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Abstract

An iterative phase retrieval algorithm based on the maximum entropy method
(MEM) is presented. Introducing a new generalized information measure, we derive
a novel class of algorithms which includes the conventionally used error reduction
algorithm and a MEM-type iterative algorithm which is presented for the first time.
These different phase retrieval methods are unified on the basis of the framework
of information measures used in Information Theory.
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1 Introduction

An iterative Fourier phase retrieval method using intensity measurements for
recovering the phase has been used in a diverse range of fields including elec-
tron microscopy, astronomy, crystallography, synchrotron X-ray and others.
The first research into phase retrieval methods was the Gerchberg-Saxton al-
gorithm based on iterative transformation back and forth between the object
domain and the Fourier domain [1]. The process of replacing a prior object
function obtained under the Fourier constraints has been performed including
the error reduction (ER) method, the input and output (IO) method, and
the hybrid input and output (HIO) method. Fienup (1982) has presented a
comparison of these methods, clarifying in particular the relationship between
the error reduction and the steepest descent method; this was the second im-
portant achievement of the research regarding phase retrieval methods [2]. In
regard to the uniqueness of the phase problem, the oversampling ratio has been
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discussed in [3] and mathematical analyses of the problem have been presented
in [4,5]. Recently, based on these iterative algorithms, advanced experiments
of nano-scale imaging have progressed through the use of a synchrotron X-
ray having a coherent source and a transmission electron microscope (TEM)
equipped with a field emission gun [10].

The maximum entropy method (MEM) used in the field of crystallography [11–
16] does not provide a clear representation of an iterative algorithm. However,
the MEM can be effective for phase retrieval and bears some resemblance
to phase retrieval methods involved in the analysis using the Fourier-domain
constraint [17].

As a result, although computationally the phase retrieval algorithm has been
fundamentally established, it remains necessary to select one of the various
algorithms, or to develop an applicable combination of algorithms, under-
standing that uncertainty concerning the parameters will increase. Thus, the
relationships among the various methods of phase retrieval need to be clarified
for further experimentation.

In the present paper, we first derive an iterative MEM-type algorithm for
phase retrieval. Second, we derive a new class of phase retrieval algorithms
using a generalized information measure of γ-divergence. A collective view of
well-known iterative algorithms for phase retrieval is given. As a result, the
relationships among these various methods are clarified; specifically, the object
update rule of the iterative process in phase retrieval is shown to be equivalent
to the minimum pseudo-distance measure between two non-negative functions
when single-intensity measurements of the Fourier domain are used.

2 Phase Retrieval Algorithms and the Maximum Entropy Method

2.1 ER and HIO

Phase retrieval is represented as a correlative diagram of the Fourier and
inverse Fourier transforms between the object domain and the Fourier domain,
i.e., the Gerchberg-Saxton iterative algorithm. Fienup’s reconstruction of the
phase process using the intensity measurements of both domains is as follows
[2]: (i) Fourier transform the prior object ρ into F ; (ii) replace F with F ′,
whose amplitude is given by the experiment in the Fourier domain (The phase
of F ′ is the same as that of F , and the replaced amplitude is the constraint
in the Fourier domain.); (iii) inverse Fourier transform F ′ into ρ′; and (iv)
replace ρ′ with ρ using the constraints in the object domain. This iterative
transformation back and forth between the object domain and the Fourier
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domain is shown in Fig. 1. Although the setting of the constraints in the
object domain is very important for phase retrieval experiments, we focus on
the mathematical framework of iterative algorithms.

Fig. 1. Gerchberg-Saxton iterative diagram of phase retrieval.

