

HOKKAIDO UNIVERSITY

Title	The effects of di-D-fructofuranose-1,2':2,3'-dianhydride (DFA III) administration on human intestinal microbiota.
Author(s)	Minamida, Kimiko; Sujaya I., Nengah; Tamura, Akiko; Shigematsu, Norihiro; Sone, Teruo; Yokota, Atsushi; Asano, Kozo; Benno, Yoshimi; Tomita, Fusao
Citation	Journal of Bioscience and Bioengineering, 98(4), 244-250 https://doi.org/10.1263/jbb.98.244
Issue Date	2004
Doc URL	http://hdl.handle.net/2115/14824
Туре	article (author version)
File Information	JB&B98-4.pdf

Hokkaido University Collection of Scholarly and Academic Papers : HUSCAP

1	The Effects of Di-d-fructofuranose-1,2': 2,3'-Dianhydride (DFA III) Administration on
2	Human Intestinal Microbiota
3	
4	KIMIKO MINAMIDA, ¹ I NENGAH SUJAYA, ⁴ AKIKO TAMURA, ² NORIHIRO
5	SHIGEMATSU, ² TERUO SONE, ³ ATSUSHI YOKOTA, ⁴ KOZO ASANO, ³ YOSHIMI
6	BENNO, ⁵ AND FUSAO TOMITA ^{3*§}
7	
8	Northern Advancement Center for Science and Technology, Nishi 12, Kita 21, Kita-ku,
9	Sapporo, Hokkaido 001-0021, Japan, ¹ Fancl Corporation, 12-13 Kamishinano,
10	Totsuka-ku, Yokohama, Kanagawa 244-0806, Japan, ² Laboratory of Applied
11	Microbiology, Graduate School of Agriculture Hokkaido University, Kita 9, Nishi 9,
12	Kita-ku, Sapporo, Hokkaido 060-8589, Japan, ³ Laboratory of Microbial Resources and
13	Ecology, Graduate School of Agriculture Hokkaido University, Kita 9, Nishi 9, Kita-ku,
14	Sapporo, Hokkaido 060-8589, Japan, ⁴ and Japan Collection of Microorganisms, RIKEN,
15	Wako, Saitama 351-0198, Japan ⁵
16	
17	Received 19 April 2004/Accepted 1 July 2004

1	
2	Running title: DFAIII AND INTESTINAL MICROIOTA
3	
4	[Key words: Di-d-fructofuranose-1,2': 2,3'-dianhydride (DFA III), human intestinal
5	microbiota, denaturing gradient gel electrophoresis (DGGE)]
6	
7	
8	*Corresponding author. e-mail: <u>ftomita@chem.agr.hokudai.ac.jp</u>
9	phone: +81-(0)11-736-6318 fax: +81-(0)11-736-6319
10	Present address: [§] The University of the Air, Hokkaido Study Center, Kita 17, Nishi 8,

11 Kita-ku, Sapporo, Hokkaido 060-0817, Japan.

 $\mathbf{2}$

ABSTRACT

3	Di-d-fructofuranose-1,2': 2,3'-dianhydride (DFA III) was shown to enhance Ca
4	absorption in rat and human intestine. The effects of DFA III administration (9 g per day
5	for 4 weeks that corresponded to 3-fold the optimal dosage of DFA III) on human
6	intestinal microbiota were studied using denaturing gradient gel electrophoresis
7	(DGGE). The major groups of human intestinal microbiota reported previously: the
8	Bacteroides, the Clostridium coccoides group (Clostridium cluster XIVa), the
9	Clostridium leptum group (Clostridium cluster IV), and the Bifidobacterium group were
10	detected. The similarity of thirty DGGE profiles based on the V3 region (before and
11	after administration to the 15 subjects) of the 16S rDNA were calculated using
12	Pearson's correlation based on numbers, positions and intensity of bands, and then a
13	dendrogram of DGGE profiles was constructed by the unweighted pair group method
14	using arithmetic average (UPGMA) clustering method. By these analyses, no difference
15	in DGGE profiles after DFA III administration was observed in healthy subjects, while
16	two subjects with chronic constipation showed different profiles, namely on numbers,
17	positions and the intensity of some bands. Their stools were softer and stool frequencies
18	increased and they obtained relief from constipation.

