionsM!1 and M5O~1!, respec-
tively.

Up to the shock formation time, the wave is the simple
wave,8 and the exact solution of simple wave satisfying the
mass and momentum conservation laws, the isentropic rela-
tion, initial condition~4!, and boundary condition~5! can be
obtained by the method of characteristics:4,6,9

u52M sin m,
~6!

t2x5m2M ~cosm21!1
g11

2
M ~ t2m!sin m,

wherem is a parameter indicating the time when a charac-
teristic in the (x,t) plane @the second of Eq.~6!# is issued
from the plate. Once the functionu(x,t) has been found
from Eq. ~6!, we can readily have other quantities as func-
tions of x and t:

p5
1

g S 11
g21

2
uD 2g/~g21!

, r5S 11
g21

2
uD 2/~g21!

.

~7!

666 666J. Acoust. Soc. Am. 100 (1), July 1996 0001-4966/96/100(1)/666/3/$6.00 © 1996 Acoustical Society of America



Here, the first of Eq.~7! is the isentropic relation for the ideal
gas and the second is derived from the fact that a Riemann
invariant u22c/~g21! is equal to22/~g21! everywhere
(c5Agp/r is the nondimensional local speed of sound!.

The velocity profile described by Eq.~6! is distorted as
the wave propagates, and this waveform distortion eventu-
ally leads to the formation of shock wave at the smallest time
ts satisfying ]u/]x52`. The time ts and distancexs of
shock formation have been analyzed in Ref. 6, by using Eq.
~6!.

II. MEAN PRESSURE AND DENSITY

By making use of the exact solution of simple wave
presented in Sec. I, we shall evaluate the time-averaged pres-
sure and density defined as

p̄5
1

2p E
t22p

t

p~x,t!dt

and ~8!

r̄ 5
1

2pEt22p

t

r~x,t!dt,

for 0<x<t22p and t<ts . To simplify the final results, we
introduce a parameterN,

N5
g11

2g22
, i.e., g5

2N11

2N21
~9!

~N is not necessarily an integer!. Since we take the ideal gas,
1,g <5/3, and henceN>2. The airg51.4 corresponds to
the case ofN53. Substituting Eq.~9! into the second of Eq.
~6! and differentiating it with respect tom with x being fixed,
we have

dt

dm
511

@2N/~2N21!#M ~M1x!cosm1M sin m2@2N/~2N21!#M2

~12@2N/~2N21!#M sin m!2
. ~10!

Substituting Eq.~7! into the definitions ofp̄ and r̄, we can
rewrite Eq.~8! into

p̄5
1

2p E
0

2p 2N21

2N11 S 11
M

2N21
sin m D 2N11 dt

dm
dm,

~11!

and

r̄ 5
1

2p E
0

2pS 11
M

2N21
sin m D 2N21 dt

dm
dm, ~12!

where the range of integration is shifted to@0,2p#, since the
integrands are composed of sinm and cosm @cf. Eq. ~10!#.

Substituting Eq.~10! into Eqs.~11! and~12!, expanding
the integrands into the power series ofM , and integrating the
resultant equations term by term, we obtain

p̄5
2N21

2N11
FS 2

1

2
2N,2N,1;

M2

~2N21!2
D

2
1

2
M2FS 122N,2N,2;

M2

~2N21!2
D

1S 2N21

2N D 2~N11!FA12S 2NM2N21D
2

211
1

2 S 2NM2N21D
2G

1
M2

2 (
n51

` G~n1 1
22N!G~n2N!

G~ 1
22N!G~2N!n! ~n11!!

S M

2N21D
2n

3FS 2n22N,1,2n11;
1

2ND , ~13!

r̄ 5FS 122N,12N,1;
M2

~2N21!2
D

2
1

2
M2FS 322N,12N,2;

M2

~2N21!2
D

1S 2N21

2N D 2NFA12S 2NM2N21D
2

211
1

2 S 2NM2N21D
2G

1
M2

2 (
n51

` G~n1 3
22N!G~n112N!