In practical computation, we assume that both domains are 2-dimensional
discrete spaces with squared arrays. Using the discrete Fourier transform, the
nth iteration is given by the following equations:

Fn(k) =
∑

r

ρn(r) exp(−i2πk · r/N), (1)

ρ′
n(r) =

1

N2

∑
k

F ′
n(k) exp(2πik · r/N), (2)

where r = (r1, r2), k = (k1, k2) and r1, r2, k1, and k2 = 0, · · · , N − 1. ρn is
the object function of the nth iteration and Fn is the Fourier transform of
ρn. F ′

n(k) = |Fobs(k)| exp{iψn(k)}, ψn(k) is the phase of Fn(k), and |Fobs(k)|
is an intensity measurement in the Fourier domain. The object ρ′

n(r) is es-
timated by the inverse Fourier transform of F ′

n(k). We restrict ourselves to
the problem of recovering the phase in the Fourier domain using a single in-
tensity measurement; moreover, we suppose that an object function is a real
non-negative function. The ER is then described as

ρn+1(r) =

 ρ′
n(r) r 6∈ D

0 r ∈ D
, (3)

where D is the set of points at which ρ′
n violates the object-domain constraints.

The following is the HIO, which is an improved version of the updating method
with respect to the region breaking the object-domain constraints:

ρn+1(r) =

 ρ′
n(r) r 6∈ D

ρn(r) − βρ′
n(r) r ∈ D

, (4)

where β is a positive constant. The ER and HIO are regarded as identical with
respect to the updating at points satisfying the object-domain constraints. As
mentioned above, phase retrieval is interpreted as the update with respect
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to the objective function using the constraints of the object domain and the
Fourier domain. The MEM for structure analysis in crystallography utilizes
the same type of renewal process of the object function. It is important to
note the common framework of the two update procedures. Next, we derive a
MEM-type algorithm as a new method for phase retrieval.

2.2 MEM

MEM has been applied to the estimation of crystal structures using X-ray
diffraction data, and several representations of the formalism of MEM have
been applied to Fourier inversion problems [13–16]. In the present work, we
essentially follow the MEM formalism of Collins (1982) [11] (also see Sakata
(1990) [12]). We describe the outline of the MEM for crystallography and
derive a MEM-type algorithm for phase retrieval. The entropy expression S is
defined by Janes [18] as:

S(ρ̄, τ̄) = −
∑

r

ρ̄(r) ln
ρ̄(r)

τ̄(r)
, (5)

ρ̄(r) =
ρ(r)∑
r′ ρ(r′)

, τ̄(r) =
τ(r)∑
r′ τ(r′)

, (6)

where ρ(r) is an estimated function and τ(r) is a given prior function in
the object domain. The object function corresponds to the electron density
functions in crystallography. ρ̄(r) and τ̄(r) denote the normalized density
functions with respect to ρ(r) and τ(r), respectively. We define the constraints
concerning the known and unknown phases as follows:

C1 =
1

M1

∑
k

|Fcal(k) − Fobs(k)|2

σ2(k)
, (7)

C2 =
1

M2

∑
k

||Fcal(k)| − |Fobs(k)||2

σ2(k)
, (8)

where M1 and M2 are the number of reflections for known and unknown
phases, respectively, and Fcal is the calculated structure factor given as

Fcal(k) = V
∑

r

ρ(r) exp(−i2πr · k), (9)

where V is the unit-cell volume, Fobs is the observed structure factor, and
σ2(k) is the variance of Fobs(k). We use Lagrange’s method while the expressed
entropy is maximized under the constraint of the structure factor:

Lλ = S(ρ, τ) − λ1

2
C1 −

λ2

2
C2. (10)
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The maximum entropy probability is obtained as the following [11]:

ρ(r) = exp

{
ln τ(r) +

λ1F0

M1

∑
k

(
Fobs(k) − Fcal(k)

)
σ2(k)

exp{−i2πk · r}

+
λ2F0

M2

∑
k

(
|Fobs(k)| exp[iψ(k)] − Fcal(k)

)
σ2(k)

exp{−i2πk · r}
}

, (11)

where F0 is equal to the number of electrons in a unit cell. If Fobs(k), σ2(k),
λ1 and λ2 are given, we have an estimation of electron density function.