INTRODUCTION

2	A small amount of di-d-fructofuranose-1,2': 2,3'-dianhydride (DFA III) exists in
3	chicory tubers, with the natural occurrence in caramel and roasted chicory root being
4	shown to be about 2%. This amount is not sufficient to meet the high demands both for
5	scientific and industrial purposes. DFA III was produced in large quantities with high
6	purity from inulin using inulase II from Arthrobacter sp. H65-7 (1). This sugar has half
7	the sweetness of sucrose, is stable in acid and at high temperature, and absorbs less
8	moisture. In vivo studies on rats revealed that DFA III was not digested in the upper part
9	of the intestinal tract, and reached the colon without degradation (2). In the colon, DFA
10	III was fermented and significant amounts of short chain fatty acids (SCFAs) were
11	produced, which enhanced calcium solubility and led to an increase of its absorption (2,
12	3). DFA III directly affects epithelial tissue and opens the tight junctions which are
13	located on the luminal side adjacent to epithelial cells (4). This showed the unique
14	properties of DFA III in terms of calcium transport.
15	DFA III is a candidate as a food supplement to improve calcium insufficiency, and
16	its safety has been demonstrated by acute and sub-acute toxicity tests. It is not
17	assimilated by such bacteria as bifidobacteria, lactobacilli, the Bacteroides,
18	Streptococcus mutans, Clostridium butyricum and Escherichia coli, however the

1	number of lecithinase-negative clostridia increased in the cecum of rats fed DFA III (2).
2	Moreover, an increase in organic acids and lowering of pH was observed in the rat
3	contents (2). These changes were probably attributable to the fermentation of bacteria in
4	the rat cecum. Therefore, we investigated the changes in human intestinal microbiota
5	following DFA III administration.
6	Recent publications showed that only 15% of human intestinal microbiota could be
7	recovered using culture-dependent methods (5, 6) and application of a
8	culture-independent approach gives a more realistic view of intestinal microbiota.
9	DNA/RNA-based methods have been introduced and have been validated as accurate
10	methods for analyzing the microbial component of certain diverse communities such as
11	soil, compost and intestinal microbiota. Among these methods, clone libraries (7),
12	fluorescence in situ hybridization (FISH) (8), in situ PCR (9), terminal restriction
13	fragment length polymorphism (T-RFLP) (10), temperature gradient gel electrophoresis
14	(TGGE) (11), and denaturing gradient gel electrophoresis (DGGE) (12, 13) have been
15	widely used. FISH, in situ PCR and T-RFLP are used to investigate known bacteria. On
16	the other hand, the DGGE/TGGE methods are commonly used in the rapid monitoring
17	of population dynamics of unknown constituents of a microbial community. The aim of
18	this study was to identify the changes in human intestinal microbiota following DFA III

 $\mathbf{5}$

1	administration. We applied DGGE techniques to detect both cultivable and uncultivable
2	bacteria. Additionally, the mainly saccharolytic Bacteroides group was reported to
3	account for approximately 20% of the normal fecal flora and this group is present at
4	about 10 ¹⁰ cells per g of dry feces as determined by conventional culture and FISH
5	techniques (14, 15). On the other hand, this group was not identified in TGGE profiles
6	using the bacterial universal primers (11). Thus, we performed DGGE using specific
7	primers for the Bacteroides.
8	
9	MATERIALS AND METHODS
10	Subjects Fifteen healthy subjects (eight men and seven women), 24 to 45 years
11	old participated in this study. The subjects were administered 9 g/d (3 g x 3 times) of
12	DFA III for 4 weeks. This dose was chosen in separate experiments on the promotion of
13	Ca absorption and changes in stool conditions by DFA III in which 23 healthy Japanese
14	persons were administered different amounts of DFA III (3, 6, 9, 12 and 15 g). It was
15	found that their stool conditions did not change and the effective amount promoting Ca
16	absorption was determined to be 3 g/person/d (Tamura et al., in preparation). The
17	
	subjects in the present study ate their usual diet and recorded their food intake,

1	based on the principles of the Declaration of Helsinki (Ethical Principles for Medical
2	Research Involving Human Subjects). Informed consent was obtained from each subject
3	before this study.
4	
5	Fecal samples Fecal samples were collected from the middle part of stools
6	before and after 4 weeks of administration. Samples were immediately frozen at -20°C
7	after defecation and stored at -80°C until further use.
8	
9	DNA extraction A 0.1-g (wet weight) amount of fecal sample was washed 4
10	times with 1 ml of TE buffer (pH 8), then suspended in 1ml of the same buffer, to which
11	lysozyme (Wako Pure Chemical Industries, Osaka) (final concentration 2.5 mg/ml),
12	labiase (Seikagaku, Tokyo) (final concentration 2.5 mg/ml), and N-acetylmuramidase
13	(Seikagaku) (final concentration 30 μ g/ml) were added. The suspension was incubated
14	at 37°C for 15 min. The DNA was isolated using the UltraClean TM Soil DNA Kit (Mo
15	Bio Laboratories, Salana Beach, CA, USA) according to the instructions of the
16	manufacturer with some modifications (16), <i>i. e.</i> , spun for 20 s at 4 m/s on FastPrept TM
17	FP120 (Qbiogene, Carlsbad, CA, USA).
18	