G~ 3
22N!G~12N!n! ~n11!!

S M

2N21D
2n

3FS 2n1222N,1,2n11;
1

2ND , ~14!

whereG is the gamma function andF(a,b,c;z) is the hyper-
geometric function. In calculating Eqs.~13! and ~14!, Wall-
is’s formula has been used. Note that the term by term inte-
gration is allowed within the convergence radius of power
series, i.e.,M,(2N21)/2N, ~M,5/6 for g51.4!. On the

FIG. 1. Schematic of the model: generation of nonlinear plane acoustic
wave by an oscillating infinite plate.
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other hand, the use of the simple-wave solution requires that
ts.2p; this imposes the severer restriction forM than the
convergence radius~M should therefore be less than 0.25 for
g51.4, see Ref. 6!. Accordingly, the results, Eqs.~13! and
~14!, are valid for 0<x<t22p and t<ts in the case of
ts.2p. We shall remark thatp̄ andr̄ are independent of not
only t but alsox.

For the case of air,N53, Eqs. ~13! and ~14! can be
rewritten into

p̄5
5

7
2
1

5
M21

73

259200
M41

1

360000
M6

1S 58D
8FA12S 6M5 D 2211

1

2 S 6M5 D 2G
1
M2

2 (
n54

` G~n2 5
2!G~n23!

G~2 5
2!G~23!n! ~n11!!

SM5 D 2n
3F~2n26,1,2n11; 16!, ~15!

r̄ 512
3

10
M22

1

18000
M41S 56D

6

3FA12S 6M5 D 2211
1

2 S 6M5 D 2G
1
M2

2 (
n53

` G~n2 3
2!G~n22!

G~2 3
2!G~22!n! ~n11!!

SM5 D 2n
3F~2n24,1,2n11; 16!. ~16!

In the case that the nonlinearity is weak, i.e.,M!1, we
can truncate the infinite series and obtain

p̄5
2N21

2N11
1

12N

4N22
M21O~M4!

and ~17!

r̄ 511
N

224N
M21O~M4!.

For the case of air,N53, we have

p̄5 5
72

1
5 M

21O~M4! and r̄512 3
10 M

21O~M4!.
~18!

These are coincident with the results by the pioneers.

III. CONCLUDING REMARKS

We have presented the exact formulas for the mean pres-
sure and density. Here we would like to give some relevant
remarks:

~i! Exact mean velocity can also be obtained in a similar
way:6

ū5
1

2p E
t22p

t

u~x,t!dt

5S 2N21

2N D 2FA12S 2NM2N21D
2

21G , ~19!

which has already been derived by Blackstock.4

~ii ! The mean energy fluxE and the mean momentum
flux M can also be obtained, in a similar way, as10

E5
1

2p E
t22p

t

~Et1p!u dt

5
1

2
M2FS 122N,2N,2;

M2

~2N21!2D , ~20!

whereEt5(1/2)ru21p/~g21! is the nondimensional total
energy of the ideal gas per unit volume, and

M5
1

2p E
t22p

t S ru21p2
1

g Ddt
5
2N21

2N11 FFS 2
1

2
2N,2N,1;

M2

~2N21!2D21G . ~21!

These are exactly reduced to polynomials in the case of air,
N53, as follows:

E5
1

2
M21

3

40
M41

3

2000
M61

1

43105
M8, ~22!

M5
3

10
M21

3

200
M41

1

10000
M6. ~23!

In the weakly nonlinear limit, we haveE5~1/2!M2, which is
equal to the formula for the acoustic intensity.

~iii ! r̄ is less than its initial undisturbed value 1. This
does not mean that the gas is rarefied, because, up to the time
of shock formation, the mean mass flowru is exactly zero.6

The result,r̄,1, is merely the reflection of the fact that the
plate recedes fromx50 to 22M during a period 2p.
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