Next we derive an algorithm of phase retrieval based on the MEM, i.e., a MEM-
type algorithm for phase retrieval using a single-intensity measurement. We
introduce the integrated measure between two non-negative real functions as

I(ρ, τ) =
∑

r

ρ(r) ln
ρ(r)

τ(r)
+

∑
r

τ(r) −
∑

r

ρ(r). (12)

This measure is used for some statistical applications [19] and is an extension of
S(ρ̄, τ̄). All the information of the phase is unknown, so the Fourier constraints
using the structure factors are given as

Rph =
1

N2

∑
k

| |Fcal(k)| − |Fobs(k)| |2, (13)

where |Fobs| is an intensity measurement in the Fourier domain, and Fcal is
equal to the Fourier transform of an estimated object function ρ. Using the
property of the least squares of the Fourier domain for phase retrieval [2], we
have

∂

∂ρ

∑
k

|Fcal(k) − Fobs(k)|2 = 2(ρ(r) − ρ′(r)), (14)

where ρ′(r) is the inverse Fourier transform of |Fobs(k)| exp[iψ(k)], and ψ(k)
is the phase used in the Fourier-domain constraint of phase retrieval, i.e., ψ(k)
is a phase of Fcal. Using Lagrange’s method for the minimum of I(ρ, τ)+ λ

2
Rph,

we obtain

ρ(r) = exp[ln τ(r) +
λ

N2
(ρ′(r) − ρ(r))]. (15)

We use the assumption that ρ is close to τ (the norm |ρ − τ | is sufficiently
small). We then derive an update rule of the object function with respect to
Eq. (15) by using the following settings: ρ(r) and τ(r) in the right side of
the equation refer to the prior object ρn(r), and ρ(r) in the left side of the
equation is an updated object ρn+1(r); ψ(k) (= ψn(k)) is the phase of Fn(k)
given by the Fourier transform of ρn(r) for the nth iteration. Then we have

ρn+1(r) = ρn(r) exp[ξ(ρ′
n(r) − ρn(r))], (16)
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where ρ′
n(r) is the object obtained by the inverse Fourier transform of |Fobs| exp(iψn),

and ξ is a positive constant.

The variance σ(k) is used in Eq. (11); however, we assume that such an un-
certain factor is involved in |Fobs(k)|. Needless to say, this iterative formula
can be derived using Eq. (13). The updating at which ρn+1 violates the object-
domain constraint is accomplished by the usual adaptive usage of the ER or
the HIO.

3 Generalized Algorithm for Phase Retrieval

The expressed entropy S used in the MEM denotes the relationship between
two probability distributions in terms of information for discrimination. In
Information Theory, a distance-like measure is used. The negative formula
of S is equivalent to an information measure known as the Kullback-Leibler
divergence [20]:

Dk(p, q) =
∑
x∈X

p(x) ln
p(x)

q(x)
, (17)

where p and q are probability distributions defined for the set X, i.e.,
∑

x∈X p(x) =
1,

∑
x∈X q(x) = 1, p(x) ≥ 0 and q(x) ≥ 0 for any x in X. The term “informa-

tion divergence” is often used in Information Theory [21,22]. The inequality
Dk(p, q) ≥ 0 is always satisfied for any p, q, and its equality is established if
and only if p(x) = q(x) for any x in X.

As mentioned above, the X-ray diffraction problem using the MEM is the
minimization of the Kullback-Leibler divergence under the constraint of fea-
sible information at the Fourier domain. Although there are several methods
for phase retrieval, including the HIO, ER, and MEM, it is important in the
use and development of an iterative algorithm of phase retrieval to clarify the
theoretical relationships among these methods.

Here, we use a generalization process to obtain an information divergence
measure between two probability distributions following the formalism of [23].
We introduce the following f-divergence [24]:

Df (p, q) =
∑
x

p(x)f

(
q(x)

p(x)

)
, (18)

where f is a convex function defined on the open interval (0,∞) that satisfies
f(1) = 0 and is strictly convex at u = 1. Df (p, q) ≥ 0 is satisfied and its
equality is established if and only if p(x) = q(x) for any x in X. By applying
various convex functions to f in Eq. (18), several well-known information
divergences are obtained. If f(u) = − ln u, Df becomes the Kullback-Leibler
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divergence. The following is known as an α-divergence [25]:

Dα(p, q) =
1

α(1 − α)