 $\overline{7}$

1	PCR amplification Primers 338f-gc (5' CGC CCG CCG CGC GCG GCG GGC
2	GGG GCG GGG GCA CGG GGG GAC TCC TAC GGG AGG CAG CAG 3') and 518
3	(5' ATT ACC GCG GCT GCT GG 3') (17) were used to amplify the V3 regions of the
4	bacterial 16S rDNA. The reaction mixture (50 μ l) contained 50 pmol amounts of each
5	primer, 5 μ l of dNTP mixture (2.5 mM each), 1 x PCR reaction buffer, 3.5 μ l of MgCl ₂
6	solution (25 mM), 2.5 U of AmpliTaq Gold (Applied Biosystems, Foster City, CA,
7	USA), and 3 μl of DNA solution (100-200 ng). Amplification was performed on a
8	GeneAmp® PCR System 9700 (Applied Biosystems). The amplification program was
9	95°C for 5 min; 2 cycles of 80°C for 1 min, 65°C for 1 min and 72°C for 3 min; 18
10	cycles of 94°C for 1 min, 64°C for 1 min and 72°C for 3 min; 11 cycles of 94°C for 1
11	min, 55°C for 1 min and 72°C for 3 min; and a final extension at 72°C for 7 min. The
12	amplification was checked by electrophoresis by running 5 μ l of the amplicons on a
13	1.5% agarose gel, staining it with ethidium bromide and visualizing the DNA with a UV
14	transilluminator.
15	
16	DGGE analysis The PCR products (100 µl PCR reaction mixtures) were
17	concentrated by ethanol precipitation and dissolved in 10 μ l of sterilized water. Prior to

18 DGGE, samples were heated at 95°C for 5 min and 65°C for 60 min, and then were left

1	at 37°C overnight. The DGGE was performed on the DCode TM system (Bio-Rad
2	Laboratories, Hercules, CA, USA) at 65 V, 60°C in 1 x TAE for 14 h, on 10%
3	polyacrylamide gels containing a 30% to 60% gradient of urea-formamide, where 100%
4	was defined as 7 M urea and 40% (vol/vol) formamide (17). The gel was stained with
5	SYBR® Green I (Cambrex Bio Science Rockland, Rockland, ME, USA) for 45 min.
6	The bands were excised with a razor blade and were washed twice using sterilized water,
7	and then were stored at -20°C until use.
8	
9	PCR amplification and DGGE analysis for the Bacteroides group The specific
10	primers for the Bacteroides group; g-Bact-F (5' ATA GCC TTT CGA AAG RAA GAT
11	3') corresponding to numbering positions 148-169 of <i>E. coli</i> and g-Bact-R (5' CCA
12	GTA TCA ACT GCA ATT TTA 3') (18) corresponding to numbering positions 646-626
13	of <i>E. coli</i> were used to amplify 501 bp of the bacterial 16S rDNA. The reaction mixture
14	was the same as described above. PCR conditions were: pre-denaturation for 5 min at
15	94°C, followed by 30 cycle of denaturation for 30 s at 95°C, annealing for 30 s at 50°C,
16	and extension for 1.5 min at 72°C. A final extension of 5 min at 72°C was added. Long
17	DNA fragments of approximately 500 bp were not suitable for DGGE. The secondary

primers for the bacterial V3 region, and then DGGE was performed as described above.
 2

3	Sequencing of DGGE fragments The DGGE fragments (gel pieces) were
4	directly subjected to a PCR reaction. The PCR was performed as described in the
5	DGGE-PCR protocol with some modifications. The PCR was in a 50- μ l reaction
6	mixture containing: small pieces of gels as the DNA template (gel volume
7	approximately 2 μ l); 50 pmol of each primer (338f without incorporation of a gc clamp
8	and 518r); 1 x PCR buffer; 5 μ l of dNTP mixture (2.5 mM each); 3.0 μ l of MgCl ₂
9	solution (25 mM); and 2.5 U of AmpliTaq Gold. PCR conditions were the same as
10	mentioned in the PCR amplification and DGGE analysis for the Bacteroides group
11	except for the annealing condition for 30 s at 53°C. PCR products were purified using
12	SUPREC TM PCR (Takara Bio, Otsu), and then were sequenced using the BigDye Primer
13	Cycle Sequencing FS Ready Reaction Kit (Applied Biosystems). Sequences were
14	automatically analyzed with a 3100 Genetic Analyzer (Applied Biosystems).
15	
16	Analysis of the sequence Homology searches were performed in the GenBank
17	database with the BLAST search program. Some 16S rDNA sequences were retrieved
18	from the DDBJ, EMBL and GenBank databases for comparison in the phylogenetic