∑
x

{(1 − α)p(x) + αq(x) − p(x)1−aq(x)α}, (19)

where α is a real number. This is a kind of f -divergence, because of the setting
of f in Eq. (18):

f(u) =
1

α(1 − α)
{1 − uα + α(u − 1)}. (20)

The original formulation of α-divergence is known as Renyi’s order α informa-
tion gain [26]; moreover, this formulation is closely related to Tsallis entropy
[27]. By using the substitutions p, q → ps, qs (where s is a real number),
s = 1 + γ and α = γ/(1 + γ), and excluding the constant, we have

Dγ,1+γ(p, q) =
∑
x

(
1

γ
p(x)(p(x)γ − q(x)γ) − 1

1 + γ
(p(x)1+γ − q(x)1+γ)

)
. (21)

The above-clarified derivation process, i.e., the genealogy from f -divergence,
has been clearly presented in a previous work [23]. Dγ,1+γ(p, q) is equal to
I(p, q) (Eq. (12)) for the case in which γ → 0. The present integrated mea-
sure, which is called (γ, 1+γ)-divergence (γ-divergence in short) in [23], has
a number of statistical applications [28,29]. It is important to note that γ-
divergence is a discriminant measure between two non-negative functions with
finite volume. Thus, concerning the MEM-type iterative algorithm in Eq. (16),
the normalization process, Eq. (5), is not needed.

The procedure for calculating the maximum entropy distribution is an update
of the object function ρ using the feasible information in the Fourier domain.
The phase of the Fourier domain is not given, so we use a structure factor
with unknown phase. The Fourier constraints using structure factors is the
same as Eq. (13)

Rph =
1

N2

∑
k

| |Fcal(k)| − |Fobs(k)| |2. (22)

Equation (22) and γ-divergence give the following minimization problem:

Lγ = Dγ(ρ, τ) + CγRph. (23)

The first term of the object function indicates the γ-divergence from the prior
object to the obtained object by the update rule, and the second term indicates
the Fourier constraints. The positive constant Cγ shows the mixture rate of
the feasible information in the Fourier domain.

Using the property of the least squares of the Fourier domain [2] as well as
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Eq. (14), we have

∂

∂ρ

∑
k

|Fcal(k) − Fobs(k)|2 = 2(ρ(r) − ρ′(r)), (24)

where ρ′(r) is the inverse Fourier transform of |Fobs(k)| exp[iψ(k)], and ψ(k)
is the phase used in the Fourier-domain constraint of phase retrieval. The
setting ∂

∂ρ
Lγ = 0 gives

ρ(r)γ − 1

γ
=

τ(r)γ − 1

γ
+ Cγ(ρ

′(r) − ρ(r)). (25)

When ρ is close to τ (the norm |ρ − τ | is sufficiently small), we can derive an
update rule of the object function with respect to the above minimization using
the same method used to derive Eq. (16). We use the following settings: ρ(r)
and τ(r) on the right side of Eq. (25) refer to the prior object ρn(r), and ρ(r)
on the left side of the equation is the updated object ρn+1(r); ψ(k)(= ψn(k))
is the phase of Fn(k) given by the Fourier transform of ρn(r) for the nth
iteration. We then have the following update rule:

ρn+1(r) = {ρn(r)γ + γ Cγ(ρ
′
n(r) − ρn(r))}

1
γ , (26)

where ρ′
n(r) is the object obtained by the inverse Fourier transform of |Fobs| exp(iψn).

A constraint for which γ ≥ 0 is required because ρ(r) = 0 for some r. A setting
of γ → 0 gives

ρn+1(r) = ρn(r) exp[C0(ρ
′
n(r) − ρn(r))], (27)

which is the same as Eq. (16). A setting of γ → 1 gives

ρn+1(r) = (1 − C1)ρn(r) + C1ρ
′
n(r). (28)

In the case of γ → 0, the update rule of Eq. (27) is equivalent to the MEM-
type algorithm of Eq. (16). In the case in which γ = 1, the update rule of Eq.
(28) has the same representation as the ER, and the constant C1 indicates the
mixture rate of the feasible information at the object domain. The relationship
between the MEM and ER based on γ-divergence is shown in Fig. 2. Any
γ in [0, 1] can be used. This figure represents the family of update methods
parameterized by γ, with both the MEM and ER being including in the family.
The HIO is the same as the ER except for the update rule at the region
breaking the object-domain constraints. Therefore, the HIO is included in the
family.
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Fig. 2. The relationship between MEM and ER based on γ-divergence.

4 Numerical example

We provide a simple numerical example using Eq. (26). The setting is as
follows. The target object is a CNT-like object, which is defined on the squared
array domain (256 × 256 pixels). A real positive constraint is given and a
sufficient support area is given as the object-domain constraint. The over-
sampling ratio (= total area / support area) is 6. For the updating method
with respect to the region breaking the object-domain constraints, Eq. (3) is
used. Concerning the value of γ, 11 cases (γ = 0, 0.1, · · · , 0.9, 1) are used. The
MEM and ER correspond to the cases γ = 0 and γ = 1, respectively. The
coefficient Cγ is 0.01 for every γ. A random object is used as an initial object
function for all cases. In order to demonstrate whether or not phase retrieval
is established, we define the R factor for the nth iteration as

R factor =

∑
k | |Fn(k)| − |Fobs(k)| |∑

k |Fobs(k)|
. (29)

The figures (a), (b), and (c) in Fig. 3 are the objects obtained by the MEM-
type algorithm (γ = 0) with 20, 300, and 1000 iterations, respectively. The
final image (c) is almost the same as the target image. The graph shows the
transitions of the R factor. The convergence of each transition denotes that
an appropriate estimation is obtained for every γ.

5 Discussion

An iterative phase retrieval algorithm was discussed on the basis of the Gerchberg-
Saxton algorithm [1] and the steepest descent analysis presented by J. Fienup
[2]. The MEM is related to the phase retrieval problem as a restriction of the
phase in the Fourier-domain. The variance σ2(k) of the observed structure fac-
tor Fobs has been introduced in the non-iterative MEM formula represented by
Eq. (11). By introducing the Fourier constraints Rph without the variance, a
MEM-type iterative algorithm can be derived. The MEM is generally regarded
as the minimization of Kullback-Leibler divergence with respect to the Fourier
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Fig. 3. ( Color ) The graph presents the transitions of the R factor using the cases
in which γ = 0, 0.1, · · · , 0.9, 1. The figures (a), (b), and (c) are the objects obtained
by the MEM-type algorithm (γ = 0) with 20, 300, and 1000 iterations, respectively.

constraints; we derive a generalized update rule for estimating an object func-
tion using the γ-divergence measure. As a result, our new proposed update
rule represents a simplified version of MEM and ER by setting the parameter
of the γ-divergence. The constant Cγ indicates the mixture rate of the feasible
information in the Fourier-domain; hence, in the case in which Cγ > 0 (there
are some constraints of γ, for example 0 < C0 < 1), our generalized update
rule is almost entirely effective except for in the local minimum problem.

We demonstrate that a novel class of algorithms provides various different pro-
cesses up to phase retrieval by a simple numerical example using a CNT-like
object. The algorithm Eq. (26) is established if the prior and posterior object
are close to each other. An iterative usage of the algorithm gives convergence
in our simple numerical example. The global solution using the algorithm will
be examined in future works. By using various settings of the coefficient Cγ

and the object-domain constraints, we confirmed various different transitions
of the R factor. Thus, an appropriate setting of the parameter γ of Eq. (26)
and the object-domain constraints brings about the convergence. The refine-
ment of the algorithms, especially the tuning of parameters γ and Cγ, will
be examined. The HIO is an effective update rule for the region breaking the
object-domain constraints. Thus, concerning the update rule for such a re-
gion, a generalized iterative phase retrieval algorithm based on information
measures remains unclear and needs to be examined from the view of Infor-
mation Theory. Moreover, an extension of Information Theory based on a
complex object function will be an important focus of our future research.
Indeed, the importance of such theoretical research has been pointed out in
[30]. Although some work remains, a profound theoretical understanding is in-
dispensable for the further development of experiments on structure analysis
using the iterative Fourier phase retrieval method.
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