1	analysis. Sequences data were aligned with the CLUSTAL X package program and
2	corrected by manual inspection. Nucleotide substitution rates were calculated, and the
3	phylogenetic tree was constructed using the neighbor-joining method. Nucleotide
4	sequence data reported are available in the DDBJ/EMBL/GenBank databases under the
5	accession numbers from AB112961 to AB113007, AB160863 to AB160864 and
6	AB174887.
7	A dendrogram of DGGE profiles was constructed using Pearson's curve-based
8	correlation and the unweighted pair group method using arithmetic average (UPGMA)
9	clustering method (BioNumerics [™] software ver. 2.5, Applied Maths BVBA, Keistraat,
10	Sint-Martens-Latem, Belgium). Three pieces of DGGE gel were arranged by the
11	position of the closest relative of five amplicons as shown in Fig. 4. Arrows 1, 2, 3, 4,
12	and 5 show uncultured Clostridium sp. (AB064860), Fusobacterium prausnitzii
13	(AJ413954), Ruminococcus obeum (L76601), Bifidobacterium catenulatum
14	(AF432082), and <i>B. adolescentis</i> (AF275882).
15	
16	Stool frequencies and stool conditions The stool frequencies and softness were
17	recorded daily by completing the questionnaire given to the volunteers throughout the
18	experiments.

2	RESULTS AND DISCUSSION
3	The stability of intestinal microbiota Before initiating DFAIII administration,
4	the intestinal microbiota in one of the volunteers was examined as a control. Fecal
5	samples from a healthy woman eating a normal diet were monitored by DGGE for 4
6	weeks at intervals of a few days (Fig. 1). The numbers in Fig. 1 are amplicon numbers.
7	The DGGE profiles of days 0 to 28 were very similar, except for some changes on days
8	14 and 20 that gave slightly different profiles from the others, namely amplicons no. 2,
9	3 and 4 were very weak on days 14 and 20, and amplicon no. 8 on day 20 became
10	stronger than on the other days. However, the profile of day 21 was very similar to the
11	others and, thus, it could be concluded that the microbiota was stable in the healthy
12	subject.
13	These results coincided well with previous reports that the dominant microbiota was
14	found to be stable when human fecal samples from two individuals were monitored over
15	a period of 6 months using TGGE analysis (11). It was also reported that human
16	intestinal microbiota was stable under various daily diets, except when probiotics and/or
17	symbiotics were administered during which bacteria transiently colonize the intestine
18	(12, 13, 19). Furthermore, the TGGE/DGGE profile reflected the predominant bacteria

1 in fecal samples (11-13).

 $\mathbf{2}$

3	Changes in intestinal microbiota after DFA III administration The effects of
4	DFAIII administration on intestinal microbiota were examined in 15 healthy subjects.
5	Fecal samples from 15 healthy subjects administered DFA III (9 g per day for 4 weeks)
6	were monitored by DGGE. To correlate amplicons with closely related bacteria, each
7	visible amplicon (a total of 300 gel pieces) was excised, sequenced and then a BLAST
8	search was done as described in Materials and Methods. The base sequence of
9	approximately 70% of 300 amplicons could be determined. Each amplicon that was in
10	the same position on the gel correlated with the same closest relative. All amplicons of
11	all 15 subjects showed that there was no increased or decreased amplicons in general
12	(data not shown). As typical examples, the DGGE profiles of subjects A, B and C are
13	shown in Fig. 2. There were differences in terms of numbers, positions and intensities of
14	amplicons among the subjects, although almost amplicons as shown in the previous
15	report (11) was detected. Thus, it was concluded that effects of DFA III administration
16	could not be studied using this method.
17	

18

13

As shown in Fig. 2, we also could not

The detection of the Bacteroides group

1	detect the Bacteroides group with bacterial universal V3 region primers. Thus, we
2	employed the specific primers for the Bacteroides (18). The PCR resulted in the
3	amplification of 500-bp fragments from all the samples (data not shown). DGGE
4	profiles of the Bacteroides group are shown in Fig. 3 with subjects A, B, C, D and E
5	showing the presence of eleven amplicons specific to the Bacteroides group. Subjects A,
6	B and C correspond to subjects A, B and C in Fig. 2. However, as outlined in the above
7	section, there were differences in terms of numbers, positions and intensities of
8	amplicons among the subjects, although all amplicons corresponding to the Bacteroides
9	group was detected. Thus, it was concluded that the effects of DFA III administration
10	also could not be studied using this method.
11	
12	Analysis of entire DGGE profiles As shown in the above two sections, simple
13	comparisons of the DGGE profiles did not give a clear understanding of microbiota
14	changes following the administration of DFAIII. This could be due to the fact that the
15	DNA extracted from feces was not quantitated. The Pearson's correlation analysis as
16	shown in the Methods section was applied to examine DGGE profiles. The similarities
17	among thirty DGGE profiles based on the V3 region (before and after administration to
18	15 subjects) were calculated based on the position and intensity of bands, and then a

1	dendrogram of DGGE profiles was constructed by the UPGMA clustering method (Fig.
2	4). DGGE profiles appeared to be best clustered at the relative similarity of 48% to
3	describe intestinal microbiota of subjects before and after DFA III administration. The
4	intestinal microbiota of healthy subjects before and after DFA III administration was not
5	significantly changed as their DGGE profiles of before and after DFA III administration
6	remained in the same cluster. In contrast, there was a clear change in the microbiota
7	profile of constipated subjects before and after DFA III administration (e.g. subjects D
8	and E in Fig. 4 showing two distinct clusters before and after administration). When
9	clustering was performed at a relative similarity of 50% or higher, no distinct
10	microbiota changes were observed. Thus, DFA III did not change indigenous microbiota
11	in healthy subjects, but did so in subjects with constipation.
12	Furthermore, a phylogenetic tree was constructed based on the sequence data of the
13	Bacteroides amplicons (Fig. 3) and that in Fig. 4 as summarized in Fig. 5. This showed
14	that most of the reported groups in human intestinal microbiota (6, 7) were detected, <i>i.e.</i> ,
15	the Bacteroides, the Clostridium coccoides group (Clostridium cluster XIVa) (20), the
16	Clostridium leptum group (Clostridium cluster IV), the Bifidobacterium group, the
17	Clostridium cluster IX, the Clostridium cluster XVIII, and the Collinsella.
18	

1	Effects of DFAIII administration on stool condition and frequency The
2	relationship between the relative similarity of DGGE profiles (Fig. 4) and the stool
3	condition from questionnaires is shown in Table 1. It was found that the lower the value
4	of the relative similarity, the greater the changes in stool frequency and condition. Two
5	among the three subjects with a relative similarity <48% (Fig. 4) had chronic
6	constipation. Moreover, two subjects with chronic constipation obtained relief from the
7	following symptoms, namely slight stool bulking, hard stool and the feeling of
8	incomplete elimination despite higher stool frequency. The stool frequency of subject D
9	increased from 7 times/ week to 8 times/ week, and the stool became softer, changing
10	from pellets to a more normal consistency similar to that of banana or soft ice cream.
11	The stool frequency of subject E increased from 13 times/ week to 16 times/ week in the
12	first week of DFA III administration, and the stool became softer as in the case of
13	subject D.
14	In general, constipation is the state resulting from the confusing of the normal
15	rhythm of defecation whereby the stool remains in the colon for a long time and the
16	subject experiences a feeling of discomfort, hard stools, the feeling of incomplete
17	elimination and decrease of stool discharge. Relief from these symptoms can occur in
18	two ways: to stimulate defecation by increasing fecal bulking and softening of stools,

1	and to move the bowels. The first way can achieved by ingesting fermentable fibers,
2	inulin and oligosaccharides, which are fermentable to a large extent by anaerobic
3	bacteria and result in an increase in bacterial biomass, an increase in fecal mass and
4	production of SCFAs (21-23). The contractile response may have stimulated by SCFAs
5	in the rat terminal ileum and could be resulted from an acid-sensitive calcium-dependent
6	myogenic mechanism (24). SCFAs, especially acetate, are involved in the
7	defecation-improving effect of dietary fiber by promoting colon motility (25).
8	DFA III was not digested by the intestinal enzymes of rat, while it was fermented by
9	microorganisms in the rat cecum (2). The increase in stool frequency and softness in
10	chronically constipated subjects following DFA III administration can be considered to
11	be due to the increase in bacterial biomass and the promotion of colon motility by
12	SCFAs owing to DFA III-assimilating bacteria. Investigation of the effects of DFAIII
13	administration on a large number of chronically constipated subjects is currently
14	ongoing.
15	
16	In conclusion, DFA III administration (9 g per day for 4 weeks corresponding to
17	3-fold the optimal dosage of DFA III) resulted in no difference in DGGE profiles as
18	shown in the dendrogram (Fig. 4) based on the V3 region. However, two subjects with

1	chronic constipation showed different profiles, namely in the numbers, positions and
2	intensities of some amplicons (Fig. 4). The stools of these subjects became softer and
3	stool frequency increased following DFA III administration (Table 1) and they obtained
4	relief from the symptoms of constipation.
5	
6	
7	ACKNOWLEDGMENTS
8	The authors gratefully acknowledge Nippon Beet Sugar MFG., Co., Ltd. (Nitten) for
9	providing us with DFA III, Dr. Y. Benno's staff of JCM, RIKEN for their assistance on
10	intestinal microbiota experiments, and Ms. Evelyn B. Elegado for her help during
11	preparation of this manuscript.
12	
13	
14	
15	REFERENCES
16	1. Yokota, A., Hirayama, S., Enomoto, K., Miura, Y., Takao, S., and Tomita, F.:
17	Production of inulin fructotransferase (depolymerizing) by Arthrobacter sp. H65-7
18	and preparation of DFAIII from inulin by the enzyme. J. Ferment. Bioeng., 72,

1 258-261 (1991).

2	2.	Saito, K. and Tomita, F.: Difructose anhydrides: their mass-production and
3		physiological functions. Biosci. Biotechnol. Biochem., 64, 1321-1327 (2000).
4	3.	Suzuki, T., Hara, H., Kasai, T., and Tomita, F.: Effects of difructose anhydride III
5		on calcium absorption in small and large intestines of rats. Biosci. Biotechnol.
6		Biochem., 62 , 837-841 (1998).
7	4.	Mineo, H., Hara, H., Shigematsu, N., Okuhara, Y., and Tomita, F.: Melibiose,
8		difructose anhydride III and difructose anhydride IV enhance net calcium
9		absorption in rat small and large intestinal epithelium by increasing the passage of
10		tight junctions in vitro. J. Nutr., 132, 3394-3399 (2002).
11	5.	Langendijk, P. S., Schut, F., Jansen, G. J., Kamphuis, G. R., Wilkinson, M. H.,
12		and Welling, G. W.: Quantitative fluorescence in situ hybridization of
13		Bifidobacterium spp. with genus-specific 16S rRNA-targeted probes and its
14		application in fecal samples. Appl. Environ. Microbiol., 61, 3069-3075 (1995).
15	6.	Suau, A., Bonnet, R., Sutren, M., Godon, J. J., Gibson, G. R., Collins, M.D.,
16		and Dore, J.: Direct analysis of genes encoding 16S rRNA from complex
17		communities reveals many novel molecular species within the human gut. Appl.
18		Environ. Microbiol., 65 , 4799-4807 (1999).

1	7.	Hayashi, H., Sakamoto, M., and Benno, Y.: Phylogenetic analysis of the human
2		gut microbiota using 16S rDNA clone libraries and strictly anaerobic culture-based
3		methods. Microbiol. Immunol., 46, 535-548 (2002).
4	8.	Harmsen, H. J., Raangs, G. C., He, T., Degener, J. E., and Welling, G. W.:
5		Extensive set of 16S rRNA-based probes for detection of bacteria in human feces.
6		Appl. Environ. Microbiol., 68, 2982-2990 (2002).
7	9.	Tani, K., Muneta, M., Nakamura, K., Shibuya, K., and Nasu, M.: Monitoring of
8		Ralstonia eutropha KT1 in groundwater in an experimental bioaugmentation field
9		by in situ PCR. Appl. Environ. Microbiol., 68, 412-416 (2002).
10	10.	Sakamoto, M., Takeuchi, Y., Umeda, M., Ishikawa, I., and Benno, Y.:
11		Application of terminal RFLP analysis to characterize oral bacterial flora in saliva
12		of healthy subjects and patients with periodontitis. J. Med. Microbiol., 52, 79-89
13		(2002).
14	11.	Zoetendal, E. G., Akkermans, A. D., and De Vos, W. M.: Temperature gradient gel
15		electrophoresis analysis of 16S rRNA from human fecal samples reveals stable and
16		host-specific communities of active bacteria. Appl. Environ. Microbiol., 64,
17		3854-3859 (1998).

12. Tannock, G. W., Munro, K., Harmsen, H. J., Welling, G. W., Smart, J., and 18

1	Gopal, P. K.: Analysis of the fecal microflora of human subjects consuming a
2	probiotic product containing Lactobacillus rhamnosus DR20. Appl. Environ.
3	Microbiol., 66, 2578-2588 (2000).
4	13. Satokari, R. M., Vaughan, E. E., Akkermans, A. D., Saarela, M., and De Vos, W.
5	M.: Polymerase chain reaction and denaturing gradient gel electrophoresis
6	monitoring of fecal Bifidobacterium populations in a prebiotic and probiotic
7	feeding trial. Syst. Appl. Microbiol., 24, 227-231 (2001).
8	14. Moore, W. E. and Holdeman, L. V.: Human fecal flora: the normal flora of 20
9	Japanese-Hawaiians. Appl. Microbiol., 27, 961-979 (1974).
10	15. Franks, A. H., Harmsen, H. J., Raangs, G. C., Jansen, G. J., Schut, F., and
11	Welling, G. W.: Variations of bacterial populations in human feces measured by
12	
	fluorescent in situ hybridization with group-specific 16S rRNA-targeted
13	fluorescent in situ hybridization with group-specific 16S rRNA-targeted oligonucleotide probes. Appl. Environ. Microbiol., 64 , 3336-3345 (1998).
13 14	 fluorescent in situ hybridization with group-specific 16S rRNA-targeted oligonucleotide probes. Appl. Environ. Microbiol., 64, 3336-3345 (1998). 16. Clement, B. G. and Kitts, C. L.: Isolating PCR-quality DNA from human feces
13 14 15	 fluorescent in situ hybridization with group-specific 16S rRNA-targeted oligonucleotide probes. Appl. Environ. Microbiol., 64, 3336-3345 (1998). 16. Clement, B. G. and Kitts, C. L.: Isolating PCR-quality DNA from human feces with a soil DNA kit. Biotechniques, 28, 640-646 (2000).
13 14 15 16	 fluorescent in situ hybridization with group-specific 16S rRNA-targeted oligonucleotide probes. Appl. Environ. Microbiol., 64, 3336-3345 (1998). 16. Clement, B. G. and Kitts, C. L.: Isolating PCR-quality DNA from human feces with a soil DNA kit. Biotechniques, 28, 640-646 (2000). 17. Muyzer, G., de Waal, E. C., and Uitterlinden, A. G.: Profiling of complex
 13 14 15 16 17 	 fluorescent in situ hybridization with group-specific 16S rRNA-targeted oligonucleotide probes. Appl. Environ. Microbiol., 64, 3336-3345 (1998). 16. Clement, B. G. and Kitts, C. L.: Isolating PCR-quality DNA from human feces with a soil DNA kit. Biotechniques, 28, 640-646 (2000). 17. Muyzer, G., de Waal, E. C., and Uitterlinden, A. G.: Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of

1 Microbiol., **59**, 695-700 (1993).

2	18. Matsuki, T., Miyamoto, Y., Watanabe, K., Tanaka, R., and Oyaizu, H.: Analysis
3	of human intestinal microflora using genus- and species-specific primers, p. 67-91.
4	In Mitsuoka, T. (ed.), Molecular ecological detection and identification of intestinal
5	microflora. Japan Scientific Societies Press, Tokyo (2000). (in Japanese)
6	19. Saito, Y., Hamanaka, Y., Saito, K., Takizawa, S., and Benno, Y.: Stability of
7	species composition of fecal bifidobacteria in human subjects during fermented
8	milk administration. Curr. Microbiol., 44, 368-373 (2002).
9	20. Collins, M. D., Lawson, P. A., Willems, A., Cordoba, J. J.,
10	Fernandez-Garayzabal, J., Garcia, P., Cai, J., Hippe, H., and Farrow, J. A.:
11	The phylogeny of the genus <i>Clostridium</i> : proposal of five new genera and eleven
12	new species combinations. Int. J. Syst. Bacteriol., 44, 812-826 (1994).
13	21. Stephen, A., M. and Cummings, J. H.: Mechanism of action of dietary fibre in the
14	human colon. Nature, 284, 283-284 (1980).
15	22. Roberfroid, M.: Dietary fiber, inulin, and oligofructose: a review comparing their
16	physiological effects. Crit. Rev. Food. Sci. Nutr., 33, 103-148 (1993).
17	23. Cherbut, C.: Inulin and oligofructose in the dietary fibre concept. Br. J. Nutr., 87,
18	S159-162 (2002).

1	24. Cherbut, C., Aube, A. C., Blottiere, H. M., Pacaud, P., Scarpignato, C., and
2	Galmiche, J. P.: In vitro contractile effects of short chain fatty acids in the rat
3	terminal ileum. Gut, 38 , 53-58 (1996).
4	25. Niwa, T., Nakao, M., Hoshi, S., Yamada, K., Inagaki, K., Nishida, M., and
5	Nabeshima, T.: Effect of dietary fiber on morphine-induced constipation in rats.
6	Biosci. Biotechnol. Biochem., 66, 1233-1240 (2002).
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	

1	FIG. 1. The profile of human intestinal microbiota determined using DGGE. The
2	intestinal microbiota of a healthy woman eating a normal diet was monitored for
3	28 d. The picture is the negative image of the DGGE gel stained using $SYBR^{$ [®] }
4	Green I nucleic acid gel stain. The experiment is described in detail in the text.
5	The numbers in Fig. 1 are amplicon numbers.
6	
7	FIG. 2. DGGE profiles of intestinal microbiota obtained from representative subjects (A,
8	B and C) before (pre) and after (post) DFAIII administration. The correlation of
9	amplicons with closely related bacteria is given in the table on the right. The
10	picture is the negative image of a DGGE gel stained using SYBR [®] Green I
11	nucleic acid gel stain.
12	
13	FIG. 3. DGGE profiles of the <i>Bacteroides</i> obtained from representative subjects (A, B,
14	C, D and E) before (pre) and after (post) DFAIII administration. The correlation
15	of amplicons with closely related bacteria is given in the table on the right. The
16	picture is the negative image of a DGGE gel stained using SYBR [®] Green I
17	nucleic acid gel stain. Subjects A, B and C correspond to subjects A, B and C in
18	Fig. 2.

2	FIG. 4. Dendrogram of human intestinal microbiota before and after DFAIII
3	administration constructed using Pearson's curve-based correlation and the
4	UPGMA clustering method (BioNumerics [™] software ver. 2.5, Applied Maths
5	BVBA). Three pieces of DGGE gel were arranged by the position of the closest
6	relative correlating to five amplicons: uncultured Clostridium sp. (AB064860),
7	Fusobacterium prausnitzii (AJ413954), Ruminococcus obeum (L76601),
8	Bifidobacterium catenulatum (AF432082), and B. adolescentis (AF275882) are
9	shown by arrows 1, 2, 3, 4, and 5. The letters shown at the right side of the
10	negative image of the gel correspond to the code of subjects involved in this
11	study, while "0" and "1" correspond to "before and after" DFAIII administration,
12	respectively. Subjects A, B, C, D and E correspond to subjects A, B, C, D and E
13	in Fig. 3.
14	
15	FIG. 5. Phylogenetic relationship of intestinal microbiota of human subjects from the
16	partial sequences of 16S rDNA from DGGE amplicons determined in this study
17	with their closely related bacteria retrieved from DDBJ/EMBL/GenBank
18	databases. The sequences of type strains were used for the comparison. The

1	phylogenetic tree was constructed using the Cluster X package program as
2	described in Materials and Methods. Amplicons from DGGE are shown by each
3	character (B, subject B; F, subject F). The scale bar represents 0.05 substitutions
4	per nucleotide position. Bootstrap values (expressed as percentages of 100
5	replications) greater than 50% are shown at branch points. Subjects B and F
6	correspond to subjects B and F in Fig. 4.

	А	В	С	Amplicon	Closest relative (accession number)	Similarity
35%	Pre Post	Pre Post	Pre Post	no.		(%)
	and 100	100 100	E 12	1 Un	cultured Clostridium sp. (AB064860)	100
	1.00	-	81+1-	2 <i>Ru</i>	minococcus bromii (X85099)	99
				3 <i>Ru</i>	minococcus sp. CO47 (AB064904)	99
		init in the		4 Hu	man intestinal firmicute CB15 (AB064931)	97
	121 124	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	10.00	5 Hu	man intestinal firmicute CB15 (AB064931)	97
	ters and	2		6 <i>Bu</i>	tyrivibrio fibrisolvens (AF125217)	100
	10.00		3	Eu	bacterium rectale (L34627)	100
ants	12 12	-4	5	7 Un	cultured bacterium clone p-30-a5 (AF371665)	100
nr.	22 EB		111	8 <i>Fu</i>	sobacterium prausnitzii (AJ413954)	100
nat		==		9 <i>Rı</i>	uminococcus obeum (L76601)	100
de	-	8	7	10 <i>Co</i>	prococcus catus (AB038359)	97
l of	==	==	— —9	Ru	minococcus sp. CO27 (AB064900)	97
ncr	日日	10		11 Un	cultured firmicute gene (AB064801)	100
C		11	10.00	12 Bif	ïdobacterium longum (M58739)	100
		III 10		Bif	idobacterium infantis (AF528507)	100
	20 III	11 III	12	13 Bif	ïdobacterium bifidum (U25952)	97
	100 100		12	14 Bif	ïdobacterium catenulatum (AF432082)	100
	200 CC	13		Bif	ïdobacterium pseudocatenulatum (D86187)	100
			111 111	15 Bif	idobacterium adolescentis (AF275882)	100
				16 <i>Co</i>	llinsella aerofaciens (AJ245920)	100
₩			— — 15	Со	riobacterium sp. (AJ131150)	100
		-16				
60%						

Ampli	con Closest relative	Similarity
no.	(accession number)	(%)
1	Bacteroides ovatus (AB050108)	97
2	Bacteroides sp. CS3 (AB064916)	98
3	Bacteroides sp. CS2 (AB064920)	100
4	Bacteroides vulgatus (AB050111)	100
5	Bacteroides uniformis (AB050110)	97
6	Bacteroides uniformis (AB050110)	100
7	Bacteroides sp. AR20 (AF139524)	100
8	Bacteroides thetaiotaomicron (M58763)) 98
9	Bacteroides ovatus (X83952)	97
10	Uncultured Bacteroides sp. (AB064826) 100
11	Bacteroides caccae (X83951)	99

Minamida et al. Fig. 3

TABLE 1. The relationship between the relative similarity of DGGE profiles and the stool condition

-	· · ·	The		- *		
			Change		No change	Total
Subject Relative similarity (Softer stool	Increased stool frequency	Softer stool and increased stool frequency		
A, B, F, G, H, J, K L, M, N, P and Q	K, >48	3 (25)	2 (17)	1 (8)	6 (50)	12 (100)
C, D and E	<48	0	1 (33)	2 (67)	0	3 (100)

TABLE 1.	The relationship	between the relative	similarity of DGGE	profiles and the stool condition
	1		2	1

			The number of subjects (rate, %)					
	Change						Total	
Subject	Relative similarity (%)		Softer stool	Increased stool frequency	Softer stool and increased stool frequency	,		
A, B, F, G, H, J, L, M, N, P and Q	K, >4)	48	3 (25)	2 (17)	1 (8)	6 (50)	12 (100)	
C, D and E	<4	48	0	1 (33)	2 (67)	0	3 (100)	

Minamida et al. Table 1